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The electron properties are studied for semiconductor crystals containing impurity states close to 
the edge of a band. The states are described by two independent parameters-their energy and 
their interaction with the continuous spectrum excitations, and the corresponding wave functions 
are characterized by two radii. The electron excitation spectrum and state density are found by 
treating both the hybridization between localized and band states and the Coulomb interaction 
(both between impurities and for a single impurity atom), and phase diagrams are plotted for 
various relative values of the parameters. It is shown that the properties of two-parameter long- 
range states are much more diverse than the usual hydrogen-like states described by the effective 
mass approximation. 

1. INTRODUCTION 

Long-range impurity states in semiconductor crystals 
can greatly alter the crystal properties. For example, the 
Mott transition1 occurs at impurity concentrations 

for ordinary hydrogen-like states and is found to be accom- 
panied by metallic conduction at temperature T = 0. Here a 
is the effective Bohr radius, m is the effective mass, x is the 
static dielectric permittivity of the crystal, and 7, ~ 0 . 0 2 .  
However, the energy of the hydrogen-like states and their 
mutual interaction are both described by a single parameter, 
which greatly limits the range of possible behavior. 

On the other hand, there are many long-range impurity 
states which (unlike hydrogen-like states) require two inde- 
pendent parameters for their description (this is the case, 
e.g., in the Anderson model). Their wave functions are thus 
characterized by two radii-a large radius 
r,  = fi(2m l ~ , ) - l / ~  that depends on the distance E, from the 
impurity level to the nearest band-edge, and a small radius, 
equal to the atomic radius (or to the Bohr radius for heavy 
atoms of mass M)m). Such two-parameter states (TPS) may 
occur in semiconductors with deep transition-metal impuri- 
ty states2 or when the carrier masses are very different.3s4 
The one-electron approximation was used in Ref. 5 to study 
the spectrum for various TPS concentrations in the hybrids- 
d Anderson model. However, both the spectrum and the 
other electron properties of the system can change greatly if 
one allows for the Hubbard repulsion at the impurity centers 
and treats the long-range Coulomb interaction between the 
impurities. In this case, it is essential to analyze the relative 
importance of the effects associated with hybridization and 
Coulomb interaction. The phase diagram for the electron 
properties of crystals with two-parameter states is thus 
much richer and more diverse than for the simple hydrogen- 
like states. For example, hybridization can suppress the con- 
ductivity as the impurity concentration increases, so that 
metallic and dielectric phases may alternate when an exter- 
nal parameter (e.g., the pressure) is steadily increased. In 
addition, Wigner crystallization can occur in both the metal- 
lic and dielectric phases. 

In Sec. 2 we will examine the behavior of a system con- 
taining a high concentration (n)r; 3,  of neutral TPS-form- 
ing impurities; the electron concentration in the states is as- 
sumed to be low, iign. The case of completely filled donor 
(or acceptor) two-parameter states (ii = n)  is analyzed in 
Secs. 3 and 4 for various relative values of the hybridization 
and Coulomb interaction parameters. We assume through- 
out that the Hubbard repulsion parameter U -+ co . 

2. ELECTRON SPECTRUM OF A CRYSTAL WITH A HIGH 
IMPURITY CONCENTRATION FOR NEARLY EMPTY 
IMPURITY STATES 

As in Ref. 5, we will use the hybrid s-d Anderson mod- 
el6 to analyze the electron excitation spectrum of crystals 
containing impurities. The Hamiltonian is 

Here a is the electron spin; a& and a,, are the annihilation 
and creation operators for the band states of energy 
E, = fi2k 2/2m; b pt, and b,, are the corresponding impurity 
state operators (the impurity states, of energy E ~ ,  are as- 
sumed to be nondegenerate); the vector p labels the lattice 
sites that contain impurtities; n,, = b,,+b,,; y, is the hy- 
bridization parameter; Vis the volume of the crystal; U >  0 is 
the intraatomic Coulomb repulsion parameter for the im- 
purities and may be assumed to be larger than any other 
parameter of the system. 

In this section we will consider acceptor impurity 
centers whose renormalized energy 

k 

lies near the bottom of the conduction band. The energy of 
an extra electron localized at an isolated impurity is then 
found by solving the equation 
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(we will henceforth assume that the symmetry of the band 
and impurity states is such that y=lyk,, 12#0). Equation 
(3) has the solution 

which is sensitive to the ratio Ed /sf , where E, is the width of 
the "threshold" region. Far from the impurity center, this 
state has the wave function (for so < 0) 

$o e-'frO 

$ (r) = --- - 
A2 , + 0 2 = ( ~ + ~ ) - i  , r:=- 

(4nr,)"2 r 2r, 2met '  

a) Assume that Cd exceeds the threshold energy, 
12, I )E, . Then s o d d ,  and the wave functions is concentrat- 
ed mostly at the impurity; only a small fraction -ro/2r, < 1 
of the electron density described by Eq. (5) is distributed in a 
volume -rA. This type of distribution corresponds to the 
structure of the two-parameter states. 

It was shown in Ref. 5 that in the one-electron approxi- 
mation, the spectrum undergoes a coherent rearrangement 
for high TPS concentrations 

n>n,= (3n2rO3) -' . (6 )  

Some of the states near the local level (E, < 0) are then deloca- 
lized; these states lie opposite the states in the principal (con- 
duction) band, i.e., on the other side of s,. Their energies are 
determined by the wave vector; like the energies for states in 
the band, they obey the dispersion equation 

and they are of the form 

E , ~ =  { E ~ + E , -  [ ( ~ ~ - ~ ~ ) ~ + 4 n y ~ ]  ' i a ) / 2 .  (8) 

The Ioffe-Regel condition, which is equivaIent to 

&-Re R ( & ) > I m  R ( e ) ,  (9) 

determines the maximum length of the wave vector in this 
band. The impurity band (8) is thus bounded by 

n,'"(l+ I EoI/A) -k~~~<k<k,,,-n1i3, (10) 

where n, = r; and 

A = E ~ - E , ~ = ~ = [  ( ~ ~ ~ + 4 n y ' ) ' " - ~ e ~  1]/2 (1 1) 

is its width. For a specified c, the density of states in the band 
is given by 

This expression is valid for A>&, - s)A,, where 
A, = nIt3n, 'I3fi2/2m is comparable in order of magnitude 
to the concentration broadening of the impurity level. Else- 
where, the states are localized (out to the renormalized edge 
of the principal band); their density is determined primarily 

by the state density for pairs of neighboring impuritites and 
is given by 

where a, is the lattice constant of the crystal. The dispersion 
law in the principal band also follows from (7): 

ezk' { ~ k + & ~ f  [ ( ~ k - & ~ ) ~ + 4 n y ~ ]  1i1)/2, (I4) 

and is valid [cf. (9)] for 

if the impurity level lies within the continuous spec- 
trum (&, > O), the state density function will have a well-de- 
fined quasilocal peak for Ed BE,. For high impurity concen- 
trations n>n,, coherent rearrangement occurs and the 
original spectrum splits into lower and upper branches 
which obey the dispersion relations (8) [kmi, (" < k < k,,,] 
and ( 14) [ k  < k 1, respectively. Expression (12) remains 
valid for the density of states for these branches. The states 
are localized in a quasigap that forms between the upper and 
lower frequencies so and E, = so + A of the lower and upper 
branches; the state density here is determined by the levels of 
the impurity pairs and is given by Eq. (13). Figure 1 shows 
the general form of the state density functions p(s) during 
coherent spectral rearrangement for the local and quasilocal 
impurity levels. We note that a second peak is present near 
sl = so + A for the quasilocal level when n<r~;'~/n, 'I3; its 
height is -n,/A, substantially greater than the unperturbed 
state densityp,(s,), and its integrated intensity (area) is -no. 
Expressions (1 2) and (1 3) thus describe p(s) for a wide range 
of energies; one or the other of them is valid everywhere 
outside Is - A. (where the impurity level is concentra- 
tion-broadened) and the narrow transition regions of width 
A,,, = - / near the renormalized band 
edges, where a transition occurs from localized to band 
states.' The peak in p near so has area -n and is asymme- 

FIG. 1. Density of states at high impurity concentration: a) &,<O; b) 
E, > 0. The states in the hatched regions are described by their wave vec- 
tors; lines 1 and 2 plot the distributions given by (12) and (13), respectively. 
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tric-p(&) a (E - E , ) - ~  for the localized states, while 
p(&) o: (E - E,)-"~ for the band states. 

b) We now consider what happens when Zd lies in the 
threshold region, \Ed 1 ( E ,  . Then if i, < 0, a local level of 
energy E,--, - S, 2 / ~ ,  forms at an isolated impurity (a virtual 
level forms if Ed > 0). An "incoherent" spectral rearrange- 
ment occurs in this case if n>n,; the widths A,,, and A, ofthe 
transition and concentration-broadening intervals then be- 
come comparable and are much greater than (&,/. No new 
band (for quasigap) of coherent impurity states is then 
formed. 

However, for high impurity concentrations n > ii,, 
where 

n",=qln,, q , ~ ' / ~ ~ ,  (16) 

coherent spectral rearrangement and splitting can occur 
even in this situation; the two branches are then described by 
a quasimomentum. The corresponding solutions of Eq. (7) 
are similar to the ones considered above for n)n;/'/n, ' I 3 .  

The numerical coefficient v,, estimated in Ref. 9 on the basis 
of a self-consistent analysis, agrees quite closely with the 
experimental data1' on light absorption by antiferromagnet- 
ic materials containing impurities. 

c) The concentration broadening A, associated with hy- 
bridization is not the only mechanism that can spread out 
the energies of the impurity levels; Coulomb interactions can 
also cause broadening. We will therefore investigate how in- 
homogeneous broadening influences the coherent spectral 
rearrangement. The polarization operator R ( E )  is then of the 
form 

where the distribution function P (x) describes the diagonal 
disorder, as in Ref. 10. We assume that the width r of the 
distribution is greater than A,. The density of localized 
states near E, is then given by nP (E - E ~ )  as long as the latter 
is greater than p2(&). As before, condition (9) determines the 
nature of the solution of Eq. (7). If l?gA then (9) implies that 
the coherent rearrangement is qualitatively the same as be- 
fore; however, the maximum wave vector is not determined 

and the specific form of decay of P (xj determines the mini- 
mum wave vector. However, if T>A then coherent rearran- 
gement is suppressed; no band states form near the local 
level, and the quasigap near the quasilocal level disappears. 
We note that in the latter case, the energy spreading of the 
levels facilitates delocalization instead of the more usual lo- 
calization. 

d) One might expect that the impurity band of deloca- 
lized states that forms during coherent spectral rearrange- 
ment would give rise to metallic conduction when the band is 
filled with electrons. However, because of the large width of 
the region of localized states this is not always true. We will 
consider the onset of metallic conduction (at T = 0) in more 
detail for a system containing acceptor impurities with E, < 0 
and n)n,. We will assume that the levels are filled by elec- 
trons provided by additional donor impurities of concentra- 

tion f i  gn. The concentration ii must not be too low, because 
the Fermi level E~ must lie within the region of delocalized 
states of energy E,,  [this will at least ensure that all the local- 
ized states of energy <&,,_," (below the mobility threshold) 
will be filled]. This yields the inequalities 

[we have assumed that the density p2(&) of paired levels (13) 
determines the density of localized states for E < E , , _ , ~ ] .  On 
the other hand, ionized donor centers are present which give 
rise to a random Coulomb field at the majority impurity 
centers which discourages delocalized states, Thus, an elec- 
tron leaving a donor can enter a delocalized state only if the 
energy gained by localization is less than the bandwidth (1 1): 
AE -nl/'n, 'I3fi2/2m < A. If this condition is satisfied, the 
electron will not be trapped by the acceptors adjacent to the 
donor (within a distance of -n-'I3). We thus get 

The coefficients were found from the requirement that 

wherep, (E )  is the density of Coulomb states. 
The above requirements in c) are automatically satisfied 

if (19) and (20) hold, and the screening radius in this case is 
found to exceed the average distance between the donors. 
Metallic conduction can thus occur when (19), (20) hold. 

We will now examine which types of impurity centers 
that give rise to two-parameter states can satisfy (20). As- 
sume first that the carriers in the semiconductor have widely 
different masses (m<M).  The smaller (r,) of the two radii 
characterizing the impurity state in this case is still much 
greater than the lattice constant; the behavior over distances 
k r, can therefore be described in terms of the dielectric sus- 
ceptibility, and in the effective mass approximation the ener- 
gy of the impurity leve13v4 is determined primarily by the 
band for the heavy carriers of mass M. The parameter de- 
scribing the interaction between the two-parameter states 
and the light carriers can then be estimated directly as 

y=4Jhe/ ( nxM)" '  (21) 
in the limit m/M + 0. Herep is the overlap integral for the 
Bloch functions at the extremal points for the light- and 
heavy-carrier bands. The characteristic concentration is 
thus given by 
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where n h  and n, are the Mott concentrations for heavy- 
and light-carrier bands, respectively. The second constraint 
in (20) is easily seen to determine the minimum TPS concen- 
tration for onset of metallic conduction when the position of 
the impurity level changes relative to the edge of the light- 
carrier band. Substituting (22) into (20), we find that 

n>En,', e ~ t ~ / 2 3 0 4 ? l ~ p ~ = 7 / p ~ .  (23) 

Even in the most favorable casep- 1, the lower bound 
(23) is of the same order of magnitude as the familiar Mott 
bound for the heavy-carrier band. Thus, if r ,  (the smaller of 
the two TPS radii) can be described in the effective mass 
approximation, the impurity band cannot support steady 
metallic conduction. However, such conduction can occur if 
r ,  is comparable to the atomic radius. The concept of dielec- 
tric permittivity breaks down at atomic dimensions and the 
parameter y exceeds the bound determined by (22), so that 
(20) can be satisfied. The formation of delocalized states in 
the impurity band can also be observed by injecting external 
carriers into the system. 

3. METALLIC AND DIELECTRIC STATES OF A SYSTEM OF 
DONOR TWO-PARAMETERS STATES (A,>n,) 

We will now analyze what happens when the TPS is a 
filled donor level near the bottom of the conduction band (or 
an empty acceptor near the edge of the valence band); each 
impurity atom is assumed to trap a single electron. We will 
investigate the electron states of such a system for several 
impurity concentrations and energies E, (i.e., n and n, will be 
varied). The constant parameters determining the behavior 
of the system are n, and n,, and strong hybridization will be 
assumed in this section: ii, Sn,. We will therefore generally 
neglect the Coulomb interaction between electrons located 
at different lattice sites. 

a) We first consider an impurity level lying below the 
bottom of the band: E, < 0. Because of the strong Hubbard 
repulsion U, at most n electrons can be put into the impurity 
band. The electron spin will have a definite projection u at 
any given impurity site; to fourth order in y, the spin interac- 
tion for n o ,  is described by the effective spin Hamiltonian 

Here a, is the electron spin operator for impurity site p and 
is given by the Pauli matrices. Expression (24) was derived in 
Ref. 11 for /&,I >E, , which corresponds to n,)n,. Because of 
the antiferromagnetic nature of the interaction I (r), the elec- 
tron system enters a spin glass state at low temperatures 
T, -I(n-'I3) for n(n,. For high concentrations n,(n<ii,, 
for which no coherent spectral rearrangement takes place, 
the transition to the spin glass state occurs at Tf-(n/ 
n,)'13&, . Equation (24) continues to describe the exchange 
interaction between the impurities for n(n;I3/n, 'I3 when 
coherent rearrangement occurs, and the transition tempera- 
ture is 

Finally, we obtain Tf - (n/n , ) l is~r  if n) max (ii, , n,4I3/ 
ny 113). 

We will assume that the temperature is high: T ) Tf in 
the following analysis of spectral rearrangement and phase 
transitions. 

Because of the hybridization, the density of localized 
states has a high-frequency tail for small impurity concen- 
trations; this tail is described by (1 3) if n,)n,. The electrons 
from states in the tail with energies > E~~ = , go into states in 
the band or else enter hydrogen-like Coulomb states of ener- 
gy E, = fi2/2ma (the effective Rydberg energy). These elec- 
trons thus determine the Fermi level; if their concentration 
n ' ( ~ , ,  = ,) exceeds n, and (k,i,'2')3, then E, lies above the 
mobility threshold for the principal band and the system 
becomes metallic. Here n' is given by 

m 

The transition to the metallic phase occurs for concentra- 
tions n)ii,(n,/n,)''2, where 

KO= (1/3n" (2rn(~~(/fi~)'~. 

If n,)n, and n is increased further to n )no, a region of 
delocalized states of energies < E , ( ~ E , )  forms as discussed in 
Sec. 2 and can alter the hole excitation spectrum. For 
n,<n<n:/3/nr, perturbation theory gives the dispersion 
law 

to second order in y. Herep, is the relative number of elec- 
trons with spin u and N is the number of lattice sites. The 
range of validity of (26) is again given by condition (lo), with 
n replaced byp, n. The same procedure can be used to derive 
the dispersion law 

e-f",) = ~ k +  pony2/ ( ( E O  ~+E+L) ,  (27) 

for the electrons in the renormalized principal band for all 
~z<n:/~/n:/3; Eq. (27) is valid if (15) is satisfied (with n re- 
placed by p, n). 

The results (26), (27) show that to second order in y, the 
system behaves as if it consisted of two independent subsys- 
tems with different spins u and impurity concentrationspun. 
Moreover, (27) implies that the system should have a pre- 
ferred polarization if more electrons are added to a doping 
concentration n, 2 n, = 2Tfs0/Y. Preferential spin polar- 
ization can occur even without additional doping if n,(n,/ 
n,)'I2(n(n0, because in this case n' in (25) may exceed n,. 

One can show quite generally that 

whenever coherent rearrangement occurs; here the + and 
- signs correspond to excited electrons and holes, respec- 

tively. This result reduces to (27), (26) when n(n:/33/n:/3. 
Finally, we observe that the spectra (26), (28) may have hole 
branches for n)n,, because their width leti ,, - is > Tr 
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b) We will next analyze an impurity level lying within 
the continuous spectrum (to > 0). We have already noted that 
in this case, the band spectrum splits for n)no and a "forbid- 
den" region forms, so that in principle the system can behave 
like a dielectric if the Fermi level lies in the region of local- 
ized states. It is thus very important to determine the maxi- 
mum number of electrons that can be contained in the lower 
subband. We begin with the simplest case of completely po- 
larized electrons, for which the dispersion equations (8) and 
(14) are valid. The number of states with a specified polariza- 
tion in the upper subband is then independent of the impuri- 
ty concentration and is exactly equal to the number of states 
in the band for a perfect crystal, i.e., 

Since doping increases the number of degrees of freedom in 
the system by n, the total number of states of the specified 
polarization in the lower subband [including the contribu- 
tion from the fluctuation tail inp,(e)] is precisely equal to n. 
As the impurities fill up with electrons (for no)n,), roughly 
n0/2 of the electrons are delocalized, and an equal number of 
impurity sites are empty on the average. The latter sites are 
responsible for the spectral rearrangement of the electrons 
with the opposite polarization. According to the above argu- 
ment, the number of states in the lower subband with the 
opposite polarization is also equal to n0/2. According to the 
previous discussion in a), the total number of possible states 
in the lower subband for both polarizations is then 

The same result clearly follows for an arbitrary degree of 
polarization in the limit y -+ 0. Since the hybridization Ha- 
miltonian does not mix states of different polarization, (30) 
should be exact (recall that U -+ co ) for arbitrary y andp, . If 
we assume that the subsystems with different polarizations 
are independent, as was the case for to < 0, we can derive the 
dispersion equation 

for electron and hole excitations characterized by a quasi- 
momentum. 

In order for the Fermi level of a system with n (intrinsic) 
electrons to lie inside the quasigap for n)no, n, and E, > 0, 
i.e., in order for the system to behave as a dielectric, fewer 
than n d 2  of the fluctuation states within the upper subband 
must be unoccupied. That is, we must have n1(t1) < nd2,  
where tl is the bottom of the lower of the two upper (spin- 
split) bands. The Fermi energy, E, is then given by 

n' ( e F )  =n,/2, (32) 

whence 

If E, is greater than t l ,  the Fermi level will lie inside the 
upper subband near t1 and the system will conduct like a 
metal. The insulator-metal transition for polarization 

FIG. 2. Phase diagram in the n,  f i ,  plane for E,>n,. The regions of 
metallic phase are hatched; the vertical arrows indicate the region of ferro- 
magnetically ordered spins, while SG denotes the spin glass regions. Lines 
1,2,3 correspond to n - fi,(n,/n, ) ' I 2 ,  n =no, and n - n:/n,, respective- 
ly. 

p, = 1/2 occurs at 

The dielectric region is thus bounded from above the parabo- 
la (33) and from below by the line nzn,. If however 
no 2 n > n,, then almost all of the electrons leave the donors 
and enter states in the band, thus giving rise to metallic con- 
duction; moreover, the same is true for impurity levels lying 
within the threshold region (E~(E,). It can be shown that 
metallic conduction can also occur during incoherent spec- 
tral rearrangement when ii, )n)no (and a fortiori during co- 
herent rearrangement, since in this case n)ii, %no). The re- 
gions of metallic phase for t o<O and co>O are thus 
continuously~connected. Figure 2 shows the general form of 
the electron phase state diagram in the variables n, Eo. 

4. IMPURITY SYSTEMS WITH STRONG COULOMB 
INTERACTION (A, 4n,) 

In the last section we neglected the Coulomb effects; we 
will now consider the case when the Coulomb interaction 
rather than hybridization dominates the behavior of the im- 
purity system. Batyev12 analyzed a similar problem for to > 0 
in the limit n, = 0; he showed, among other things, that the 
impurity centers can act as nuclei for three-dimensional 
Wigner crystallization of charged carriers. Such a system is 
metallic for impurity concentrations n > n,. We will show 
below that even weak hybridization (n, (n, ) can disrupt the 
Wigner crystal and cause a transition to the dielectric state. 

We first pause to consider the density of the electron 
states more fully for the case when n, = 0, to > 0, and n, 
no)n,. Almost all of the impurity centers will then be ion- 
ized if n(no. However, if the impurity concentration in- 
creases so that n)no, most of the electrons will be trapped, 
with the remainder nO&n occupying states in the band. The 
latter correspond to no& positively charged holes, which 
repel one another and migrate along the impurity centers to 
form a Wigner crystal.12 However, it was shown in Ref. 13 
that no true long-range order is established in this case-the 
regions of crystalline phase are bounded in radius by 
r, -a, (n/no)4'3)a ,, where a, -no-'I3 is the Wigner lat- 
tice parameter. 

1037 Sov. Phys. JETP 61 (5), May 1985 M. A. lvanov and Yu. G. Pogorelov 1037 



In the absence of hybridization, the density of electron 
states can be expressed in the form 

P (E) =Pb (E?  +pi (E ) ,  (34) 

wherepb (E) andpl (E) are the densities of the band states and 
of the states localized near the impurities, respectively. The 
band states are appreciably perturbed only near the boun- 
daries of the Brillouin zone of the Wigner crystal. Because 
their energies are greater than pb  (E) differs only slightly 
from pa(&) for the energies Z E ~  of interest. In the case of 
Wigner crystallization, the localized state density pl (E) has 
two peaks of widely different areas which are separated by a 
gap of width -A, = ~z,' '~e~/?t (A, is the characteristic ener- 
gy scale). The weaker peak, of integrated intensity =no, cor- 
responds to charged impurity centers located at the sites of 
the Wigner lattice. The position E; of this peak can be found 
by partitioning the Wigner crystal into Wigner-Seitz 
spheres. The shift of the peak relative to E, is proportional to 
the Coulomb potential of the electron at the center of a 
sphere: 

e , ' = ~ ~ +  (9n/2) '"A,-~,+2,42A,. 

The discreteness of the impurity centers broadens the peak 
by an amount -Ac (no/n)'I3. On the other hand, the princi- 
pal maximum is associated with uncharged impurities and is 
determined by their local potential distribution. The high- 
frequency edge of this distribution corresponds to intersti- 
tials in the Wigner crystal for which the ionization potential 
is a minimum; it occurs at the energy 

(for a closely packed cubic lattice). The localized state den- 
sity pl  (E) obeys the square-root law 

for E z E ,  ;pI (E) increases to a maximum near E~ and then falls 
off as 

for E, - E 2 A,. This dependence is of the same form as the 
behavior of the potential near a Wigner lattice site. The prin- 
cipal peak is thus highly asymmetric and of characteristic 
width - A , .  

In order to calculate the position of the Fermi level for 
this system in the above approximation, we use the corre- 
sponding expression 

for the electron energy of the crystal, where E, = e2m/ 
2?t2fi2. The terms in the right-hand side of (37) correspond 
respectively to the self-energy of the trapped electrons, the 
kinetic energy of the electrons in the band states, and the 
Coulomb energy inside a Wigner-Seitz sphere. The energy 
(37) has a minimum for 

FIG. 3. Density of electron states for n, = 0. The solid curves showp,(~) ,  
the dashed line givesp, ( E ) .  The states in the hatched regions are filled. 

which as expected lies higher than the edge E, of the princi- 
pal peak and below the edge E, ' of the secondary peak. Fig- 
ure 3 shows the general behavior of&). 

We will now discuss the effects of hybridization. For 
n, #O, the indirect hybridization interaction between the 
impurities gives an additional contribution top,(&), as de- 
scribed by (13). The corresponding states above the Fermi 
level (38) are not filled, so that a certain number 

of the charges are randomly distributed over pairs of neigh- 
boring impurities. These charges pin the Wigner lattice, and 
the radius rp determines the correlation radius when 
rc > r p  -n; (this situation occurs when n)no(n,/ 
n,)''6). For n, -no, however, the correlation radius be- 
comes comparable to the lattice constant, and the Wigner 
crystal melts completely when n -no(n,/n,)1'2 (this esti- 
mate is valid if the hybridization is not too great, i.e., if 
n(r~;/~/n:/3, so that E~ greatly exceeds the width A of the 
energy interval (1 1) within which the spectrum changes sig- 
nificantly). The last two conditions are mutually consistent 
for n,)nF/n?; however, if no<n,3'2/n:/2 then no 
Wigner crystallization can occur, at least for n > n&/n,. 

The width A of the spectral rearrangement interval be- 
comes comparable to the Coulomb width A, for concentra- 
tions n -no(n,/n,)1'3, i.e., even before the Wigner crystal 
melts. A quasigap of width A, also forms, as discussed in 
part c) of Sec. 2. Since A, also determines E~ [Eq. (38)], the 
Fermi level lies within the quasigap and metal + dielectric 
transition takes place. The same number no of charges will be 
randomly distributed over pairs of neighboring impurities 
after the Wigner crystal melts. In this case the secondary 
peak at EZE; disappears. The form of the principal peak is 
virtually unchanges for E, - E 2 A,; for E - &,%A, the peak 
has the profile 

while finally, for 
E - E ~ B A ,  In"' (non,/nnT) 

the peak is described by Eqs. (12), (13). The system may once 
again become metallic if the donor concentration increases 
further (cf. Sec. 31, provided that the number n ' ( ~ , )  of fluctu- 
ation states above the edge E ,  of the upper subband given by 
(3 1) exceeds max (nd2, n,) if E~ ;. 0 [or that n ' ( ~ , )  < n, for 

< 01. The lower boundary of the second metallic region is 
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FIG. 4.  Phase diagram for n, <n,. The hatched regions correspond to the 
metallic phase; the crosses ( + ) show where Wigner crystallization oc- 
curs. Lines 1-3 correspond to expressions (40) .  The other curves are de- 
fined as follows: 3') n, = n, [cf. (39)l; 4)  n-n,(n, /n,)1'3;5)  n=:n,. 

thus determined by the dependences 

The above arguments all assume that max (n, no))n,. 
Other phases (e.g., exciton phases) may form if this condition 
is violated; however, this goes beyond the scope of the pres- 
ent paper. Figure 4 shows the phase diagram for the electron 
states described in this section. 

5. CONCLUSIONS 

The above arguments show that the electronic proper- 
ties of semiconductor crystals with two-parameter impurity 
states are much more diverse than for ordinary hydrogen- 
like impurity states. For example, in addition to the Mott 
transition, metallic and dielectric phases may alternate if 
E~ > 0 and n, no > nM, n, if either the impurity concentration 
n or the energy E, of the impurity level are varied monotoni- 

cally (E, determines the value of no). Wigner crystallization 
and melting may also occur, depending on the values of these 
parameters. Finally, if E, < 0 and no>nM, impurity fluctu- 
ation states may produce a metallic phase, and different 
types of spin ordering (spin glass and ferromagnetic) may 
alternate. 

Systems that exhibit the above behavior include semi- 
conductors with widely different effective masses (so that 
n, (n,), semiconductors and dielectrics that are suitably 
doped with transition elements (n, sn,), and many others. 
Such systems are easily studied by changing the external 
pressure, magnetic field, or other so as to alter E, 

or no. Finally, we observe that similar behavior may be an: 
ticipated for impurity states generated by intense optical 
pumping near the edge of the continuous spectrum. 

We thank M. A. Krivoglaz for his interest in this work, 
and A. L. Efros, B. I. Shklovskii, and M. E. Raikh for a 
discussion of several topics touched upon in this paper. 
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