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An electric field normal to the surface of a superconducting semiconductor or semimetal in- 
creases the electron density near the surface over a distance equal to the Debye screening length. 
This density increase enhances the electron-electron interaction and thereby gives rise to a local- 
ized superconducting state near the surface. A proximity effect allows this state to penetrate deep 
into the interior. A systematic theory of such states is derived. In particular, the critical tempera- 
ture for the onset of surface superconductivity, the scale dimension of these states, their structure, 
and their magnetic moment are all determined. 

I. INTRODUCTION 

The behavior of superconducting metals and semicon- 
ductors in external electric fields is presently the subject of 
active research.IT6 An external electric field directed normal 
to the surface of a sample causes curvature of the bottom of 
the conduction band, where localized electron states may 
arise as a result. In addition, the density of free electrons is 
increased near the surface; we assume here that these elec- 
trons are degenerate. These two phenomena can give rise to a 
nonuniform superconducting state near the surface. In con- 
trast with the 2 0  superconductivity which is caused by elec- 
trons which form a surface band, the superconductivity due 

which the many-particle problem is reduced to a single-par- 
ticle problem through the introduction of an effective elec- 
trostatic potential which depends on the coordinate (x) nor- 
mal to the surface. The one-particle energy of the electron in 
this case can be written 

E ( r )  =Pz/2m-e(p (z) , (1) 

where P is the momentum of the electron, m is its effective 
mass, and q, (x) is the electrostatic potential. Using the Pois- 
son equation and the condition for equilibrium of the system, 
we can easily derive the following well-known result for the 
electric field in a degenerate electron system: 

to free electrons must be three-dimensional, while remaining 
E (x) =E exp (-xll,) , lDGpo~- . /6nnoe2 ,  

localized near the surface. 
Sandormirskii3 has pointed out that an electric field 

might increase the critical temperature for the onset of su- 
perconductivity. Kelly and Hanke4 and TakadaS have calcu- 
lated the surface critical temperature for 2 0  superconduc- 
tivity in thep-type semiconductor InAs and also in Si. There 
are no free electrons in such a system. The surface supercon- 
ducting state in such a system is found to extend -40 A. The 
localized energy level lies AE-0.015 eV from the contin- 
uous spectrum. 

When a system contains close-lying localized and delo- 
calized electron (or hole) energy levels, or if a system has no 
localized states at all (this is apparently the most common 
situation), a region enriched in charge carriers (for definite- 
ness we will speak in terms of electrons below) forms in a 
surface layer. This effect in turn enhances the electron-elec- 
tron interaction in a narrow surface layer, with the result 
that a region appears in which conditions are more favorable 
for Cooper pairing than in the interior of a superconductor. 
Because of a proximity effect, such electrons induce a super- 
conductivity deep in the interior of the sample. 

The proximity effect in systems with a nonuniform elec- 
tron-electron interaction has been the subject of several 
theoretical papers.'-" In the present paper we derive a the- 
ory for surface superconducting states which are induced by 
a static external electric field. 

2. BASIC EQUATIONS 

A degenerate electron gas in an electric field is conve- 
niently analyzed in the Thomas-Fermi approximation, in 

wherep, is the Fermi energy far from the nonuniformity, no 
is the electron density in the volume, and E ,  is the dielectric 
constant. 

In the same approximation, the electron state density is 
written 

iV, ( x )  =LV, [ I+x  exp ( - x l l ~ )  I, 

x=E/Ea ,  E*=i2nelDn,/~,;  

where N ,  is the state density far from the surface. The semi- 
classical approximation, used in the derivation of these rela- 
tions, is known to hold under the condition 

Everywhere below, we assume that this condition holds. 
In this approximation, the system of superconducting 

electrons is described by the Hamiltonian 

k=2r~,+%,~,+b ,,,, 

where V (r - ri ) is the potential of a nonmagnetic impurity at 
the point with coordinates ri ,$: are fermion creation opera- 
tors. A is the strength of the electron-electron interaction, 
and a is a spin variable. 

The system of Gor'kov equations found from (5) by the 
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standard procedure12 takes the following form near the 
curve of the coexistence of the normal and superconducting 
phases, after an average is taken over the positions of the 
impurities: 

Y (r) =A J M ( r ,  r') ) Y  (r')d3r' 

Here Y(r) is the order parameter, (...) is an average over the 
impurity positions, and 

Here w, = aT (2n + I), and the G, are temperature Green's 
functions. Expanding the Green's functions in the system of 
functions p, , and introducing a coordinate-dependent elec- 
tron-state density at the Fermi surface13 in the standard way 

we find, in the semiclassical approximation, a system of 
equations describing the behavior of a dirty semiconductor 
over the entire temperature range,14 with a coordinate-de- 
pendent quantity g = No(x) V: 

where 
n2= (Pi -Pa) '+  (P,-P,)' ,  P t2=[ -~d ,+  (-1) ' (2e/c)AI2,  

L ~ + = [ X  ( t T 7 p ' )  + (I'(x) -E*) ] 'p+, P L g P 1 2 ,  

~ ( z )  =@ (1/2+z/2) -@ ( ~ i , ) ,  E'=-ln B, 
E=T/1,140D, v ( x )  =g,-'[l-./,  exp (-z/lD) 1, 

~T2=u,l /BnT,  PI=P,-P2+P,, i=1-4, r=(x ,  y, z ) .  

Here A is the vector potential, w, is the Debye frequency, 
gm is the strength of the electron-electron interaction far 
from the nonuniformity, @ is the digamma function, vo is the 
Fermi velocity, and 1 is the electron mean free path. 

The boundary condition at the interface between the 
superconductor and the insulator has the standard form: 

The current density is given in the "dirty" limit by 

Here r,, is the transport time between collisions, and no is the 
electron density. 

3. CRITICAL TEMPERATURE OF THE SURFACE 
SUPERCONDUCTING STATE 

To determine the critical temperature of the surface su- 
perconducting skate we need to find the lower "energy" level 
of the equation LY(r) = 0, using boundary cond2ion (12). If 
there is no external magnetic field, the equation LY(r) = 0 is 
put in the following form for surface states with a character- 
istic dimension d){, (this assumption is justified by the so- 
lution found below): 

with the boundary condition 

Equation (14) with the potential V(x) given by (1 1) can be 
solved exactly after the change of variables1' 

A general solution of (14) which is bounded in the limit 
X - C O ~ S  

y ((s -Jw[e-"i2'~ ( 4 ~ l D ~ / g m g T ~ )  '"1 7 (17) 

where JVo is the Bessel function. The dispersion relation for 
determining the surface critical temperature T, can be found 
from Eqs. (14) and boundary condition (1 5); it is 

V ~ / ~ = J , , ~ ~  ( a )  /Ivo ( a ) ,  a 2 = 4 ~ 1 ~ 2 / g m E 2 .  (19) 

The critical temperature T, can be determined asymptoti- 
cally exactly in the two limiting cases (1) a( 1 and (2) a) 1. 
For a( 1 we find from the dispersion relation (I, 5 { ) 

The spatial part of the order parameter in this limit is 

The characteristic dimension of a superconducting state lo- 
calized near the surface is determined by 

(in this case the surface superconducting state penetrates 
deep into the interior of the superconductor). 

The parameter a plays the role of an effective electric 
field in this theory. Everywhere below, we will call the region 
with a( 1 the "region of weak electric fields," while the re- 
gion with a s 1  is the "region of strong electric fields." It 
should be noted that the region of strong electric fields may 
exist even if the electric field is quite weak, while the region 
of weak fields can exist even if the fields are quite strong. 

In the strong-field region, with a) 1, we find 
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FIG. 1. a) The critical surface temperature and b) the scale length of the 
localized surface state as functions of the electric field. 

from the dispersion relation. Here 

Figure 1 shows curves of the surface temperature and of the 
characteristic scale of a superconducting state localized near 
the surface versus the external electric field. 

4. SURFACE CRITICAL MAGNETIC FIELD 

If the transition to the superconducting state occurs in a 
magnetic field, there is an interval of magnetic fields in 
which superconductivity exists in a surface layer, while there 
is no superconductivity far from the surface. 

The critical magnetic field at which a nonuniform su- 
perconducting state arises near the surface depends on not 
only the temperature but also the angle between the direc- 
tion of the magnetic field and the surface of the sample. Let 
us consider several cases. 

a) Magnetic field normal to the surface 

In this case the vector potential in Eq. (1 1) can be chosen 
in the form 

(the magnetic field is directed along the x axis). In this case 
the variables in (1 1) can be separated at low temperatures, 
where the relation a,/d,, (E )( 1 holds [here a, = (c/ 
2eHs )'I2, and dm is the scale dimension of the surface super- 
conducting state in the magnetic field]. The variables can 
also be separated at temperatures near T, , where the param- 
eter d,/a, is small. Seeking a solution of (1 1) in the form 

\Ir (x, Z)  -exp (-z2/2aH2) TI (x), (26) 

we find a Schrodinger equation for ~ ( x ) :  

r. 
-d,2q (x) - ---- 

2e 
,esv (-  2) q ( X I  =- - z D 2 A ~ ~ l  (XI ,  

g m E T 2 x  

with the boundary condition 

Working by the method described above, we can easily de- 
rive from (27) and (28) a dispersion relation for determining 
the surface magnetic field 

For @( 1 (weak electric fields) we have 

In the opposite limit, @) 1, we have 

The spatial part of the order parameter of the surface 
superconducting state in a magnetic field normal to the sur- 
face is also determined from Eq. (27); the result is 

b) Magnetic field parallel to the surface 

In this case the variables cannot be separated in Eq. (1 1). 
A solution can be derived asymptotically exactly at tempera- 
tures T -+ Ts and at low temperatures by perturbation the- 
ory, since in this case there is no localization of the supercon- 
ducting state along the magnetic field. 

The vector potential is conveniently chosen in the form 
A, = Hx. In this case Eq. (1 1) becomes 

The scale size imposed by the magnetic field on the region 
occupied by the superconducting state is - a H ,  while that 
imposed by the potential energy is -d i .  

For a, ( d ,  the potential associated with the external 
electric field can be treated by perturbation theory. In first 
order in a,/d,, Eq. (34) is an equation for determining the 
surface field Hc3 of the superconductor in the absence of an 
electric field. A trial function which provides the corre- 
sponding value Hc, is l6  

Yo (x) -exp (-rx2), r=1.7c/eHC3. (35) 

Writing the field Hs in (34) as Hs = A H  + Hc, " , where 
AH = H, - Hc3 " , and substituting (35) into (34), we find, 
to first order in a,  /d i  , 

In the opposite limit, a, )di (E  ), the magnetic field can 
be treated by perturbation theory. Using an expression for 
the spatial part of the order parameter, we find 

xZeZ 
= - ff2 j (x-x,) 2Jv,2 ( e - x l Z ' ~  a) dx / j I,'(e-xp'Ds) d r .  

c2 0 0 

Evaluating the corresponding integrals in (37), and minimiz- 
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ing ST, with respect to x,, we find 

zz eZ 
-- HSZdi2kT2. 
4 cZ (38) 

5. STRUCTURE AND MAGNETIC MOMENT OF THE SURFACE 
SUPERCONDUCTING STATE 

To determine the structure of the nonuniform surface 
state and its magnetic moment we need to use the nonlinear 
equation for the order parameter, (1 I), and expression (13) 
for the superconducting current density. 

The nonuniformity of the electron-electron interaction 
and the effect of the free surface give rise to several impor- 
tant features in the behavior of such superconductors in a 
magnetic field. In our case, in which the nonuniformity of 
the electron-electron interaction is caused by an external 
electric field, the magnetic moment which arises near the 
boundary of the nonuniform superconducting state depends 
on the magnitude of this field. The scale sizes of the super- 
conducting structures which arise near the surface also de- 
pend on the strength of the external electric field. As in Ref. 
10, in determining the magnetic moment we should write the 
solution of nonlinear equation (1 1) as a function with the 
spatial behavior determined by the solution of the equation 
linear in Y (Ref. 17). 

The magnetic characteristics and the structure of the 
nonuniform superconducting state depend on the tempera- 
ture and on the orientation of the external magnetic field 
with respect to the surface. 

a) Magnetic field normal to the surface 

In this case, as mentioned above, a solution of Eq. (1 1) 
which is linear in the order parameter can be derived asymp- 
totically exactly in the two temperature regions (1) 
a, /d, (E )( 1 and (2) a, /d, (E )> 1. The order parameter is 
found to be localized along the magnetic field. In a direction 
parallel to the surface, on the other hand, the nonuniform 
superconducting state is degenerate with respect to the posi- 
tions of the centers of the orbits. Boundary condition (12) 
affects the relations between p and v, in expression (33) for 
the order parameter. 

We therefore seek a solution of the nonlinear equation 
(1 1) in the following form: 

(p (y, z )  = e , e 2 ~ " ~  (0-z , , ) ,  zn=eq,i/2eH,, (40) 

~ ( ~ - z , , ) = e x p [ - ( z - z ~ ) ~ / 2 a ~ ~ ] ,  q=-iay. (41) 

Substituting (40) and (41) into expression (13) for the current 
density, and using Eqs. (1 1) and (39), we find the following 
expression for the Gibbs potential: 

1 N m f  1 G= - 1 ( H  ( r )  -H.)'d3r- - 
8n 32x2T2 

j I l ' d3r ,  (42) 

Here H(r) is the magnetic field, and He is the field far from 
the surface. 

Working in the usual way, we find from (42) the follow- 
ing expression for the magnetic moment of a surface super- 
conducting structure: 

&I=- ( A H )  y/4n ( 2 K 2 -  1 )  p,, (44) 

where 

and the quantity 
K % 

serves as the scale size of the localization of the supercon- 
ducting structure along the direction of the magnetic field. 
This length naturally depends on the applied electric field: 
y = y(E). Substituting the expression for Y, into (46), we 
find that in the casep( 1 we have v, = /3 2/2 and y z d  ,, . At 
/3> 1 we have v, -P. In this case we should use the asympto- 
tic expression for the Bessel function at large values of the 
index and of the argument to calculate y (in this case the 
integrals are dominated by the region of small values of the 
argument). As a result of the integration, we easily find 
y-d,, in this limit. The spatial structureof the nonuniform 
surface state shown in Fig. 2 is determined by the order pa- 
rameter Y(r), in which we have p, = 1.16 for a triangular 
spatial lattice of superconducting states which are localized 
along the magnetic field. 

b) Magnetic field parallel to the surface (weak fields) 

If the magnetic field is parallel to the surface, an asymp- 
totically exact solution can be derived at low temperatures, 
a,/d, (E )( 1, and at temperatures near the critical tempera- 
ture (the region of weak magnetic fields), aH/di > 1. 

For a, /d, ) 1 the magnetic field in (1 1) should be treat- 
ed by perturbation theory, as we have already mentioned. To 
first order in the magnetic field, we should seek a solution of 
(1 1) in the form1* 

FIG. 2. Structure of a surface superconducting state in a magnetic field 
normal to the surface (E,Hlz). The superconducting states are localized 
along the magnetic field. The scale size of the localization region increases 
with increasing electric field. 
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where the JVi are Bessel functions which satisfy dispersion 
relation (19). Substituting (47) into (1 I), we find, in first order 
in di /a,, 

Y (x, T )  =coJYa (ae-5'21D 1,  (48) 

where 

(y, is of order unity both for weak electric fields and for 
strong fields), and f (3) is the zeta function. 

As can be seen from expression (48) for the order param- 
eter, the surface superconducting state is a superconducting 
layer with a thickness which depends on the external electric 
field. As the electric field (the parameter a) is increased, the 
thickness ofthe superconducting layer changes fromd,(E ) t o  
d2(E 1. 

To determine the magnetic moment of the surface su- 
perconducting state we need to substitute expression (48) for 
the order parameter into expression (1 3) for the current den- 
sity and to make use of the following relationship between 
the magnetic vector potential and the current density: 

In a type I1 superconductor, with Srd, '(E )/A 2(1, the mag- 
netic field in (50) can be dealt with by perturbation theory. 
As a result we find the following expressions for the magnet- 
ic field H(x) and the magnetic moment M: 

6z 
H ( x )  =H.- - j J%; (ae-,x H ~ Z ~ ~ X ~ ,  

2.L ,> 

1 
(51) 

&I= - j [ H  (i) H I ]  d i  
/In 

The integral in (5 1) can be evaluated in both limiting cases - 
of weak and strong electric fields. In these regions of the 

FIG. 3. Diamagnetic moment as a function of the electric field for the case 
in which the magnetic field is parallel to the surface. 

parameters, the magnetic moment (per unit surface area) is 

6 z 
M z -  , H,d,3 ( E ) .  

b" - (52) 

Figure 3 shows the function M ( E  ). 

c) Magnetic field parallel to the surface (strong fields) 

In this case, seeking the order parameter in the form 

by the method described in Ref. 10, we can easily show that 
the xragnetic moment (per unit surface area) of a supercon- 
ducting plate which forms near a surface is given by the fol- 
lowing expression: 

which depends on the electric field only through the critical 
field H ! .  

In a magnetic field parallal to the surface, the magnetic 
moment therefore becomes essentially independent of the 
electric field as the temperature is lowered. 

6. DISCUSSION OF RESULTS 

Many experimental studies have now been published in 
which a change in the critical temperature has been linked 
with the existence of a strong electric field in a  stern.'^-^^ 
On the other hand, there have been only two direct studies of 
the stimulation of superconductivity by an electric field.24-25 

As follows from the results derived above, the shifts of 
the critical temperatures and magnetic fields depend on the 
parameters a and p, the Debye screening length, and the 
coherence length. From this vantage point we see that the 
systems studied in Refs. (24) and (25) are the least favorable 
for the detection of this effect, since the metals studied there 
have a small value of x and a short screening length, com- 
bined with a long coherence length f. In particular, Stadler's 
experiment2' used a tin film =. 150 A thick in a strong elec- 
tric field E- 10' V/cm produced by a ferroelectric (trigly- 
cine sulfate). The shift A T  in this field was observed to be 
AT = 1.3 . K. Using this value we can easily calculate 
the coherence length in the film from the results derived in 
the present paper. For tin we find 

and f -500 A, in order-of-magnitude agreement with the 
known coherence length of tin films. 

We believe that the systems most favorable for the ob- 
servation of the effects discussed here are superconducting 
semiconductors, in which a large screening length is com- 
bined with a rather small coherence length. For the classical 
superconducting semiconductor SrTiO,, for example, with 
the parameter values 

E-100 A, ~,=10" T - ~ 0 . 4  IS ,  no-loi8 cm-3 (56) 

in an electric field E=: 10, V/cm, for example, we find the 
temperature shift and the size of the surface superconduct- 
ing region to be 
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It would be particularly interesting to make use of a 
ferroelectric with a ferroelectric transition temperature near 
the superconducting transition temperature (T ,  -- Tc ) as the 
electric-field source for the effects discussed here. In this 
case it would become possible to vary a strong electric field 
over a rather broad range. For estimates we consider only 
the case T, > Tc . In this case, the role of the electric field in 
all the expressions is played by the temperature-dependent 
electric displacement, which is given in the simplest case 
by26 

here a and B are the coefficients in the Ginzburg-Landau 
expansion of the functional for the spontaneous polarizabili- 
tY. 

The effect which we have pointed out in this paper may 
be observed in experiments in which the resistance of a sur- 
face layer of a superconductor is measured in an electric field 
perpendicular to the surface, in which the magnetic moment 
of this layer is measured, and in which oscillations of the 
magnetic moment are observed in the case in which the sam- 
ple is in a cylindrical capacitor, and the surface supercon- 
ducting state which arises is a closed ring. 

I wish to thank V. M. Nabutovskii and N. A. Nemov for 
the opportunity to learn about their work on the effect of an 
electric field on a phase transition in a binary electrolyte 
prior to p ~ b l i c a t i o n ~ ~  and also for a useful discussion of the 
present study. I also thank E. V. Matizen and M. A. Starikov 
for a discussion of the experimental situation. 

IS. Kawaji, S. Miki, and T. Kinoshita, J. Phys. Soc. Jpn. 39, 1631 (1975). 
2B. K. Chakraverty, J. Phys. Lett. 40, 99 (1979). 
3B. V. Sandormirskii, Pis'ma Zh. Eksp. Teor. Fiz. 2, 396 (1965) [JETP 
Lett. 2, 248 (1965)l. 

4M. J. Kelly and W. Hanke, Phys. Rev. B23, 112 (1981). 
5Y. Takada, J. Phys. Soc. Jpn. 49, 1713 (1980). 
6N. M. Builova and V. B. Sandormirskii, Usp. Fiz. Nauk 97, 119 (1969) 
[Sov. Phys. Usp. 12, 64 (1969)l. 

'V. M. Nabutovskii and B. Ya. Shapiro, Fiz. Nizk. Temp. 7, 855 (1981) 
[Sov. J. Low Temp. Phys. 7, 414 (1981)l. 
9. M. Nabutovskii and B. Ya. Shapiro, Solid State Commun. 40, 303 
(1981). 

9A. I. Buzdin and L. N. Bulaevskii, Pis'ma Zh. Eksp. Teor. Fiz. 34, 11 8 
(1981) [JETP Lett. 34, 112 (1981)l. 

'"B. Ya. Sha~iro ,  Zh. E k s ~ .  Teor. Fiz. 86,212 (19841 ISov. Phvs. JETP 59, . , , -  

120 (1984)j. 
"V. V. Averin. A. I. Buzdin, and L. N. Bulaevskii. Zh. E k s ~ .  Teor. Fiz. 

84,737 (1983) [SOV. ~ h y s .  JETP 57,426 (1983)l. 
12A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Metody kvan- 

tovoi teorii polya v statisticheskoi fizike (Methods of Quantum Field 
Theory in Statistical Physics, Fizmatgiz, Moscow, 1962. 

I3L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JETP 9, 
1364 (1959)l; 37, 1407 (1959) [lo, 998 (1960)l. 

I4K. Maki, Phys. Rev. 148, 362 (1966). 
15S. Fluegge, Practical Quantum Mechanics, Springer-Verlag, 1971 

(Russ. Trans]., Mir, Moscow, 1974, Vol. 1). 
16A. A. Abrikosov, Zh. Eksp Teor. Fiz. 47, 720 (1964) [Sov. Phys. JETP 

20,480 (1965)l. 
"A. A, Abrikosov, Zh. E ~ s D .  Teor. Fiz. 32, 1442 (19571 [Sov. Phys. JETP , , -  

5, 1174 (1957)l. 
lBV. M. Nabutovskii and B. Ya. Sha~iro ,  Zh. E k s ~ .  Teor. Fiz. 75, 948 

(1978) [SOV. P ~ Y S .  JETP 48,480 (19is)l. 
19W. Ruhl, Z. Phys. 157, 247 (1959). 
20W. Ruhl, Z. Phys 159, 428 (1960). 
"W. Ruhl, Z. Phys. 186, 190 (1965). 
22W. Ruhl, Z. Phys 196, 464 (1966). 
23G. Wurzbacher and P. Gebhardt, Surf. Sci. 21, 324 (1970). 
24R. E. Glover 111 and M. D. Sherrill, Phys. Rev. Lett. 5, 248 (1960). 
"H. L. Stadler, Phys. Rev. Lett. 14, 979 (1965). 
26V. M, Nabutovskii and N. A. Nemov, J. Phys. C 17, 3849 (1984). 

Translated by Dave Parsons 

1003 Sov. Phys. JETP 61 (5), May 1985 B. Ya. Shapiro 1003 


