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The analytic properties of the static electrical conductivity of a binary medium in the complex 
plane of one of its arguments are discussed. The dispersion of the conductivity of such a medium 
in a quasisteady electric field is analyzed. This analysis is related to the properties of a discrete LC 
model, a binary lattice of inductive and capacitive reactances. Low-frequency dynamic methods 
for studying binary media can reveal detailed information on metal-insulator phase transitions. 

1. INTRODUCTION 

The experimental discovery of an anomalous increase 
in the dielectric permeability near the point of a metal-insu- 
lator phase transition3s4 has attracted interest to the more 
general problem of the low-frequency dispersion of the con- 
ductivity of such systems. Analysis of this problem on the 
basis of a scaling hypothesis5 and in terms of the theory of an 
effective medium6 has revealed several important aspects of 
this phenomenon and has demonstrated the importance of 
studying the conductivity dispersion for achieving a more 
profound understanding the metal-insulator phase transi- 
tion. Dubrov et ~ 1 . ~  also carried out an interesting model 
experiment which confirmed the basic theoretical conclu- 
sins. Vinogradov et al.' determined the critical indices of a 
percolation theory5.' in a study of the conductivity disper- 
sion by numerical methods. 

In the present paper we take a more general approach to 
the problem of the low-frequency dispersion of the conduc- 
tivity than that in Refs. 5 and 6; our approach imposes no 
restriction on the range of applicability of the scaling hy- 
pothesis or of the effective-medium theory. To take this ap- 
proach we need to know the properties of the function f (p, h ) 
(p is the concentration, and h of the ratio of the conductiv- 
ities of the two components), which describes the effective 
static electrical conductivity of a binary system. We will exa- 
mine the analytic properties off in the complex h plane. We 
find that the function f is analytic throughout this plane ex- 
cept on the negative real semiaxis. We derive a dispersion 
relation from which we can determine f (p, h ) at any point in 
the h plane in terms of the values off on this semiaxis. Ac- 
cording to the standard scaling hyp~thesis ,~ the singularity 
off nearest the origin is a branch point (on the negative real 
semiaxis) with an exponent which is equal to the critical in- 
dex s. The distance from this branch point to the origin is 
determined by the proximity to the point of the phase transi- 
tion as a function of concentration. We present arguments to 
support the assertion that at a concentration other than the 
critical concentration, h = 0 is a "weak" singular point of 
the function f (p, h ). By studying the singularities of the func- 
tion f we can thus find a complete description of the conduc- 
tivity dispersion of a binary medium and develop a new ap- 
proach to the problem of metal-insulator phase transitions. 

We show in this paper that this question, which might 
seem to be a purely formal mathematical question, can be 

assigned a physical content. It turns out that the behavior of 
the function f on the negative real semiaxis in the h plane is 
directly related to the properties of a lattice model whose 
connections are either inductive or capacitive reactances (an 
LC model). By measuring the impedance of the LC model 
one can find the function f at h < 0 and thereby study its 
singularities. The significance of the function f extends be- 
yond the problem of the electrical conductivity of a binary 
medium. As was shown in Refs. 9 and 10, knowledge of the 
function f @, h ) allows a complete description of the galvano- 
magnetic properties of 2 0  binary media and of the thermo- 
electric properties of both 2 0  and 3 0  binary media. A com- 
prehensive study of the function f (p, h ) is therefore a 
fundamental problem of percolation theory. 

2. BASIC PROPERTIES OF THE FUNCTION f(p, h) 

We write the effective static electrical conductivity a, 
of an isotropic binary system in the form 

Herep is the concentration of the first component, and ui 
(i = 1,2) is the conductivity of component i. The function f in 
(1) depends on the particular structure of the system. 

Let us examine the basic properties off (p, h ) for positive 
real h and introduce the necessary notation. We will be re- 
stricting the analysis to media with randomly distributed 
components (although this restriction is not of fundamental 
importance). For such systems, the simultaneous replace- 
mentsp + I - p  and u1 + u2 do not alter the macroscopic 
properties, so that we find from (1) 

In the 2 0  case the function f satisfies the reciprocity rela- 
tionll'12 

which can be written in the form 

f (P, h)f (1-14 h) = h  (4) 

for a randomly inhomogeneous medium. 
If h = 0, a metal-insulator phase transition will occur in 

the system at p =p,, where p, is the critical concentra- 
t i ~ n . ~ . '  In the limit h + 0 the function f (p, h ) takes the form 
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p=pc:  f ( p ,  h )  =const.hs, (33) 

1 
p<p,: f ( p ,  h )  = h f ,  ( p )  + h 2 f , ' ( p )  + . . . . (54 - 

In percolation theory it is assumed that the series in (5a) and 
(5c) converge. To simplify expressions (5) we have intro- 
duced some new notation, 

and we have made use ofthe condition f @, 0) = 0 atp <p, . In 
(5b), s is the critical index,5s8 and in (5a) and (5c) the sub- 
scripts d and s on the function f specify systems with insulat- 
ing and ideally conducting inclusions, respectively. We note 
that we have f A(p) > 0, since allowing a nonvanishing con- 
ductivity of the "insulating" inclusions increases the con- 
ductivity of the system, while on the other hand we have 
f :(p) > 0, since allowing the "ideally conducting" inclusions 
to have a finite conductivity reduces a,. 

According to the scaling hypothesis, the function f has 
the following form5 in the region 1 T I  < 1 (r = (p - p, )/p, ), 
h ( 1: 

Here A = hs" is the size of the smearing region,5 and the 
critical indices t, s, and q are related by5 q = t (1 - s)/s. The 
constants A,, B,, and a, are obviously positive. In accor- 
dance with the discussion above, we have A ,  > 0 and Bl < 0; 
it is also simple to see that we have a ,  > 0. 

In the 3 0  case we have t z 1.6, sz0.62,  and q =: 1 (Ref. 
5); the critical concentration p, depends on the particular 
structure of the system. In the 2 0  case we have5 t=: 1.3. For a 
randomly inhomogeneous 2 0  medium we = 1/2, 
and in this case we find" from (4) 

j ( ' Iz ,  h )  =h'". (8) 

Comparing (8) with (5b), we conclude that s = 1/2. It then 
follows from the relation among the critical indices that in 
the 2D case we have5 q = t .  

We will need to know the properties of the function f in 
the limit h -+ rn . Using ( 5 ) ,  we find from (2) 

1 
p>1-p,: J ( p ,  h )=  f , ( l - p )  + _  i , ' ( l - p )  + . . . , 

L i z .  ( 9 4  

p=l-p,:  j ( p ,  h )  -hi-', (9'3) 

The results in (9) have a simple meaning. In the 3 0  case there 
are two critical concentrations (two percolation thresh- 
o l d ~ ) . ~  As the concentrationp increases, a percolation with 
respect to the first component sets in a t p  =p,, =p, , while 
the percolation with respect to the second component disap- 
pears a tp  =p,, >p,, . For randomly inhomogeneous media, 
because of the symmetry under the replacementsp -+ 1 - p 
and a, + u,, we havepc2 = 1 - p, . When we go fromp 5 p c  
top Zp, in the case h ) 1 (i.e., a, < a2),  the onset of percola- 
tion in terms of the poorly conducting (first) component has 
no important effect on the conductivity of the system, and 
the function f is given by expression (9c) both below and 
above the transition point p, . In contrast, near the second 
critical concentration, p,, = 1 - p, , where the percolation 
in terms of the well-conducting (second) component disap- 
pears (or appears), the function f (p, h ) exhibits critical prop- 
erties in the limit h -+ m. In the 2 0  case there is a single 
critical concentration, p, = p,, = p,, , and there is no inter- 
mediate region p,, < p  <p,,. For a randomly inhomogen- 
eous medium we have p, = 1/2; in this case, we have an 
exact equality in (9b) with s = 1/2 [see (8)]. 

We wish to emphasize that the assumption that the 
function f (p, h ) can be expanded around h = 0 (ifp #p, ) is 
introduced in the theory without justification. In fact, there 
is reason to believe (see $6) that h = 0 is a singularity for f (p, 
h ) even at a concentration different from the critical concen- 
tration. In this case, the series in (5a), (5c) and (7a), (7c) [and 
thus in (9a), (9c)l do not converge. 

3. ANALYTIC PROPERTIES OF THE FUNCTION f(p, z) 

In a low-frequency (quasisteady; $58 in Ref. 13) electric 
field, the expression for the effective conductivity still has 
the form (I),  but a, and ai are complex functions of the 
frequency w. In this case the argument h of the function f (p, 
h ) is also complex. In order to use expression (1) for w # O  we 
must therefore know the properties off (p, z) in the plane of 
the complex variable 

z=h(a) =oz (@) lo ,  ( o )  . (10) 

The conductivity (like the dielectric permeability), as a 
function of the complex frequency w, is analytic in the upper 
half-plane, Imw > 0 ($82 in Ref. 13). Furthermore, according 
to $82 in Ref. 13, the conductivity has no zeros at Imw > 0 
and at finite w. The function f = a, (w)/u,(w) is therefore 
analytic in the upper w half-plane. 

To determine the analytic properties off (p, z) as a func- 
tion of the complex variable z we need to know the region in 
the z plane into which the upper half-plane Imw > O  is 
mapped by transformation (10). Analysis of specific trans- 
formations Z = h (w) [see (20), (21), and, especially, (28)] 
shows that Imw > 0 is mapped, generally speaking, onto the 
entrie z plane, except for the negative real semiaxis. Conse- 
quently, in this region of the z plane the function f (p, z) is 
analytic. The point at infinate z = rn requires a special anal- 
ysis. If the concentrationp is not equal to the critical value 
(p#p, = 1/2 in the 2 0  case o rp#  1 -p, in the 3 0  case), the 
function f (p, z) at z = CQ will either be finite or have a simple 
pole, according to (9). 
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With the properties of the function f which have now 
been established, we are in a position to write a dispersion 
relation. For definiteness we consider the concentration in- 
terval corresponding to an expansion off as in (9a) in the 
limit h - cc . By the standard method14 we then find (assum- 
ing that the z plane is cut along the negative real semiaxis) 

where the contour C, runs from - cc to 0 along the upper 
edge of the cut, circumvents the point z' = 0 on the right, and 
then returns to - w along the lower edge of the cut. If the 
function f is known on the upper and lower edges of the cut 
( - cc ,0), we can then find f (p, z) at any point in the z plane 
from dispersion relation (1 1). 

The function f (p, z) has a useful symmetry property. 
According to $82 in Ref. 13, we have a( - w*) = a*(@), 
where the asterisk means the complex conjugate. It follows 
that we have f@,  h ( - a * ) )  = f *(p, h (a)), with 
h ( - w*) = h *(a) ,  SO that we have 

Writing the function f (p, z) in the form (z = x + iy) 

we find the parity properties of the real and imaginary parts 
off from (12): 

Using the parity properties (13), we can rewrite disper- 
sion relation (1 1) as 

rn 

Here f+@, - t ) = f (p, - t + is), wheres -+ + 0, is the val- 
ue of the function f (0,z) on the upper bank of the cut. We can 
thus determine f (p, z) throughout the z plane if we know 
simply the imaginary part off on the upper edge of the cut (or 
on the lower edge by virtue of the relation Imf, = - Imf-). 

The derivation above was based exclusively on general 
properties of the conductivity as a function of the complex 
frequency w, so that we cannot draw conclusions about the 
particular nature of the singularities off (p, z) on the semiaxis 
Imz = 0, Rez<O. From what we know about the properties 
off at positive real z = h we can draw some inferences about 
the nature of these singularities. 

We first consider a 2 0  system at the critical concentra- 
tion, p = 1/2. An analytic continuation of the function f, 
defined in accordance with (8), into the complex z plane is 
described by 

It is assumed that in expression (15), which holds for arbi- 
trary z (in the case of a randomly inhomogeneous 2 0  sys- 
tem), we choose that branch of the root for which we have 
Ref > 0 at Imz = 0, Rez > 0. In accordance with the general 
properties off discussed above, the function (15) is analytic 
at finite z in the entire plane, with a cut along the negative 

real semiaxis. At z = 0 and at infinity, the function f has 
branch points with an exponent of 1/2. 

In the 3 0  case (p =p, )  the analytic continuation of 
expression (5b) [where we are using (7b)l which holds at 
/ z / ( l  is 

li ( p c ,  Z )  =aozq (16) 
with the same choice of branch as in (15). According to (16), 
the function f has a branch point (with an exponent s) at 
z = 0. 

From the assumption that the function f @, h ) can be 
expanded in a converging series around h = 0 if p #p, (see 
the preceding section) it follows that the analytic continu- 
ation of this function, f (p, z), is regular in a certain neighbor- 
hood of the point z = 0. In this case the branch point is sepa- 
rated from the origin by a gap and is at z = - h ,  (h, > O), 
where h, -+ 0 asp + p c  . We can estimate h, in order of mag- 
nitude on the basis of the scaling hypothesis. From (7) we 
conclude that 

hi-l.rlti: (17) 
Generally speaking, the exponent of the branch point may 
depend on the concentration, but it would be natural to as- 
sume that this exponent would be the same as the exponent s 
in the critical region, T I  < 1. Near the branch point the non- 
analytic part of the function f would then be of the form 

Gf (p. 2) (z+h,) " (18) 
with h, from (17). 

We thus reach the conclusion that, according to the 
standard scaling hypothesis, the singularity of the function 
f (p, z) nearest the origin is a branch point at z = - h, with h, 
given by (17). From the mathematical standpoint, the ap- 
proach of the system to the metal-insulator transition corre- 
sponds to an approach of the singularity of the function f- 
the branch point-to the origin in the z plane. Analogous 
conclusions follow from the expression for f (p, h ) given by 
the effective-medium theory. l5 

The conclusion that there is a gap leans heavily on the 
assumption that the function f (p, h ) (p #pc ) can be expanded 
aroung h = 0. There is reason to believe (§6), however, that 
h = 0 is a singularity for the function f @, h )at  all concentra- 
tions, so that the corresponding series do not converge. This 
conclusion means that the imaginary part off is generally 
nonzero for all z < 0 and that the gap mentioned above does 
not exist. Nevertheless, according to the arguments in §6, 
Imf is small in the region - h ,  5 z < 0, so that the singularity 
off at the point z = 0 is "weak." On the other hand, the point 
z = - h, is special because as we go from z 2  - h, to 
z 5 - h, the imaginary part off increases rapidly. It would 
thus be natural to call the singularity of the function f (p, z) at 
the point z = - h, "strong" (although this point is not sin- 
gular in the strict sense of the term). The assumption that 
series (5a), (5c); (7a), (7c); and (9a), (9c) converge corresponds 
to neglecting the weak singularity of the function f at the 
point z = 0. 

4. DISPERSION OF THE CONDUCTIVITY 

We assume that an inhomogeneous sample is in a low- 
frequency (quasisteady; $58 in Ref. 13) periodic external 
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electric field. One of the conditions for a quasisteady situa- 
tion ($58 in Ref. 13) is that the dimension of the sample (1 ) be 
small in comparison with the wavelength R -c/w (c is the 
velocity of light) corresponding to the field frequency w 4 c/ 
I. Under this condition we may assume that the sample is in a 
uniform field E(t ) = E(exp( - iwt ). On the other hand, we 
assume that 1 is large in comparison with the dimensions of 
the inhomogeneities, so that we can speak in terms of aver- 
age (or effective) characteristics of the sample. 

For "poor" conductors (e.g., semiconductors) we can 
introduce both an electrical conductivity a and a dielectric 
constant E ($58 in Ref. 13). This is conveniently done by 
means of the complex conductivity 

0 (a) =o-ioe/4;1. (19) 

Yet another condition for a quasisteady situation is that a 
and E must be independent of the frequency ($58 in Ref. 13), 
and we assume that this condition holds. In this case, a and E 

in (19) should be understood as the static values of the electri- 
cal conductivity and of the dielectric constant. 

According to the discussion above, in the quasisteady 
approximation the problem of determining the effective 
characteristics of the medium differs from the static case 
only in that the conductivity a in (1) is replaced by the com- 
plex conductivity a(w) from (19): 

Let us examine in slightly more detail a system with 
insulating inclusions (us = O), for which we have (under the 
condition a, > w~~/4 . r r )  

In  this case we need to know the function f (p, z)  on the imagi- 
nary axis in the z plane in order to determine a, and E, . Let 
us assume that a t p  #pc the derivatives f '  and f "  exist at the 
point z = 0. In the low-frequency limit, to within terms 
-w2, inclusively, we then find from (20) and (21) 

where the prime means differentiation off (p, z) with respect 
to its argument z. In (23) we have also written a term with E,, 
which was omitted from (21). 

At p >pc ,  according to (6), we have f (p, 0) = f, @), 
f '(p,O) = f A (p), etc. In this case the second term in (22) is a 
correction -w2 to the main term a, fd (p). According to the 
scaling hypothesis, we find from (7a) 

fd(p) = A ~ . G ~ ,  fd' (p) =A~/ .G' ,  . . . ; 
expressions (22) and (23) in this case are the same as the cor- 
responding results in Ref. 5. The condition under which the 
term -w2 in a, is small can be written as 

with h (w) from (21). The quantity A(w) serves as the dimen- 

sion of the smearing region. 
At p <pc , according to (5) and (6), we have f (p, 0) = 0, 

f '(p,O) =f, (p), andf "@,0) =f j(p), so that 

Expression (25) for E, can also be derived in the static ap- 
proach to the problem (Ref. 16, for example). As was men- 
tioned in $2, we have f: @) <O; i.e., the conductivity a, is 
positive. According to the scaling hypothesis we find from 
( 7 4  

f. (p) =B, 1 T I - ' ,  f,' ( p )  =2B1 1 . G I - ( ' ~ ' ~ ' ~ ~ ,  
and expressions (25) become the corresponding expressions 
of Ref. 5, which hold outside the smearing region, 
I T  A(@). 

At the critical point in the limit z - 0 the function f is 
given by (16), so that we find from (21) 

again in agreement with Ref. 5. Expressions (26) also hold 
p #p, if r l  4 A(w). I t  follows from (26) that the critical index 
s can be determined by measuring the loss angle and the 
frequency dependence of a, and E, in the region Iri < A(w). 

A study of the low-frequency dispersion of the conduc- 
tivity can thus furnish rather detailed information on the 
metal-insulator phase transition. At the same time we 
should stress that the specific expressions for a, and E, out- 
side the smearing region (like the results of Ref. 5, which 
follow from them) are applicable if the derivatives f '(p,O) and 
f "(p,O) exist. Otherwise, the conductivity and the dielectric 
constant will not be analytic functions of the frequency even 
as P #PC. 

Lattice models offer far greater opportunities (in the 
sense of flexibility in the functional dependence of the com- 
plex conductivity on the frequency w). Let us assume that we 
are given a square lattice (or a simple cubic lattice in 3 0  ) 
whose connections are elements with a complex resistance 
(impedance) Z, (a). The impedance Z, takes on the value Z, 
with a probability ofp  and the value Z, with a probability of 
1 - p. Since Z -' plays the role of the electrical conductivity 
in this case, we can find an expression for the effective im- 
pedance of the system from (1) by using the replacement 
a - Z - '. By combining resistances, capacitances, and in- 
ductances, we can construct essentially any functional de- 
pendence of the impedance of the connection, Z,, on the 
frequency w. Dubrov et studied a square lattice each of 
whose connections is an element consisting of a resistance R 
and a capacitance C in parallel. The impedance (Z ,  ) of such 
an element can be found easily (k = 1,2): 

Zk-I (o) =Rk-'-ioC,. 

Comparison with (19) shows that a lattice model with such 
couplings is equivalent to a binary continuous medium with 
a complex conductivity like that in (19). The results of (20)- 
(26) can thus be transferred directly to the case of binary 
lattices. We simply note that Dubrov et a1.6 analyzed the 
problem of nodes,' for which we cannot use the exact result 
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found by Dykhne,I1 Z, = (ZlZ2)112, which applies to con- 
nections on a square lattice withp = 1/2. We also note that 
the expressions given for the conductivity a, and the dielec- 
tric constant E,  in Ref. 6 can be found from general expres- 
sions (20) by using the function f (p, h ) from Ref. 15. 

Of primary interest from the standpoint of learning 
about the singularities of the function f is a lattice LC model 
whose connections are either purely capacitive or purely in- 
ductive reactances. In view of the importance of this case, we 
will examine the LC model in slightly more detail. 

5. LATTICE LC MODEL 

We consider a binary lattice whose connections have, 
with a probability of p, an inductive reactance (an L cou- 
pling) and, with a probability of 1 - p, a capacitive reactance 
(a C coupling) ($62 in Ref. 13): 

Here L is the inductance, and C the capacitance. If expres- 
sions (27) are to be analytic, we must understand the frequen- 
cy w to be the quantity w + is, where S -+ + 0. In this case 
the function 

z=h (o )  =Z, ( a )  12, ( a )  (28) 

withZ, and 2, from (27), maps the upper half-plane Imw > 0 
onto the entire z plane except for the negative real semiaxis. 
The effective impedance of the LC model is given by the 
following expression (w > 0) according to (1) and (27): 

wherep is the density of L connections. In accordance with 
the rule w -+ w + iS, we have taken into account the circum- 
stance that along the cut we should take the value of the 
function f on the lower edge. The effective impedance of the 
LC system is thus determined by the properties of the func- 
tion f @, z) on the negative real semiaxis of the complex fre- 
quency z. 

For connections on a square lattice with p = 1/2 the 
function f is given by expression (15); hence f-(1/ 
2,z) = - ilz1 ' I2  (for z < 0). As a result we find from (29) 

This result, which was derived in Ref. 11, seems at first 
glance to be paradoxical: An energy dissipation occurs in a 
lattice consisting of purely reactive impedances. Expression 
(30) withp =p, and w ( fl is valid in order of magnitude for 
plane lattices of all types. 

In the 3 0  case with p = p, , for which the function f is 
given by (16), we find, in an analogous way, 

Z,=a,Z, ( n : ~ )  Z a - L  exp [i  (s-I/,) n I7  (31) 

where Z, is the same as in (30). There are two important 
distinctions between expressions (3 1) and (30). First, the ef- 
fective impedance in (31) depends on the frequency (at 
~ ~ 0 . 6 2  we have 2s - 1 ~ 0 . 2 4 ;  i.e., Z, varies with the fre- 
quency nearly in accordance with w-'I4, for which we 
would have s = 5/8). Second, the imaginary part of Z, is 

nonzero, and we have 

Im Z,/Re Z,=tg [ (s-'/~) n  1. 
Both of these results stem from the circumstance s#  1/2. 
Consequently, we can determine the extent to which s devi- 
ates from 1/2 by measuring the loss angle and frequency 
dependence of the impedance. 

If the "weak" singularity of the function f @, z) is ig- 
nored ($83 and 6), the real part of Z, vanishes at p #p, if 
0 < w < w, . According to (17), we have, in order of magni- 
tude, w, - fl / T / " ' ~ ~ .  At w k w,, according to (18), ReZ, var- 
ies in accordance with 

i.e., there is a threshold in the functional dependence of 
ReZ, on w. In the region a, g w ( R the quantity ReZ, is 
given by expression (3 1) [or expression (30) in the 2 0  case]. In 
this approximation, the frequency dependence of the real 
part of the effective impedance of the LC model under the 
conditions 171 g 1 and w ( fl is as shown schematically by 
the solid lines in Figs. la (s = 1/2) and lb (s > 1/2). When the 
weak singularity of the function f @, z) is taken into account, 
the real part of 2, is nonzero in the region 0 < w < w, also. 
The dotted lines show the w dependence of ReZ, in this 
frequency region. 

An analysis of the LC model thus makes it possible to 
determine the basic characteristics of systems with a metal- 
insulator phase transition: the percolation threshold and the 
critical indices. Furthermore, as follows from (29), measure- 
ments of thew dependence of Z, can reveal the function f @, 
z) on the entire negative real semiaxis of thez plane. Another 
topic of considerable interest is the generalized LC model 
consisting of a binary lattice whose connections consist of an 
inductance and a capacitance in series. A study of the imped- 
ance of such a lattice makes it possible to study the properties 
of the function f @, z) on the entire real axis in the z plane. 

6. LOCAL OSCILLATIONS IN THE LC MODEL 

In the preceding section we used the known properties 
of the function f @, z) to study the LC model. The inverse 
problem-of analyzing the LC model in order to determine 
the properties of the function f-is extremely complicated 
and requires a separate treatment. We will accordingly offer 
only a few comments on the inverse problem here. It is perti- 
nent to note that a study of the properties of the LC model 

FIG. 1. The real part of the effective impedance of the lattice LCmodel as 
a function of the frequency o. a-Two-dimensional case (s = 1/2); b- 
three-dimensional case (s > 1/2). 
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allows us to take a physical approach to the rather formal 
question of the singularities of the function f @, z). 

1. The existence of a nonvanishing (at w $0) real part of 
the impedance means that the system has eigenfrequencies 
w, # 0 (the concept of the existence of local oscillations in an 
L C  model was introduced by Dykhne"). T o  determine the 
nature of these frequencies we consider the case of a low 
density of "defect" connections. We start from Kirchhoff 's 
equations for the lattice1': 

Here V, is the potential at lattice node r; the vectors A con- 
nect a node with the n nearest-neighbor nodes; and a,,  +. is 
the conductivity of the coupling between nodes r and r + A. 
We assume that all the couplings of the lattice have a con- 
ductivity a") except the connection (of conductivity &')) 
between nodes r = 0 and r = A,. Transferring the inhomo- 
geneity in (33) to the right side, and solving the resulting 
equation by Fourier transforms, we find in the usual way17 
an equation for local (impurity) oscillations: 

Ifa") = Z,-I and a(') = 2,-' withZ, andZ,  from (27) 
(a single L connection in a lattice of C connections), then we 
find from (34) that the system has impurity frequencies 
w, = + wol where 

Here R is the same as in (29). If, on the other hand, there is a 
single C connection in a lattice L connections, then the sys- 
tem has impurity levels + wO2 where 

with the same R. For a square lattice (n = 4) we have 
w,, = w,, = R. Results (35) and (36) have a simple meaning: 
The introduction of an L connection into a C matrix (or vice 
versa) forms an L C  circuit with a resonant frequency (35) or 
(36). 

Analysis of a lattice with two (or three, etc.) defect con- 
nections shows that each of the impurity levels (351, (36) 
splits into two (or more) sublevels. It follows that a nonzero 
defect concentration causes a local level to "spread out" into 
an impurity band, as usual." If the frequency of the external 
electric field falls in this band, the system absorbs energy. It 
can therefore be suggested that a cut along the negative real 
semiaxis in the complex z plane corresponds to an impurity 
band in the L C  model. The gaps discussed in $3, which sepa- 
rate the branch point z = - hl  from the origin in the case 
p #pc , correspond in this picture to an energy gap. 

The existence of such a gap in the oscillation spectrum 
is plausible for systems with a periodic arrangement of inclu- 
sions. For a randomly inhomogeneous medium, on the other 
hand, we would naturally expect that the energy gap would 
contain the small "tails" which are characteristic of disor- 
dered system." To evaluate these tails,17 we need to find the 
composition fluctuation of nonzero probability with which 
the low-lying impurity levels are coupled. 

In the lattice LCmodel, low-frequency oscillations are 
exhibited by, for example, line defects ("dislocations")-L 
connections arranged in an infinite line. 

The spectrum of such oscillations as k --+ 0 (k is the 
wave vector) is 

w2 ( k )  -Q2k (D=2) ,  w 2  ( k )  -QLli2 ln ( l / k )  (D=3) .  (37) 

where D is the dimensionality of the space, and R is the same 
as in (29). The probability for the formation of a long, 
straight "dislocation" is extremely small. Nevertheless, de- 
fects of this type may contribute to the tails mentioned 
above. 

At significant concentrations, the "normal" (most 
probable) defects in a lattice are finite-size clusters: bound 
formations consisting of linear chains. It is natural to suggest 
that these formations are also coupled with low-lying levels; 
the minimum oscillation frequency wmin of a cluster of size r 
decreases with increasing r. The frequency w, in (32) is ap- 
parently related to a finite cluster of size equal to the correla- 
tion radius rc (Ref. 8). Clusters of size r > r, -the probabil- 
ity for whose existence is exponentially small but nonzero- 
then contribute to ReZ, at w < 0 , .  Since the r dependence 
of wmin is not known, we cannot draw more definite conclu- 
sions regarding ReZ, at w <a,. Nevertheless, it may be 
assumed that there is no gap in the oscillation spectrum and 
that Imf is nonzero in the frequency interval 0 < w < w,. A 
further study of the lattice L C  model should resolve these 
questions, which are of importance to percolation theory; in 
particular, further study should reveal the nature of the sin- 
gularity off @, z) at z = 0. 

2. The properties of the LCmodel can also be studied in 
a continuous problem by assigning the first component a 
conductivity a, = Z T 1  and the second a conductivity 
a, = Z; I, with Zi from (27). Below we restrict the discus- 
sion to the 2 0  case, for which the analysis is comparatively 
simple. 

It is not difficult to see that the eigenfrequency w, = R 
is associated with an inclusion of circular shape. Local oscil- 
lations with frequencies - Cl are apparently characteristic of 
other "volume" figures. Highly elongated inclusions have 
low-lying levels. An analysis of an infinite band of width 2d, 
for example, shows that two oscillation branches are asso- 
ciated with it: 

o i 2 ( k )  =Q2 th kd ,  oZ2 ( k )  =Q2 ctll kd .  (38) 

The probability for the formation of a highly elongated de- 
fect is extremely small, however (as in a lattice, the most 
common defects are finite clusters; the question of the spec- 
trum of the oscillations associated with these finite clusters 
remains open). On the other hand, it can be expected that a 
spectrum analogous to (38) will arise when two inclusions of 
smooth shape come close together, since a rather long and 
narrow channel forms in the "contact" region. The probabil- 
ity for such a close approach (-c2, where c is the concentra- 
tion of inclusions) is not extremely small even as c < 1. We 
should therefore expect that even in the approximation qua- 
dratic in c the quantity Imf will be nonzero at all z < 0. 

Analysis of a pair of circular inclusions shows that it is 
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associated with a set of discrete frequencies 

wherep is the distance between the centers of the circles, and 
R is their radius. Asp  -+ 2R, we have 6, + 0, and the fre- 
quencies in (39) form a quasicontinuum of the type in (38), 
which stretches from 0 to CO. A calculation of the effective 
conductivity of such a system incorporating terms -c2 
shows that the region in which the function f is nonanalytic 
is the entire negative real semiaxis in the z plane. At small 
values of z the function f contains a nonanalytic term z31m, 
so that f cannot be expanded in a series around z = 0. On the 
other hand, the first two derivatives off with respect to z do 
exist at z = 0, so that the singularity of the function f (p, z) at 
z = 0 is weak. [Analogous conclusions hold for an infinitely 
remote point z = a, as can also be shown by using the reci- 
procity relation (3).] 

The conclusion that there is no gap in the oscillation 
spectrum of the LC model may also hold in the general case 
(including 3 0  systems), so that z = 0 is a singularity of the 
function f (p, z) for all concentrations for randomly inhomo- 
geneous media. As discussed above, however, the imaginary 
part off is small in the "energy gap" ( - h ,  5 z < 0). Further- 
more, the derivative off with respect to z at z = 0 exists at 
least forp <p,, since it determines the conductivity of a sys- 
tem with ideally conducting inclusions [see (5c)l. Iff '(p,O) 
exists at p >p, also, the singularity off (p, z) at z = 0 will be 
weak at all concentrations other than the critical concentra- 
tion. On the other hand, as we have already mentioned (§3), 
the point z = - h ,  is a special one in that as we go from 
z k - h ,  to z 5 - h ,  there is a rapid increase in Imf. Al- 

though this point is apparently no singular from the math- 
ematical standpoint, it is natural to call it a point of a "strong 
singularity" of the function f (p, z). 

I wish to thank A. M. Dykhne for critical comments 
offered in a discussion of this study. 
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