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A calculation is reported of the amplitude and cross section for the scattering of electrons with 
wave vector k (ka,gl) by two centers separated by a distance Rsa,, where a, is the Bohr radius. 
One of these centers has a Coulomb potential (attractive or repulsive) and the other has a short- 
range 6-function It is shown that, when k 2Rao/2g 1, so that the wave function of the 
electron in the Coulomb field differs appreciably from a plane wave (see Refs. 6 and 7), the 
scattering amplitude due to the S-function potential in the attractive Coulomb field, f c  (R ), is 
substantially greater in absolute magnitude than the corresponding free-electron amplitude f, 
(Ref. 1). As k is reduced, the ratio rc (R )I/lf, I is found to increase in proportion to k -'. The 
dependence off (R ) on the angle between the vectors k and R and on the scattering angle is 
investigated. The relation between f Tj (R ) and the Born scattering amplitude is found. It is shown 
that the change in the scattering amplitude due to the 6-function center at distances Rsa ,  from 
the Coulomb center may be detectable experimentally in weakly-doped semiconductors at low 
temperatures at which it gives rise to an increase in the electron scattering and trapping cross 
section of small neutral impurities located near attracting centers. 

1. This paper is devoted to the determination of the scat- 
tering amplitude and cross section for electrons interacting 
with a system of two centers (a pair) separated by a distance 
R. It is assumed that one of the centers has a purely Coulomb 
(attractive or repulsive) potential Vlr), whereas the potential 
V,(r) of the second center has a decay length a that is much 
smaller than the de Broglie wavelength of the electron, i.e., 
V2(r) is a short-range potential. The interaction of an elec- 
tron with the second center will be treated within the frame- 
work of the zero-range model potential (6-function poten- 
tial),' and we shall refer to the second center as the 6-center. 
We shall concentrate our attention on slow electrons with 
wave vectors k = f i - ' ( 2 r n ~ ) " ~  satisfying the condition 

where a, is the Bohr radius (a, > a)  and E is the energy of the 
electron. The scattering amplitude will be calculated for the 
pair in the case where the separation R between the Coulomb 
and 6-centers is large: 

R/a,B1, (2) 

but has the upper bound 

where E, is the ionization energy of the Coulomb center in its 
ground state. 

2. An example of a system for which the present results 
may be relevant is a semiconductor with donor density 
N, (a, and low degree of compensation.'' In equilibrium, 
at temperatures T such that T,<T<E,, where 
TI = 2E&b/'aO, the density N+ of positively charged do- 
nors is approximately equal to the density N- of negatively 
charged acceptors, and both are much smaller than the den- 
sity No of neutral donors. Charged donors D + and acceptors 
A - are then located at distances -R+=N ;'I3 and 
-R_N I 'I3 from one another. The centers D + and A - 
are also separated by distances -R + when, for T(T,, exter- 

nal illumination of sufficient intensity is present.3 In such 
cases, a sphere of radius --R + around each charged center 
contains - N,/N+) 1 neutral donors characterized, by ana- 
logy with the hydrogen atom, by a short-range p~ten t ia l .~  
The interior of this sphere is then dominated by the Coulomb 
potential of "its own" charged center which forms pairs of 
size R with neutrals, where R, 5 R 5 R + and R, = N; 'I3. 

We shall suppose that electrons are mostly scattered by neu- 
tral impurities and partly by charged impurities. It is com- 
monly assumed that these scattering mechanisms are inde- 
pendent, and the mobility is found by calculating the 
individual scattering cross sections of the Coulomb and neu- 
tral  center^.^.^ Our results show that, for electrons of low 
enough energy, the scattering amplitude and cross section, 
obtained for a center of small radius at a large but bounded 
[see (2) and (3)] distance from the Coulomb center, are sub- 
stantially different from the corresponding amplitude and 
cross section in the absence of the Coulomb  enter.',^,^ This 
difference is due to the influence of the Coulomb potential on 
the electron wave function near the center with the short- 
range potential. The consequence of this is that the magni- 
tude and energy dependence of the scattering cross section of 
neutral impurities turn out to depend on the presence of 
charged impurities. The question of applications of our re- 
sults will be examined in greater detail at the end of this 
paper. 

We note that, in the literature, the scattering of particles 
with wave vector k(a-' by a Coulomb and a short-range 
potential has been considered only on the assumption that 
R = 0, i.e., when the potentials originate at the same 
point,"8 so that the scattering system has spherical symme- 
try. The analysis given under these conditions in Refs. 6 and 
7 was concerned with the scattering of protons by protons, 
whereas Ref. 8 was concerned with scattering of electrons in 
semiconductors by deep (nonhydrogenlike) impurities. In 
the discussion given below, we shall briefly investigate the 
general expressions for the scattering amplitude (17), (18) in 
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the special case when R = 0. The scattering of electrons by 
systems which, as in our case, are not spherically symmetric 
(several &centers or two oppositely charged Coulomb 
centers, i.e., a dipole) has been investigated in several papers. 
They are reviewed in Ref. 9. 

The distance R, and the inequality given by (3) have a 
simple physical interpretation: At r = R,, the potential en- 
ergy of the electron in the Coulomb field V,(r)  is equal in 
absolute magnitude to its total energy, so that R, is the clas- 
sical turning In other words, the 6-center lies in the 
interval of distances in which the motion of electrons in the 
Coulomb field is essentially different from free motion. We 
note that inequalities (1) and (2) are actually the conditions 
for the validity of the quasiclassical approximation to the 
motion of particles in a Coulomb field at distances R from 
the Coulomb  enter.^ 

3. The basic results of the present paper relate to the 
total amplitude f c  for the scattering of electrons by a 6- 
center at a large but bounded distances from the Coulomb 
center [see (2) and (3)]. We shall show that, generally speak- 
ing, f : depends on R, the angle of scattering 9, and the angle 
,8 between the wave vector k of the incident electron and the 
vector R (the origin lies at the Coulomb center and the 6- 
center lies at the point r = R; see Fig. 1). In an attractive 
field, the modulus If ;, I is then much greater than the modu- 
lus If, / of the amplitude for the scattering of a free electron 
by a 6-center.' For example, for small angles f i  and 91.r 
(backward scattering), we have Lf $ l/Ifs I - (2n-/kao)s 1. 
When& 1 and 9.4 1 (forward scattering), the ratio is 

Finally, for large angles ,B, we have 

This means that the presence of an attractive Coulomb cen- 
ter produces a change in the energy dependence and an in- 
crease in the amplitude of scattering by the 6-center located 
far from the attractive center. There is also a corresponding 
change in the energy dependence of the differential and total 
cross sections of the 6-center. Moreover, the amplitude and 
cross section become functions of R. In a repulsive field, the 
ratios of the moduli of the amplitude contain the further 
factor exp( - n/ka,) and are small. In other words, scatter- 
ing by the 6-center is, in this case, completely masked by 
Coulomb repulsion. This is in qualitative agreement with the 
results obtained in Refs. 6 and 7 (Section 138 of the latter) in 
the case of scattering by equally charged particles for R = 0. 

FIG. 1 

The change in the scattering amplitude of the 6-center 
in a Coulomb field is actually due to the fact that the free- 
electron Coulomb wave function $,+ (r) corresponding to 
wave vector k satisfying (1) is very different from a plane 
wave both for r = 0 and for the distances defined by (2) and 
(3). Thus, in the case of the attractive fields, the ratio of the 
moduli of these functions for r = 0 is7 

I $ki(0) ( /  ( $ k  (0) I =ai" (2n/kao) ':. (4) 

For distances R > 0, and bounded in accordance with 
(3), the ratio of the moduli is 

( J,  is the zero-order Bessel function). In the case of the re- 
pulsive field, the ratios given by (4) and (5) acquire the addi- 
tional factor exp( - n-/ka,), which ensures that the scatter- 
ing amplitude is reduced. 

4. Henceforth, we shall use Coulomb units. Let the elec- 
tron wave function be denoted by p,(r). It satisfies the 
Schrodinger equation 

I cc a v2 + - E )  cpk (r) =-?.TI LS (r-R) - B P  (pp) (6) 

with boundary c ~ n d i t i o n ~ . ' ~ ~ "  

. . 
In Eqs. (6) and (7), L is the scattering length for an electron 
incident on a small-radius center. It is considered to be posi- 
tive when the electron forms a bound state with the well 
(negative ion), and negative in other cases.1° The parameter 
a is equal to unity for the repulsive potential and to - 1 for 
an attractive potential. 

We shall seek the solution of (6) in the form of the sum 
v k  (r) =@kt(r) +Ak (R)  Gk(rr R )  , (a] 

where $,+ (r) is the Coulomb wave function of the continuous 
spectrum, corresponding to a plane wave and a diverging 
spherical wave at infinity, G, (r, R ) is the Coulomb Green's 
function corresponding to the diverging wave exp(ikr)/r at 
infinity, and the factor A ,  (R ) is determined by the boundary 
condition (7). Substituting (8) in (7), and recalling that 
G, (r, R )-+1/2n-lr - R I as r+R, we obtain 

A,  (R) = - 
2n $t+ (R) 
%+A, (R) ' 

where 

In deriving (9), we took into account the fact that S z  (r) is a 
continuous function of r as r-R, so that pd$,+ / d p 4  for 
p-0. 

5. The quantity A ,  (R ) will now be shown to determine 
the scattering amplitude. For the moment, we shall not use 
assumptions (1)-(3). In its contracted form, the Coulomb 
Green's function is given by (see, for example, Ref. 12) 

G k  (r, R) 

- - r ( l - q )  3 8 - - -) W ( i )  M I  i k .  (11) 
2nlr-Rl (Bikr diky 
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where 
q=a/ik ,  x=rtR+ lr-Rl, 

y=r+R- jr-Rj, 

and W,,p",, i are the Whittaker functions.13 (The sub- 
scripts 7 , ;  on the functions W, M and their derivatives W', 
M '  will not, as a rule, be indicated explicitly.) To obtain the 
scattering amplitude, we expand the expressions for x and y 
into a series in powers of R /r, and retain only the zero- and 
first-order terms. We thus obtain 

where y is the angle between the vectors r and R (see Fig. 1). 
The asymptotic forms of Wand W' are13 

It is usual in scattering theory (see Ref. 7) to neglect terms 
v3/r - (k 3r)-1 and r12/r - (k 2r)-1. Adopting this approxima- 
tion, we obtain 

where 

Recalling the form of $2 (r) at large  distance^,^ the wave 
scattered by a Coulomb and a 6-center can be written in the 
form 

1 i 
ppm (r) = - [ f . ( ~ )  + f a c ( ~ ,  R) lexp( ikr + -1n 2 k r ) .  1171 

k 

where f, (9) is the Coulomb scattering amplitude7 and the 
quantity 

can be referred to as the scattering amplitude for a 6-center 
located at a distance R from the Coulomb center (cf. Ref. 7). 
It depends on the angle 0 between the vectors k and R 
[through the factor $,+ (R)] and on the angle y between the 
vectors r and R [through the factor B (R,y)], i.e., the depen- 
dence off ,'on the angles0 and y can be factorized. We note 
that a similar factorization obtains in the Born approxima- 
tion to the scattering by a 6-center if the "free motion" wave 
functions are taken to be the Coulomb function $2 (r) and 
$;(r), where $2 (r) corresponds to the incident electron, 
$;,(r) to the scattered electron, and / k /  = Jk'l (Ref. 7; see 
below for further details). The dependence on the scattering 
angle 9 is implicit and appears through the dependence on y. 
In the case of the repulsive field, the wave function is ob- 
tained from (17) and (18) by simultaneously reversing the 
signs of k and r. The function $2 (r) then describes a diver- 

gent wave in the repulsive field.' We note once again that (17) 
and (18) were obtained without using the assumptions (1)- 
(3). The essential assumption used in deriving them is the 
replacement of the actual short-range potential V,(r) with 
the zero-range potential. 

6. Let us now examine some of the general properties of 
the amplitude f ,'. For the moment, we shall not assume the 
validity of (1)-(3). Let us first find the equation for the poles 
of the amplitude in the case of the attractive fields. It is clear 
from (1 8) that, in this case, the S-center scattering amplitude, 
like the Coulomb scattering amplitude f, (9 ), has poles for 
k = i/n, where n is a positive integer, i.e., when the energy 
coincides with the discrete levels in the Coulomb field.7 The 
other family of poles is determined in accordance with (18) 
and (9), using the equation 

This equation can be used to determine the bound-state ener- 
gies [E (R ) < 01 for an electron in the combined Coulomb and 
S-center ~otentials.' There is extensive literature (see for ex- 
ample, Refs. 11, 14, and 15) devoted to the determination of 
the energies that satisfy (19) and are different from the ener- 
gies of excited Coulomb states. It investigates in detail the 
behavior of E (R ) for R>a,. 

Let us now consider f,' in the attractive field in the 
special case R = 0. This case was examined formally in Refs. 
6-8 by a somewhat different method. Using the expression 
for $2 (0) (Ref. 7) and for G, (r,O) (Ref. 12), and using the 
behavior of the function M for small values of the argu- 
ment,13 we find from (18) and (16) that 

where 6: = argr(1 - i/k ) is the zero-order scattering phase 
in the Coulomb field.2' If we substitute k+ - k and r-t - r, 
we find that (20) becomes identical with the scattering ampli- 
tude obtained in Refs. 6 and 7 for the repulsive field. We 
draw attention to the fact that, for slow particles with ka,( 1, 
the amplitude f ,' in the attractive field increases with de- 
creasing k, in accordance with the expression I f  ,'I -k - I ,  

which differs from the behavior in the case of the repulsive 
field.6.7 Moreover, if we investigate the equation for the pole 
of f ,' in (20) by the method used in Ref. 6, we can readily 
verify that the "Coulomb + S" potential well contains 
bound states with energies different from those of the Cou- 
lomb levels. The equation for the energies ofthe bound states 
is identical with that obtained in Ref. 16 by a different meth- 
od. 

7. We shall now find the amplitude for scattering of 
slow electrons by a &center located at a distance R from the 
Coulomb center. We shall begin with A, (R ), given by (lo), 
which we shall transform with the aid of the equation for the 
Whittaker functions. This gives (cf. Refs. 10, 11, and 14) 

1024 Sov. Phys. JETP 61 (5), May 1985 R. I. Rabinovich 1024 



The function M (2R /7) can be written in the form of a 
series in terms of Bessel functions J,, (see Ref. 13, p. 265): 

where A, = 1, A ,  = 0, A, = 1, and the remaining A, (n>3) 
are given by 

When n is a multiple of three, A, is a polynomial in 7 of 
degree n/3. For example, A, = - 27/3, A, = 1, A, = 
- 167/15, A, = 1 + 27'/9, and so on. 

For simplicity, we shall confine our attention to the first 
term in (22). This is valid when the inequality 

is satisfied simultaneously with (2) and (3). 
We shall now use the expansion of W (2R /q) into a series 

for large absolute values of 7,  i.e., for ka,( 1. This gives13 

where N, is the Neumann function and the terms neglected 
in (24) are of order1, (ka0)lt2. 

For large values of R [see (2)], we obtain, using the 
asymptotic form of J, and N, and neglecting terms - R - l t 2 :  

A h ( R )  -2n ctg nq ( J i2+J l ' 2 )  = (21R) 'I2 ctg tlq. (25) 

This expression could also have been obtained from the 
Green's function for weakly bound states (E < 0), found in 
Ref. 17. It is clear from the above calculation that, when 
(8R 1, the derivation of (25) involves not only the 
assumption that (IE /E,)"~( 1 (see Ref. 17), but also the two 
conditions given by (3) and (23). 

Since 7 = a/ik for small kda; ' [see (I)], we finally ob- 
tain 

Consequently, the term Ak in the denominator of (18) is im- 
portant only for IL I 2 (R /2)lt2. 

We shall now write out the remaining factors in the 
scattering amplitudes (for brevity, only for the attractive 
fields). When conditions (I) ,  (3), and (23) are satisfied, the 
function $2 (R ) is proportional to the Bessel function: 

$r+(R) -exp(n/2k) r (1- i lk)  eZkRJ, (sin(P/2) (8R)Ih) ,  (27) 

i.e., its modulus oscillates as R and p vary. Under the same 
conditions, 

where y, = R (1 + cos y) = 2R cos2(y/2). Finally, when(1)- 
(3) and (23) are satisfied in the attractive field, we obtain, 
after transforming to dimensionless units, 

- --- 2n eziaS eikIi J ,  (sin (p/2)  (8R/a,) ' I 9 )  

ka, B ( R ' y )  [x-ik(2/KzRa,)'"] . (29) 

In the repulsive field, f,' differs from (29) by the factor 
exp( - r/ka,) and the replacement k+ - k. 

8. Let us investigate the dependence of f ,' in (29) on R, 
the electron energy, and the anglesp and y (see figure). This 
will enable us to exhibit some of the properties of scattering 
by a S-center in a Coulomb field. 

Let the anglep between the vectors k and R be so small 
thatp  (2R /a,)"'(l. The function Join (29) is thenclose toits 
maximum value, which is of the order of unity, and there are 
no oscillations. The angle y is then virtually equal to the 
scattering angle 9. Consider scattering through an angle 9 
close to .rr and suppose that 

2R cos"y/2) =2R cos2 (612) <<I, B ( R ,  y )  -1 

[see (28)l. The "backward-scattering'' amplitude can then be 
obtained from (29) in the form 

2n 
I faC I = - ILI 

ka, (1+2LZ/Ra,) I' ' 

from which it is clear that, when Ra, 2 2L 2, the "backward- 
scattering" amplitude of the S-center has increased in abso- 
lute value by a factor of approximately (2.rr/kao)% 1 as com- 
pared with the analogous quantity for a free electron, i.e., 
J fa 1 = J L  / / ( I  + k 'L  2)1t2.  Let us now compare (30) with the 
modulus of the Coulomb backward-scattering amplitude 

J fc (r) I = ao/2(kao)2. From (30), we have 

The ratio IL I/a, is usually of the order of a few times 
unity. For example, for the hydrogen atom, the scattering 
length in the singlet state is IL, I =6a0 (Ref. 1). It is readily 
seen that, when (1)-(3) are satisfied, the ratio given by (31) 
may substantially exceed unity in this case. 

Let us now suppose that the angle P is small, as before, 
but the angles y and 9 are close to zero, so that cos2(y/2)? 1, 
and let us consider forward scattering at small angles. We 
then have 

( 2 / n )  '" (ao/8R) 'I4 cos ( (8R/a,) ' h - ~ / 4 )  

[see (28)l. From (29), we have 

I cos ( (8R/a,) 'Iz-n/4) I 
(1  +2LZ/Ra,) 'Iz 

. (32) 

In this case, the scattering amplitude for a S-center os- 
cillates rapidly as a function of R /a, and vanishes for certain 
definite values of this ratio. For example, this occurs for 
R = R,  = 3.8a0 and R = R, = 9 . 3 ~ ~ .  By virtue of (1)-(3), the 
maximum value of (32) with respect to R is much greater 
than the free-electron scattering amplitude of a S-center. 
The reasons for the appearance of the large factors u ,  = ( 2 ~ /  
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kaO)'l2 and u, = (2 /k2~ao ) ' l 4  in the amplitudes were dis- 
cussed at the beginning of this paper. Here, we note that u l /  
24, = (2r2R 1. 

Let us now suppose that the anglepis close to r ,  i.e., the 
electron is incident from the side of the 6-center. For small 
values of y, for which the scattering angle is close to T, we 
then find from (29) that 

In otherwords, the factor u, becomes important when the 
electron does not pass close to the Coulomb center, but is 
incident on the 6-center and reflected from it. The scattering 
amplitude then oscillates as a function of R /a,. We draw 
attention to the fact that, in contrast to the free-electron 
scattering amplitude fs = - L /(1 + ikL ) (Ref. I), the am- 
plitude f ,' increases in absolute magnitude in proportion to 
(ka,)-' as ka, is reduced. 

9. We note that the basic features of 1 f ,'I given by (30), 
(32), and (33) can also be obtained by a more graphic method. 
Thus, let us suppose that the short-range potential V2(r) is a 
perturbation producing transitions between states $i and qf 
in the continuous spectrum of an electron in the Coulomb 
field. According to Ref. 7 (Section 136), the amplitude for the 
transition from the state with momentum m( to the state 
with momentum fik' can be obtained by replacing $i (r) with 
the function $,+ (r) [cf. (27)] and replacing qf (r) with 

+k,- ( r )  = (+-L ( r )  * 

=exp (n!2k1a,) r( l+i/kla,)  

This corresponds to the presence of plane and converging 
spherical waves at infinity. The modulus of the amplitude for 
a transition in a short-range potential [for example, 
V2(r) = (fi2L /2ma3)e - "" ] in the first Born approximation is 
then given by 

I f d c I  = ILqki ( R )  ( + k r -  ( R )  ) * I  =L(2nlka0) 

X J ,  ( (8R/a,) Ih sin (P/2) ) J, ( (8Rlao) '" cos ( ~ 1 2 )  ) . (34) 

The vector k' in this expression lies along the vector r (see 
figure), and we have taken account of the fact that / k /  = /k' 1 .  
Formula (34) leads to (30), (32), and (33) for differentp and y, 
except that the factor (1 + L 2/~ao) -"2  is replaced with uni- 
ty. The reason for this difference is quite clear: the term L 2/ 

Ra, in the denominators of (30), (32), and (33) corresponds to 
the inclusion of the imaginary term in the denominator of 
the scattering amplitude. This term is not present in the first 
Born approximati~n.'~ The factorization of the dependence 
of / f ,'I on the anglesp and y, mentioned above, is clear from 
(34), where the dependence on p reflects the behavior of the 
initial wave function $2 (r), and the dependence on y reflects 
the behavior of the final wave function. The initial and final 
wave functions are then large for P-0 and y -+ r ,  respec- 
tively. Both functions oscillate for large values of the ratio 
R /a, with a k-independent period. 

10. We must now find the differential electron scatter- 

ing cross section of the "Coulomb + S" pair. Using the well- 
known expression for the amplitude f c  (if ) (Ref. 7), we ob- 
tain 

where the last term is the interference term, whose magni- 
tude oscillates with the angles P, y, q, (see figure). 

We now assume that, in addition to (1)-(3) and (23), we 
also have 

kRB1. (36) 
In the situation described in Section 1, there were pairs with 
different R and different mutual orientation of the vectors k 
and R. We shall therefore average the cross section du/dQ 
over a small interval of the angle 8 and over the small inter- 
val AR - k - '(R. The cross section averaged in this way (de- 
noted by dS/dQ) does not contain the interference term if 
the angle if is appreciably different from r ,  or if the anglep is 
appreciably different from r/2. The cross section de/dfl 
then splits into the sum of the differential cross sections (dC/ 
dfl), (isolated Coulomb center) and (d??/dQ); (6-center in 
the Coulomb field). This enables us to find the corresponding 
total cross sections a, and a', and the transport cross sec- 
tions (a,),, and (a;),, separately. However, the presence of 
the Coulomb center is clearly reflected in a; and (a;),, . 

Let us now consider how the presence of charged im- 
purities affects the momentum relaxation time T, on neutral 
donors (i.e., the mobility) in the situation described in Sec- 
tion 1. Usually, T, is calculated on the assumption that scat- 
tering by different neutral centers is independent, i.e., that 
(36) is satisfied for the average distances between them. Two 
expressions425 are used for the scattering by an individual 
neutral center: 

oo=20aa2/kaor (374 

0,-n (LS2+3Lt2). (37b) 

The first of these was obtained by numerical calculation of 
the cross section of the hydrogen atom for slow electrons (see 
Ref. 4). It is shown in Ref. 5 that, for electrons with EgE,, a 
good approximation is to take a, as the sum of the singlet and 
triplet cross sections: a, = a, /4 + 3a, /4, where each cross 
section is obtained for the zero-range potential: 
us--4rL f ,  a r e 4 r L  : (Ref. 1). This leads to (37b), where 
L,, L, are the singlet and triplet scattering lengths. The fac- 
tors 1/4 and 3/4 represent the corresponding degeneracy 
factors. 

We must now take into account the influence of the 
positively charged center on the scattering cross section of 
neutral donors at distances R < R +  from it. The average of 
a; over the anglep can be obtained only by numerical meth- 
ods. To estimate the lower limit for the effect, let us take the 
modulus off ; from (30), (32), and (33). Replacing L with L, 
and with L, ,  and taking the average value for the fourth 
power of the cosine, we obtain 
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The cross section a: decreases with increasing R. We note 
that, for ( k ~ , ) ' g l ,  (kL,)'g 1, and RzR,,,, where R,,, is 
given by k 'R,,, a d 2  = 3/8 [cf. (2)], the cross section (38) 
turns out to be equal to a,, as given by (37b). Hence, it follows 
that the cross section (38) of each of the neutral centers with- 
in the sphere of radius R, R 5 R +  < R,,, centered on the 
attractive center is greater than oo. This difference appears 
when the density of attractive centers satisfies the condition 

(n'+uO3) > (EIE,) 3= (TIE,) 3 .  (39) 

The scattering cross section of neutral centers at a distance 
R 5 R- from the repulsive center is then exponentially 
smaller than the cross section a$ (R ) given by (38). 

Thus, at low temperatures TgE,, the electrons are scat- 
tered mainly by neutral centers lying near the attractive cen- 
ter and are practically unaffected by those near the repulsive 
center. The effect associated with the change in the scatter- 
ing cross section of neutral centers will be appreciable when 
the relaxation time on charged centers is greater than or of 
the order of .r,. This imposes an upper limit on the ratio N+/ 
N. Estimates show that the increase in the scattering by neu- 
tral centers in the Coulomb field can be noticeable, for exam- 
ple, in p-Si if T/E,-5 x (i.e., T-2 K), we have Na; 
5 lo-' (i.e., No- 10'' cmP3) and N-/N-N+/N- 
The quantity kR, then amounts to a few units, and interfer- 
ence between waves scattered by different neutral centers 
should be small. 

The results of our analysis may also be useful in the 
study of the trapping of slow electrons by small neutral 
centers in weakly doped and weakly compensated semicon- 
ductors as a result of the emission of acoustic phonons.'g The 
trapping cross section a, (E) was found in Ref. 19 on the 
assumption that the potential due to the neutral center was 

\ 
in the form of a 6-function. The presence of charged centers 
was not taken into account, and the free-electron wave func- 
tion q,, (r) was taken in the form of the sum of a plane wave 
and a wave scattered by the 6-center, i.e., q,,  (r) = exp(ik r) 
+ (f, /r)exp(ikr). It was found that the main contribution to 
a, (E )  was provided by the second term and, as E-0, the 
cross section became a , (E) -E  -"' (Ref. 19). Let us now 
consider how the presence of charged centers will affect 
a, (E ). It is clear from the derivation of (1 8) that the increase 
in the modulus of the free-electron wave function near neu- 
tral centers within the sphere of radius R < R + around the 
nearest attractive center [i.e., the replacement 
exp (ik R )+$,+ + (R )] should lead to an increase in the 
electron trapping cross section on these neutral centers and 
to a stronger, as compared with Ref. 19, energy dependence 
for E 4 ,  i.e., a, (E ) -E  -'. Conversely, the trapping cross 
section of centers at distances R < R - from the repulsive 
center should be exponentially small. The total rate of trap- 
ping by neutral centers should then be determined both by 
the density No of neutral particles and the density N+ of 
attractive centers. 

The author is indebted to S. P. Andreev and Yu. A. 
Gurvich for exceptionally useful discussions in the course of 
the present research and to E. M. Gershenzon, I. B. Levin- 
son, and A. P. Mel'nikov for discussions of the above results. 
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