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The existence of direct interband transitions with fiw -0.1 eV is considered for transition metals. 
As fiw -+ 0, the degeneracy of the electron spectrum in cubic metals gives rise to a finite interband 
contribution to the imaginary part t,(o) of the dielectric permittivity; the corresponding contri- 
bution diverges as l/w for metals with a hexagonal crystal structure. Moreover, E2(w) is not 
featureless, as is often supposed, but may have a distinct IR structure with well-defined thresholds 
and peaks. The dependence &,(a) is calculated numerically for the transition metals V, Nb, Mo, 
Rh, and Pd, and the results agree with available experimental data. The influence of low-frequen- 
cy interband transitions on the error in deducing the intraband conductivity (the plasma and 
collision frequencies) from ~ ( w )  is investigated numerically. 

INTRODUCTION 

Experimental studies of the optical properties of metals 
yield valuable information concerning their electronic struc- 
ture and provide an easy method for measuring the dielectric 
permittivity ~ ( w ) .  However, the interpretation of the fre- 
quency dependence e ( ~ )  and its implications concerning the 
electronic structure of the metal are far from simple, particu- 
larly for the transition metals. The first step is to decompose 
the imaginary part ~ , ( w )  = Im ~ ( w )  into intraband and inter- 
band components: 

f T~ (o) . 

The intraband component is described by the Drude formula 
and yields information on the electrons near the Fermi sur- 
face. In Eq. (1) y is the mean collision frequency of the con- 
duction electrons and w, is the plasma frequency: 

a,= (4neZN (E,) <u2>/3m) '"lf i, 

where N (Ef) and ( v 2 )  are the density of states and the mean 
square electron velocity on the Fermi surface. The interband 
contribution b2(w) is determined primarily by direct electron 
transitions between the bands and yields information on the 
electron structure within an energy interval -fiw from the 
Fermi surface; the dependence E,(w) is frequently nonmono- 
tonic. In order to decompose e,(w) as in (11, one usually as- 
sumes that there are no interband transitions at low frequen- 
cies fiw 5 0.5 eV. A partial justification is provided by the 
analogy with monovalent metals, for which the interband 
absorption is known to have a threshold at energy +iu - 1-2 
eV. However, the electronic structure of the transition met- 
als is considerably more complicated and it is far from clear 
that no low-frequency interband transitions are present. 

The experimental results on the optical properties ofthe 
transition metals at infrared wavelengths are quite contra- 
dictory. For example, E,(w) was found to have a peak at 
fiw -0.3 eV for niobium in Ref. 1, whereas the low-frequen- 
cy dependence E,(w) was completely featureless in Ref. 2. It 
was noted more recently in Ref. 3 that ~ , ( w )  differs apprecia- 
bly from the Drude result even for +iu -0.1 eV. There is a 
similar disagreement in the experimental results for vanadi- 

um and t a n t a l ~ m , ~ , ~  r h o d i ~ m , ~ . ~  and various other transi- 
tion metals. By contrast, all the experiments indicate that the 
IR  dependence E2(w) for molybdenum is f e a t ~ r e l e s s . ~ . ~  

Numerical calculations of e(w) can provide valuable in- 
sight into the optical properties of metals. Unfortunately, 
few such calculations have been carried out, and even fewer 
cover the low-frequency range. It was found in Ref. 7 that 
S,(w) has a peak at fiw ~ 0 . 2  eV for niobium, while C,(w) tends 
smoothly to zero as fiw -+ 0 for molybdenum. The calcula- 
tions in Ref. 8 revealed that there is no interband absorption 
threshold for vanadium or paramagnetic chromium. Similar 
calculations in Ref. 6 revealed a threshold for rhodium and 
iridium of magnitude comparable to the spin-orbit splitting. 
We note that all of these calculations assume that the matrix 
elements are constant and therefore provide no information 
regarding the absolute value of t(w); we will show below that 
the dependences b(w) may therefore be quite unreliable. 
Moreover, the reasons for the different low-frequency be- 
havior Z(w) for the different metals were not determined. 

We will pause here briefly to discuss another discrepan- 
cy-the plasma frequencies for the transition metals de- 
duced from the low-frequency experimental curves E(w) lie 
below the values w, predicted by energy-band calculations, 
and the discrepancy is quite large, often 50-100% (see e.g., 
Ref. 9). Neither the error in the band calculations (which 
were accurate to within 10%) nor multielectron effects 
(which give a correction of -5-10% for the electron gas 
densities typical of the transition metals) can account for the 
disagreement. Although the anomalous skin effect, surface 
resistance, and (particularly) photon emission from excited 
electrons can greatly alter the collision frequency in pure 
metals and low temperature,'' they should have no effect on 

. 
Although incomplete and contradictory, the above 

findings suggest that the dependence of the optical proper- 
ties of transition metals is quite complicated at infrared fre- 
quencies. The crucial question is whether intense low-energy 
interband transitions are present. In order to find the an- 
swer, we have investigated the function E2(w) theoretically 
and calculated t,(w) numerically for the metals V, Nb, Mo, 
Rh, and Pd for fiw 5 0.7 eV. Our combined analytic and nu- 
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meric analysis enabled us to identify and analyze in detail 
several typical situations in which Z2(w) has peaks and val- 
leys at low frequencies. 

1. DEGENERACY OF THE ELECTRON SPECTRUM AND THE 
LOW-FREQUENCY INTERBAND CONDUCTIVITY OF METALS 

In the random phase approximation, the imaginary 
part of the interband dielectric permittivity is given by 

where ja is the a-component of the momentum operator, 
the integration is over all k in the Brillouin zone, and / k A ) 
are the one-electron states in the band labeled by A [the band 
energies are E, (k) and the occupation numbers are f ,,I. 
The interband dielectric permittivity is directly related by 
b(w) = wZ2(w)/4.n to the interband conductivity. We note 
that Eq. (3) does not suffice to describe direct interband tran- 
sitions that involve photons, lattice defects, local field ef- 
fects, etc. However, we will neglect these complications and 
base the analysis on Eq. (3). We may also use the approxima- 
tion f , A z 8 [EF-E, (k)], because the characteristic varia- 
tions in EA (k) in metals are much greater than k T  for T 5 300 
K. 

We will be interested only in low-frequencies 
k T 5  fiw, < fiw 5 0.7 eV, where w, is the Debye frequency of 
the phonons. In this case only transitions between electron 
states satisfying 

contribute to Z2(w); here the symbol z denotes equality to 
within -fiw. Condition (4) is unlikely to be satisfied by 
chance for small fiw; this suggests that the low-frequency 
interband conductivity should be related to the degeneracy 
in the electronic spectrum. 

We first consider the limit fiw -+ 0. In this case the de- 
generacy of the electron spectrum at isolated points in the 
Brillouin zone is of little interest, because the probability 
that the energy of a degenerate level will be precisely equal to 
EF is vanishingly small. Degeneracy of the bands along a line 
or a face of the Brillouin zone is more important; the degen- 
eracy can only be two-fold if we neglect the spin. According 
to perturbation theory, the formula 

E,, , ,  ( k )  =E, , , .  ( k , )  +f i  ( k - k , )  ( p ~ L , + p + h k ~ ) i 2 m i t z ~  k-ko I 

describes the behavior of the degenerate bands A and A '  near 
apoint ofdegeneracy k,. Here p,, ko = (k, /Z Ip / k, il ) and n is 
the unit vector along k-k,. If k is also a point of band degen- 
eracy for il and A ' (i.e., a line or plane of degeneracy passes 
through k), Eq. (5) shows that p k .  -n = 0 and p, ., . .n = 

p k  .n = 0. The projection of the vectors k - k,, n, and p 
parallel and normal to these directions will be denoted by 
(k - ko)ll ,nil p l  and (k - k,), , n, , p, , respectively. It is clear 
that p&, can be nonzero only if ( p k ,  ), is #O. 

We will now examine the contribution to Z2(w) from 
degeneracy of the bands A, il ' along a line in the Billouin 
zone. By virture of (4), we need only consider a neighborhood 
of the point k, where the degenerate band crosses the Fermi 
level. Two cases can arise, depending on the crystal symme- 
try and the position of the degenerate line in the Brillouin 
Z O ~ ~ : ~ ) ( P A A ) ,  Z O ; ~ ) ( P A A ~ ) L  =(PA,), =0 .  

We will examine case a) first. The dispersion law is then 
linear in k near the point k,: 

E1, h n  ( k )  =EF+fZ (k-k,) l l u l l t A  (k -k , ) , v ,  ( n l ) .  (6) 

For cubic crystals the dielectric permittivity 
Z,(w) = Tr ( Z 2 ( ~ ) a  ) /3 is equal to 

where a, is the Bohr radius. The limiting value Z2(w + 0) is 
nonzero because the factors w2 cancel in the numerator and 
denominator in (3) (the w2 in the numerator accounts for the 
volume of the phase region which contributes to Z,). Using 
the Kramers-Kronig dispersion relation, we readily find 
that E,(w)-ln(w/w,) as fiw -+ 0, where w, is the cutoff fre- 
quenc y. 

Equation (5) implies that in case b) the degeneracy is 
lifted quadratically: 

EL, 1, ( k )  =E,+ f i  ( k - k , )  u , + f i 2  (k-k,)12/2nzh, ,, (n,) , (8) 

while pi,, varies linearly: Ipi, . / = fil k - k,l,( (n,). Here we 
have introduced the effective masses m, and m,, which de- 
pend on the direction n,; this is more convenient for our 
purposes than the more usual effective mass tensors. The 
low-frequency contribution for cubic crystals is equal to 

In the case Z2(w -+ 0) is nonzero because the phase volume 
and (p,, , ): are both a w; their product thus gives a factor w2 
in the numerator in (3) which cancels the w2 in the denomina- 
tor. 

We will now give several examples of band degeneracy 
along lines in the Brillouin zone. Case a) above occurs for bcc 
and fcc metals along the third-order axis A (in the A, repre- 
sentation), and also along the third-order axis F (F, represen- 
tation) in bcc metals (cf. Fig. 1). Random degeneracy of type 
a) can also occur if the line of degeneracy lies in a symmetry 
plane of the Brillouin zone or passes through points in gen- 
eral position (the latter can occur only in crystals with an 
inversion center, e.g., in bcc and fcc metals). Case b) occurs 
in bcc and fcc metals along a fourth-order axis A (the A, 
representation ), cf. Fig. 1. No other degenerate lines can 
occur in the Brillouin zone for bcc and fcc metals. Figure 2 
gives an idea of the frequency of degenerate lines in typical 
metals; the band structure for niobium (bcc) and rhodium 
(fcc) are shown. 

Two bands can be degenerate at all points on a face of 
the Brillouin zone only if the system is symmetric under time 
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FIG. 1. The Brillouin zone: a)  bcc lattice; b) fcc lattice. The symmetic lines 
and points are indicated. 

reversal; in this case, the face must be normal to a second- 
order screw axis." Since bcc and fcc crystals lack screw-axis 
symmetry, this type of degeneracy cannot occur. However, 
it is known that two-dimensional degeneracy can occur on 
the face of the Brillouin zone normal to the sixth-order axis 
in metals with a hexagonal closepacked (hcp) structure. We 
will now examine such metals in greater detail. 

A group-theoretic analysis shows that ( p k . ,  # 0 on 
the face of the Brillouin zone normal to the sixth-order axis 
in hcp metals, so that the degeneracy is lifted linearly as the 
point k moves away from the face. Only the neighborhood of 
the line L where the face intersects the Fermi surface is of 
interest for infrared optics; in this neighborhood the disper- 
sion equation is of the form 

E F (  P d l  
f , ( P h )  

r A X Z ' K  c r A L a w z x  
b 

FIG. 2. Band structure: a) niobium (bcc lattice); b) rhodium (fcc). The 
dashed lines show the approximate posjtions of the Fermi surface E, for 
molybdenum and palladium. 

where the point k, is assumed to lie on L. The corresponding 
contribution to t, is anisotropic: 

on the other hand, &,(a -+ 0), , = const and 
E,(o + 0), , a w, where the z axis lies along the sixth-order 
axis normal to the face, and a = x,y. This behavior ofE,, is a 
consequence of the fact that the phase volume in this case if 
a h ,  so that one of the factors w cancels in the denominator 
(3). As a consequence, t,, - I/o and & (w + 0) = const. 
One can show by using the Kramers-Kronig dispersion rela- 
tion that in addition, t,(w -+ 0) = So > 0. Our numerical esti- 
mates indicates that a,, may be as large as - 10% of the 
Drude intraband conductivity. It is readily seen from the 
form of their Fermi  surface^'^.'^ that a similar contribution 
to t, may be expected for virtually all hcp metals. 

Our analysis thus far has been limited to the nonrelati- 
vistic approximation, and the spin-orbit interaction has been 
neglected. The latter is known to remove the degeneracy 
along the A and A axes in bcc and fcc metals; in addition, the 
degeneracy along the F axis in bcc metals is also lifted. In 
hcp metals the spin-orbit interaction lifts the degeneracy on 
the face of the Brillouin zone everywhere except on the line 
AL joining the center of the face to the midpoint of an edge. 
The magnitude of the splitting for the 3d-transition metals is 
at most 0.02 eV, i.e., -Em, ; it can reach -0.1 eV and -0.5 
eV in the 4d- and 5d-transition metals, respectively, al- 
though it may be considerably less at certain points in the 
Brillouin zone. The spin-orbit interaction can therefore be 
neglected in 3d-metals and their compounds but should 
probably be included for the 4d-metals, even though this is 
not always necessary. The spin-orbit interaction can appre- 
ciably alter the low-frequency interband conductivity in 5d- 
metals. 

For the one- and two-dimensional band degeneracies 
considered above, the limit E,(w -+ 0) is nonzero and the in- 
terband contribution depends monotonically on the fre- 
quency. In order to understand the features of the electron 
spectrum that are responsible for the nonmonotonic depen- 
dence t,(o) at low frequencies %LJ - 0.1-0.3 eV, we will exa- 
mine the case when an energy level is degenerate at a point k, 
of high symmetry in the Brillouin zone and lies at a distance 
-fiw from the Fermi surface E,. We have p k  = 0 for de- 
generate levels and p k ,  = 0 for degenerate bands at such 
points in bcc and fcc metals. According to (5), the dispersion 
law for degenerate bands A and /1 ' near k ,  is quadratic, 

E*, ( k )  =Eh (ko)  +fi2 (k-ko) '/2mi, if (11) (12) 

and bin* I = fil k - k,l( (n). Two fundamentally different 
cases (sketched in Fig. 3) can occur: a) m, and m,, have the 
same signs; b) m, and m,. have opposite signs. It is clear 
from Fig. 3a that for case a), the interband absorption begins 
at energy h, and ends at h , ;  this nonmonotonic behavior 
may clearly cause a peak in the E,(w) curve. For case b) (Fig. 
3b) the absorption has a threshold character-it begins at 
h, and persists to high energies. 111 analytic form, the result 
for cubic crystals can be expressed as 
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FIG. 3. Sketch of band structure. Near a point of high symmetry: a) 
m, am,. > 0 b) m,. > 0 > m, ; near a general point in the Brillouin zone: c) 
UA (k)v,. (k) > 0; dl 0, (klv,. (k) < 0. 

( A  m, (n) -m,, (n) 
mhr (n) 

- f iw ) . (13) 

I dnil(n)%(ho-A mis (n) -mh (n) a, (a) = 

, , , , ' ( " ) > O > r n , ( " )  I m*(n) I 2 

(14) 
1 A 2  " 

A (n) = -( -) m,s2 (n) m;lz(n) E (n) 
I2n maBZAo (mi, (n) -m, (n) ) 'm2 

[m(,m::;:;*(;b,) 1: (15) 

where we have assumed that A = EF - EA,,. (k,) > 0. The 
other cases (e.g., A < 0 and m, < m,. < 0) follow easily from 
(13)-(15) by changing the signs. It should be noted that the 
symmetry of the point k, in the Brillouin zone has no influ- 
ence on whether the contribution is described by (13) or (14). 
Moreover, in some cases m, (n) and m,, (n) may have the 
same sign along one direction but opposite signs along an- 
other. The behavior of E2(w) associated with the total contri- 
bution from a neighborhood of a point of high symmetry 
may therefore be quite diverse; in particular, E,(w) may have 
a maximum. 

The above situation in which E,(w) in nonmonotonic is 
not as exceptional as might appear at first sight. For in- 
stance, bcc metals have six levels which are doubly or triply 
degenerate near points of high symmetry at optical frequen- 
cies. A similar type of degeneracy also occurs in fcc metals 
(Fig. 2). Since we are interested in situations when EF lies 
within fw -0.3 eV from one of the degenerate levels, and the 
latter comprise approximately 1/3 of the width of the d- 
band, .?,(a) is quite likely to contain significant contributions 
of the type (13) or (14). 

We note that contributions similar to (13) and (14) can 
also arise near a general point in the Brillouin zone if two 
sheets of the Fermi surface approach each other closely near 

the point. The situation shown in Fig. 3c correspond to the 
case when the velocities of the electrons on the sheets A and 
A ' are almost parallel [v, (k)u,, (k) > 01; in this case2,(w) has a 
minimum of the form (13). If the velocities are antiparallel: 
v, (k)v, . (k) < 0 (Fig. 3d), E,(w) has a threshold dependence 
(14). The primary difference from the case of degeneracy 
near points of high symmetry is that the approximate equa- 
lity E, . (k) zE, (k) near a general point is fortuitous and can- 
not be predicted by symmetry arguments. 

2. NUMERICAL STUDY OF THE OPTICAL PROPERTIES OF 
bcc AND fcc TRANSITION METALS 

In the previous section we examined several types of 
electron degeneracy typical in infrared optics. It would be 
desirable to find out how common these situations are and 
the extent to which the above analysis can be applied to spe- 
cific metals. We therefore calculated d , ( ~ )  numerically in the 
nonrelativistic case for vanadium, niobium, and molyb- 
denum (bcc lattice) and for rhodium and palladium (fcc lat- 
tice). The technique described in Ref. 14 was used in the 
calculation, which was based on Eq. (3). This method was 
previously employed in Refs. 14 and 15 to calculate &(a) and 
the reflection coefficient for a wide range of frequencies and 
gave results in close agreement with experiment. 

Only the localized regions where (4) holds (not the en- 
tire Brillouin zone) contribute to E,(w) at infrared frequen- 
cies; this was responsible for some specific features of the 
calculation. First, the error in .?,(w) was determined not by 
the average computational error for the band structure but 
by the error in the position of a few individual band relative 
to E,. This error is 0.1 eV for ab initio calculations such as 
ours. Second, the constant-matrix-element approximation 
breaks down completely, because Ipf;,, I = 0 at numerous 
points and lines of high symmetry. We therefore avoided this 
approximation. Third, in order to facilitate the integration 
over k in (3) it is helpful to first identify the k values in the 
Brillouin zone that contribute to 2,(w) and then integrate 
only over them. We used the tetrahedral technique16 to per- 
form the numerical integration. In order to achieve - 10% 
accuracy, a rather small mesh size was necessary (from 1500 
to as many as - 10,000 k-points in a region comprising 1/48 
of the volume of the Brillouin zone). 

The calculated results are summarized in Table I, 
which analyzes the behavior ofE2(w) in the limit w + 0. The 
coordinates of the points k, contributing to E2(w) as .fiw --+ 0, 
the nature of the degeneracy, and the magnitude of the con- 
tribution S2(o -+ 0) are given. At least one instance of one- 
dimensional degeneracy was found for each of the five met- 
als investigated, which indicates that this phenomenon may 
be common. 

Figure 4 shows the calculated curves E,(w) for the five 
metals. We will now investigate which features of the elec- 
tron structure are responsible for the peaks in .E2(w) for each 
of the metals. Vanadium and niobium are group VA ele- 
ments and have similar band structures and Fermi surfaces. 
The band structure shown in Fig. 2a suggests that the peak in 
E2(w) is associated with Z2 -+ 2 ,  transitions, which are very 
similar to the interband transitions in Fig. 3a. The two bands 
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FIG. 4. Calculated curves 2, (0) for vanadium ( a ) ,  niobium (b) ,  molyb- 
denum (c) ,  rhodium (d ) ,  and palladium (e) .  

coalesce in the A direction but lie above E, along the A 
direction. In order to study the band behavior for intermedi- 
ate directions, we consider the curves formed by the intersec- 
tion of the Fermi surface with the planes of high symmetry 
(Fig. 5) .  Band 2,  corresponds to a hole surface in the second 
band near the point r (an "octahedron"), while band Z, 
correspond to a tubular perforated surface in the third band 
along the direction r H  ("playground jungles"). The calcu- 
lation shows that the chief contribution to E, (w ) comes from 
the region where the surfaces h, and e ,  approach and touch, 
and, especially, from the neighborhoods of the two points of 
random degeneracy (Table I) .  The latter regions are respon- 
sible for the peak in 2, (w) . 

The calculated curve E2 ( w  ) for niobium agrees reasona- 
bly well with available experimental data. The principal 
maximum at fio = 0.09 eV (Fig. 4)  corresponds to the 

FIG. 5. Intersections of the Fermi surface for niobium with planes of high 
symmetry. 

abrupt peak at fiozO.1 eV found in Ref. 3. However, the 
absolute magnitude of the peak is smaller-our calculation 
implies a peak value of 70, whereas the estimates in Ref. 3 
give 200-300. The weak maximum at fio = 0.3 eV (Fig. 4)  
can in principle be identified with the experimental maxi- 
mum in E,(w ) found in Ref. 1 at the same frequency, al- 
though the peak there was sharper and roughly three times 
as high. 

The analysis of the band structure (Fig. 2a) and Fermi 
~ u r f a c e ' ~ . ' ~  for molybdenum suggest that E 2 ( o )  will be 
monotonic; this is confirmed by the numerical calculation 
(Fig. 4c) and by the experimental findings in Ref. 3. 

The most complicated situation occurs for rhodium. 
The band structure (Fig. 2b) and the curves where the bands 
cross the Fermi surface (Fig. 6)  suggest that two regions in 
k-space should give the dominant contribution to E,(w ). 
The first region contains the point X, where the geometry of 
the imbedded hole surfaces in the third and fourth bands 
("ellipsoids") is very similar to the situation shown in Fig. 
3a. The chief difference is that the bands X ,  and X ,  are non- 
degenerate, so that the matrix element /pk. / #Oat the point 
X. The large electron surface in the sixth band near the point 
r and the tubular perforated surface (elongated along the 
LX direction) approach each other closely along the line LX, 
which forms the axis of the second region (this approach is 
"random" and cannot be predicted from symmetry agru- 
ments). These two regions are responsible for the low-fre- 
quency peaks in E,(w) at fio = 0.05 eV, and for the two prin- 
cipal peaks at 0.21 and 0.4 eV. Similar peaks in the optical 
conductivity were noted experimentally in Ref. 6, where a 
pronounced maximum at fio = 0.07 eV was followed by dip 
at 0.13 eV, corresponding to the minimum in the calculated 
curve at fio = 0.1 1 eV; the peaks at fio = 0.2 and 0.4 eV were 
also observed." The experimental dependence o ( o )  found 

TABLE I. 
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Metal 

Xb { 
Mo ,, 1 1 
Pd 
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k ~ ,  4n/a 

(0.072; 0,072; 0,072) 
(0.131; 0.049; 0.049) 
(0.159; 0.063; 0) 
(0.056; 0.056; 0.056) 
(0.136; 0.033; 0.033) 
(0.156; 0.043; 0) 
(0.255; 0; 0) 
(0,365; 0; 0) 
(0.185; 0,185; 0.185) 
(0.403; 0; 0) 

Type of degeneracy / + o) I i (u - 0) total 

Regular 

) Random 
Regular 

} Random 
Regular 
Regular 
Regular 
Regular 

3'0 

21.6 

3.2 
20.2 
4.1 

: 
29.0 

24.6 

} 23.4 

4,1 
} 51.2 

29.0 



FIG. 6. Intersections of planes of high symmetry with the Fermi surface 
for rhodium. 

in Ref. 19 shows the same basic behavior: the interband con- 
ductivity has a minimum at fiw = 0.13 eV and maxima at 
fiwz0.2 and 0.35 eV. On the other hand, the calculation 
gives no hint of the weak peaks at 0.10 and 0.14 eV in the 
optical conductivity that were detected in Ref. 16. 

Analysis of the band structure (Fig. 2b) and Fermi sur- 
face (Refs. 12 and 13) for palladium reveals that any sharp 
peaks in E,(w) in this case must originate from a neighbor- 
hood of the point X. Our calculation (Fig. 4e) shows that the 
peaks at fiw = 0.05 and 0.22 eV are in fact due to X. The 
gentle maximum for f i w ~ 0 . 5  eV is caused by transitions 
between the fifth and sixth bands near the boundary of the 
large sheet of the Fermi surface surrounding the point T. 
According to the experimental results in Ref. 20, the most 
important features of o(w) for palladium were sharp rise at 
0.15 eV and a peak of 0.19 eV, which are in excellent agree- 
ment with our results. Although the peak at fiwz0.5 eV 
found in Ref. 16 occurs at roughly the same energy as the 
peak in the theoretical curve, it is much sharper. 

We will now pause to discuss how the low-frequency 
interband transitions affect the accuracy in determining the 
plasma and collision frequencies w, and y that characterize 
the Drude conductivity. Equation (1) gives the imaginary 
part of &(a), while the real part is equal to 

where El(w) and P2(w) are related by the Kramers-Kronig 
formula 

If there are no low-frequency interband transitions then 
E2(w) = 0 and El(w) z const at infrared frequencies. If we plot 

TABLE 11. 

~ - E ~ ( w )  and w~,(w) as functions of (w, + y,)-' and 
1 + E, - E~(w) ,  respectively, we will then get straight lines or 
slope w, and y. These plots (called Argand diagrams) are 
widely used to find w, and y from the experimental curves2' 
~ ( 4 .  

In order the understand the qualitative effects of the 
interband transitions, we analyzed the experimental curves 
as usual by theoretically plotting the Argand diagrams for 
each of the five metals for 0.05 eV(fiw<0.7 eV. We used Eqs. 
(1)-(3), (16), (17) to calculate &(a),  and the theoretical values 
of w, and y were taken from Ref. 17 (Table 11). The table 
shows that the calculated values for w, and y are generally 
substantially higher than the experimental values, although 
there is reasonably good agreement in a few cases. 

However, the actual form of the Argand diagrams is of 
greater interest. Figure 7 shows the diagrams calculated for 
niobium. Both of the dependences are linear for Tio>0.35 eV, 
where the interband transitions are weak. The values of w, 
and y deduced from the slopes of the lines differ from the 
original values by 6% and 15%, respectively. The interband 
transitions are important for fiw < 0.35 eV, and in this region 
the curves are essentially nonlinear, so that w, and y depend 
strongly on the frequency. Thus, the plasma frequency de- 
duced from our Argand diagrams for 0.15 eV(fiw(0.35 eV 
increases from 5 to 27 eV as fiw decreases, in qualitative 
agreement with the experimental frequency dependence 
fiw, (fiw) found in Ref. 3. Accurate determinations of w, and 
y are scarcely possible for these energies. The form of the 
Argand diagrams for the other metals is similar-they are 
nearly straight lines E,(w) varies slowly, but their complicat- 
ed nonlinear behavior where E,(w) varies rapidly makes it 
impossible to determine w, and y accurately. Of the five 
metals investigated, only molybdenum has a straight-line 
Argand diagram for all frequencies (this is due partly to the 
small magnitude of E,(w), but primarily to the fact that it 
varies slowly). The linearity of the Argand diagrams for mo- 
lybdenum was also noted experimentally in Ref. 3. 

CONCLUSIONS 

The crystal symmetry (more precisely, the degeneracy 
of the electron spectrum) has a very great influence on the 
low-frequency interband conductivity. It is the rule rather 
than the exception for cubic and hexagonal metals to have 
"zerogap" interband transitions with E,(w -0) = const and 
Z2(w -+ 0) - l/w, respectively. Contrary to widespread opin- 
ion, the curves E2(w) at infrared frequencies generally have 
well-defined structure with thresholds or peaks. Our nu- 
merical studies reveal that values E2(w) - 1.10'-1. lo2 are 
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typical for cubic crystals at IR frequencies. The interband 
conductivity may appear to be of minor importance com- 
pared to the intraband conductivity that dominates at low 
frequencies-the ratio L?/U is 5 5% for fuL, - 0.1-0.2 eV, and 
the interband transitions change the reflection coefficient by 
only 0.1-1.0%. However, even at this level the interband 
transitions can seriously complicate the determination of w, 
and y from the experimental curves ~ ( w ) .  

We thank A. I. Golovashkin, E. G. Maksimov, and G. 
P. Motulevich for conversations illuminating various 
aspects of the problem, and M. M. Kirillova for drawing our 
attention to this topic. 

"The minimum at fiw = 0.2 eV was not specifically discussed in Ref. 6 but 
showsupclearly in the wavelengthdependencesn(A ), k (A )fortheoptical 
constants. 

2'As usual, we have assumed that 8, = 0 in our analysis of the results. 
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