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A method is proposed for experimentally observing exotic vortices in rotating 3He-A which have 
a half-integral number of superfluid velocity circulation quanta. The existence of such vortices in 
3He-A is made possible by the presence of a discrete combined symmetry (gauge transformation 
+ spin rotation) which nontrivially couples the superfluid and magnetic properties of the liquid. 

This symmetry gives rise to hybrids which consist of a vortex combined with a disclination in the 
field of the magnetic anisotropy vector. Because of the spin-orbit (dipole) energy, topological 
solitons terminate on them if the superfluid is unconfined, and the hybrids are energetically 
unfavorable. If the fluid is confined between parallel planes separated by less than the dipole 
length, the dipole energy will be neutralized when a sufficiently strong magnetic field is applied 
normal to the plates; in this case, vortices with half-integral circulation can coexist with other 
types of vortices. The half-integral vortices should give rise to a distinctive NMR signal that 
distinguishes them from singular one-quantum and nonsingular two-quantum vortices. 

1. INTRODUCTION 

Because of the nontrivial violation of gauge and rota- 
tional symmetry in the superfluid phases of 3He, the proper- 
ties of the quantized vortices in these liquids are consider- 
ably more interesting than in He 11. The exotic behavior of 
the vortices can be traced to the existence of combined sym- 
metries in the A, B, and A, phases which mix the superfluid, 
liquid-crystal, and magnetic properties of the ordered li- 
quids. The combined gauge-rotation symmetry in 3He-A (cf. 
the review in Ref. 1) is responsible for the "nonsingular" 
vortices with two superfluid velocity circulation quanta 
( p = 2) which have been observed in NMR  experiment^^.^ in 
rotating liquids. (We recall that the circulation quantum in 
superfluid 3He is equal to h /M, where M = 2m3 is the case of 
the two 3He atoms forming a Cooper pair.) These vortices 
have a liquid-crystal texture which induces a continuous dis- 
tribution of the curl V x v, of the superfluid velocity in the 
vortex. 

Because 3He-B is invariant under a combined rotation 
of the orbital and spin subsystems (cf. the review in Ref. 4), 
the system has a nonzero intrinsic magnetic moment which 
is frozen into the cores of the quantized vortices and mani- 
fests itself as an unusual gyromagnetic effect that can also be 
observed in NMR experiments.' 

There is an additional type of combined symmetry in 
3He-A which couples the superfluid and magnetic proper- 
ties. This symmetry, which is discrete, gives rise to distinc- 
tive "hybrid" lines in 3He-A in which a half-integral vortex 
( p  = 1/2) is combined with a disclination in the field of the 
magnetic anisotropy vector d with a half-integral Franck 
index m = 1/2 (cf. Ref. 6). In terms of its effects on the prop- 
erties of the elementary excitations in 3He-A (fermions, bo- 
son collective modes, point-like topological objects, hedge- 
hogs), these semivortex-semidisclination hybrids are 
reminiscent of the hypothetical singular lines in the grand 

unified theory, around which the electric charge or parity of 
elementary particles changes sign.' Moreover, topological 
constraints imply that neither the p = 1/2 vortex nor the 
m = 1/2 disclination comprising the hybrid can exist sepa- 
rately from one another; we thus have a possible topological 
mechanism for quark confinement. The experimental obser- 
vation of these linear defects in 3He-A would thus be of great 
interest. 

We will show that semivortex-semidisclination hybrids 
should be present in 3He-A when the superfluid is rotated 
between parallel plane plates separated by less than the di- 
pole length l, - lop3 cm. The orbital anisotropy vector 1 is 
specified in this geometry, and when a strong magnetic field 
H > 50 G is applied normal to the plates there will be a range 
of temperatures for which the singular lines are energetically 
more advantageous than vortices with one or two circulation 
quanta. These objects can be identified by the characteristic 
behavior of the satellite vortex peak in the NMR signal. If 
the magnetic field is obliquely incident on the plates, topo- 
logical solitons are formed which bridge pairs of semivor- 
tices, extending from one member of the pair and terminat- 
ing at the other. These solitons localize the spin waves and 
are responsible for the satellite vortex peak. The soliton di- 
ameter, the distance between the paired vortices, and the 
associated frequency and intensity of the vortex peak are 
very sensitive to the inclination angle of the field. 

2. VORTICES WITH p = 1/2 IN A PARALLEL PLANE 
GEOMETRY 

The order "parameter" in superfluid 3He is a 3 x 3 ma- 
trix A,, whose elements consist of the series expansion coef- 
ficients of the wave function for the pair with respect to ei- 
genstates of orbital moment L = 1 and spin moment S = 1 
(these states correspond to the different projections of L, S ) .  
In terms of the real unit vector d and the complex vector 
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A' + iA" (where we assume that A'A" = 0, IA'j = IA" I = I), 
we can express the matrix for the A-phase in the form 

This matrix describes a Cooper pair with zero spin projec- 
tion on the d axis and unit orbital projection on the 1 axis 
(1 = A' X A "). This state is not invariant under spin and orbi- 
tal rotations which reorient d and A' + iA", respectively, nor 
is it invariant under gauge transformations that change the 
global phase @ of the Cooper pairs in the Bose condensate. 
However, it is invariant under two combined symmetry 
transformations, one continuous and the other discrete. 

The continuous symmetry is of the form @+@ + a ,  
with a simultaneous rotation of the orbital variables A' and 
A "  by the anglea about the 1 axis. This symmetry is responsi- 
ble for the unusual superfluid properties of ,He-A (cf. Ref. 1 
for details); they are a manifestation of the rotational nature 
of the superfluid velocity 

which is invariant under the symmetry transformation. 
The discrete symmetry is of the form @+@ +a, 

d+ - d and is responsible for the existence of vortex-spin- 
disclination hybrids6 of the form 

@=r+3/2, d=a cos mq+b sin mcp, A1+iA'/=const, (2.3) 

e.g., here p is the azimuthal angle in a cylindrical coordinate 
system with z axis parallel to the vortex axis, and the unit 
vectors a and b are mutually orthogonal. The phase @ 
changes by .rr when we go around the linear hybrid. The 
change in the sign of the order parameters A,, is offset by the 
reversal of the field d around the line, provided the index m 
of d is half-integral. The field d is thus analogous to a disclin- 
ation of half-integral index in nematic liquid crystals (cf. Ref. 
8). The superfluid velocity is equal to 

and the corresponding circulation is 

i.e.,p = 1/2 in units of the circulation quantum h /M. 
This vortex is one of three topologically distinct types 

that can exist in 3He-A (Ref. 6); the other two are singular 
withp = 1 and nonsingular withp = 2 (cf. Refs. 1 and 2). In 
order to find out which type of vortex makes up the periodic 
structure that forms when the vessel continuing the liquid is 
rotated at angular velocity fl, we must examine the free ener- 
gy functional F i n  the rotating system. For ,He-A, F i s  given 
by the general expression (cf., e.g., Ref. 1) 

h f i  
+-C(V, - [Qr] , ro t l ) - -Co( l , v , - [Qr] )  ( l r o t l )  
1w 1M 

(2.41 
Here the notation [AB] or [A, B] denotes the vector product; 
p! andp: are the components of the superfluid density tensor 
parallel and normal to 1, respectively; the coefficients K,, K,, 
and K, describe the distortion energy of the liquid-crystal 
field 1-more precisely, the transverse bending, the twisting, 
and the longitudinal bending, respectively (cf. Ref. 8); p!p 
andpip are the components of the spin rigidity tensor paral- 
lel and normal to 1; the coefficients C and C, determine the 
superfluid current SF/&, as a function of V X 1. For T z  T, , 
for which the Ginzburg-Landau functional can be used, 
these coefficients are related by9 

which breaks down for T far from T,. The parameters 
ld - and 6, -6, (H /25 Gauss)-' are the dipole and 
magnetic lengths for the spin-orbit (dipole) interaction of the 
fields d, 1 and the uniaxial magnetic anisotropy energy, re- 
spectively (d is the magnetic axis). 

The minimum energy in He 11 corresponds to a periodic 
vortex structure with circulation number as small as possi- 
ble, i.e.,p = 1. This is because the energy density Fis  propor- 
tional top; indeed, F is equal to the density of vortices 

multiplied by the vortex energy =p2 per unit length: 

(r, -nu- is the distance between the vortices, and the co- 
herence length 6 is determined by the diameter of the vortex 
core). Thus, 

The rule F a p  does not hold in 3He-A because of the 
complicated interaction among the different degrees of free- 
dom in the system. For unconfined systems, vortices with 
the minimum circulationp = 1/2 cannot coexist withp = 1 
andp = 2 vortices, because the latter are always associated 
with a large dipole energy. Indeed, unlike d the vector 1 is 
uniquely determined and cannot change sign around any 
line; 1 therefore cannot be parallel everywhere to d in a sys- 
tem of vortices withp = 1/2, as would be required for the 
dipole interaction. A planar soliton thus extends outward 
from each vortex withp = 1/2 (Refs. 6 and lo), and the ener- 
gy of the soliton is proportional to its volume, in which the 
dipole energy is not saturated. 

In order for vortices with p = 1/2 to exist, the dipole 
energy must somehow be neutralized. One possible method 
(which has yet to be carried out experimentally) is to increase 
the angular velocity to a- 100 rad/s. The distance r, 
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between the vortices will then be comparable to the dipole 
length l d ,  so that the hydrodynamic energy of the vortices is 
roughly equal to the dipole energy and vortices withp = 1/2 
are energetically viable. An alternative method is to form a 
periodic structure consisting of pairs ofp = 1/2 vortices in a 
liquid rotating at the slower velocities - 1 rad/s typical in 
experiments; in this case the distance between paired vorti- 
ces should be - E,, . Each pair will then behave like an isolat- 
ed vortex with p = 1. However, the energy for the class of 
vortices withp = 1 is known to be minimized when the field 
d is almost constant everywhere and 1 forms a disclination of 
integral Franck index at a distance -fd near the axis (cf. 
Refs. 6 and 11). Pairs of vortices withp = 1/2 are therefore 
unstable with respect to the minimum energy configuration. 

The dipole energy can be eliminated more effectively by 
confining the 3He-A between parallel plates spaced a dis- 
tance r,(ld apart and applying a magnetic field H)25 G 
along the normal v to the plates, so that &,4fd . Under these 
conditions 1 is always parallel to v (the z axis), and d is per- 
pendicular to v :  

,. A 

d=x cos a+y sin x. 

Although the dipole energy is now a maximum, it is the same 
for all types of vortices and therefore plays no role. The ener- 
gy functional (2.4) takes the form 

We first analyze the temperature range T z T , ,  for 
which Cross9 has shown that pi =pi, = 4K, .  If we assume 
thevaluesr, - 1 0 - 2 ~ m , r 0 -  10-4cm, and&- cm then 

i.e., vortices withp = 1/2 can compete with thep  = 1 vorti- 
ces, even though the latter are still energetically more favor- 
able in the logarithmic approximation. A more precise anal- 
ysis shows that the energy may actually be lower for the 
vortices withp = 1/2. Indeed, it is important to consider the 
nonlogarithmic corrections to the energy of the p = 1 and 
p = 2 vortices caused by the fact that the distribution of 1 is 
not perfectly uniform1'; moreover, the ratio p~p/pi drops to 
0.5 when T decreases to 0.7Tc (cf. Ref. 13), which greatly 
decreases the relative energy of the vortices withp = 1/2. 

3. PAIRS OF VORTICES WITH p = 1/2 

Unconfined vortices with p = 2 have been detected 
from an additional "vortex" absorption peak in the NMR 
signal caused by excitation of spin waves (oscillations of the 
vector d) localized within soft vortex cores of diameter - l d .  
The vectors d and 1 are not parallel inside a soft core, so that a 
potential well is formed which traps the spin modes. For the 
geometric arrangement considered in the previous section, 1 
and d always make an angle of ~ / 2 .  In this case, no spin- 
wave potential well is formed during longitudinal NMR ex- 
citation, so that no vortex peak is present. For transverse 
NMR excitation, the spatial changes in d will give rise to a 

in the P ~ ~ ~ ~ ~ ~ ~ - P ~ ~ ~ ~  geometry if that and de- potential well even in this geometry; however, the localized 
pend On the coordinates transverse and d' We modes are not strongly excited. In order for the vortices with 
now compare the energies F for systems of different vortices = to produce an intense vortex peak, the magnetic 
in the logarithmic approximation. field must be directed at a small angle 6 to the axis of rota- 

a) The energy forp = 1 vortices is a minimum for pure tion: 
vortices for which @ = e, and a = 0 down to a distance -ro 
from the axis of the vortex. F o r p  5 r, it is energetically more H = H ( ~ ^  cos 0+f; sin 0 )  (3.1) 
favorable for the vector 1 to deviate from the z axis, and the 
vortex becomes a disclination (1 = b) of energy - K ,  ln(ro/& ) 
per unit length.6 The energy density for a system of such 
vortices is thus given by 

b) The vortices withp = 2 are nonsingular of the Ander- 
son-Toulouse-Chechetkin type12; the fountain-like distribu- 
tion of 1 at distances - r ,  wipes out the vortex singularity 
near the axis. The energy for these vortices is 

c) The solution for an isolatedp = 1/2 vortex is given by 
(2.3), i.e., @ = e, /2, a = me, with half-integral m. The ener- 
gy is a minimum form = + 1/2. The system of disclinations 
of various charges m is reminiscent of a two-dimensional 
plasma. In order for the system to have a finite energy, we 
must have equal numbers of vortices of opposite signs, i.e., 
the vortices with m = 1/2 and m = - 1/2 must alternate; 
we then have 

( I > )  ( , ,> I  fi r, F' ' = nr. Ev = - Q (p,L+p,,')ln - . 
2M E (2.10) 

FIG. 1. Distribution of the magnetic anisotropy field d in a periodic 
structure in rotating 3He-A contained between parallel plates in the 
plane of the figure. The structure consists of hybrids of vortices of half- 
integral circulation and disclinations in d with half-integral Franck in- 
dex (m = 1/2 and m = - 1/21, The points show where the vortex lines 
intersect the plane of the figure normal to them. The applied magnetic 
field makes a small angle with the normal to the plates, so that topologi- 
cal solitons bridging pairs of vortices form between disclinations with m 
of opposite signs. The field d outside the solitons points along the projec- 
tion of the magnetic field on the plates and is responsible for the mini- 
mum in the spin-orbit (dipole) energy (a = 0). 
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(recall that a, v, and 4 are mutually parallel). The vector d, 
which is normal to H, must then be of the form 

A ,. - 
d= (z  sin 8-x cos 0)cos a + y  sin a,  (3.2) 

and the energy (2.4) is given by 

+ pSp- ( (V,a) ' + Ed/  sin2 0 sin' a ) }  . (3.3) 

Equation (3.3) contains a new dipole-energy term which 
tends to make the angle a equal to 0 or ?T and is not present in 
(2.7). The magnitude of this term depends on the length 6, / 
sin 8. If the latter exceeds the distance between the vortices 
(8<ld /r,) then the dipole interaction is negligible and will 
not perturb the stable configuration that exists for T z  T, 
(i.e., the system of vortices with p = 1/2 and alternating 
charges + m). 

For larger 8, a planar soliton (domain wall) forms 
between two adjacent vortices of opposite charges i- m. The 
angle a changes from 0 to ?T within the soliton (cf. Fig. l) ,  
which corresponds to a nontrivial element of the homotopy 
group (cf. Ref. 10). It differs from ordinary domain walls 
because it can begin and terminate on vortices with half- 
integral topological charge (circulation quantum). The 
thickness of the soliton wall is on the order of g,/sin 8. The 
energy of the soliton is proportional to its volume, and hence 
also to the distance R between the vortices bridged by the 
soliton. We can estimate R by minimizing the energy of a 
vortex pair: 

k d  sin 8 + in  ---- c + A R ~ .  
5 sin O E d  

(3.4) 

The first term in the square brackets is the hydrodynamic 
energy per unit length of a pair of vortices of equal charge 
separated by a distance R < rfl  from each other. The second 
term is the logarithmic energy of the field d near the disclina- 
tions that intersect the domain wall. The third term is the 
soliton energy per unit length of the vortex (the dimension- 
less parameter A is - 1). 

Minimizing (3.4) with respect to R,  we get 

R=Ed (psL/h sin 8pSpL) , 

i.e., the equilibrium distance between paired vortices is com- 
parable to the thickness of the domain wall. We clearly can- 
not speak of a planar soliton under these conditions. More 
precisely, there exists a two-dimensional region of diameter 
- f,/sin 8 near the vortex pair within which a is nonzero, 
and this region acts as a two-dimensional well which traps 
the spin waves. NMR experiments should consequently ex- 
cite the spin waves localized in these wells at a frequency 
which is less than the fundamental absorption frequency 

corresponding to the edge of the continuous spectrum. For 
transverse NMR experiments the absorption frequency is 
given by the general expression 

(cf., e.g., Ref. 11). Here y is the gyromagnetic ratio for the 
3He nucleus, fl, is the longitudinal NMR frequency in an 
unconfined geometry, and R, is a dimensionless parameter. 
We have R = 1 for the main peak, while R < 1 for the 
absorption peak arising from excitation of the localized 
modes. For 8%6,/r, the diameter of the potential well is 
-ld/sin 8, which is comparable to the diameter of a planar 
soliton in the unconfined system. As in the case of a planar 
soliton, the parameter R S 1 is therefore independent of 8 
[the scaling dependence on 8 is included in (3.5)]. In a future 
paper we will numerically calculate the exact value of R Y ,  
which in general depends on 8. The intensity of the vortex 
peak can also be estimated for 8>{, /r, ; it is proportional to 
the relative diameter of the spin-wave localization region, 
l.e., 

CONCLUSIONS 

Vortices withp = 1/2 can coexist withp = 1 andp = 2 
vortices if the rotating superfluid is contained between two 
parallel plates spaced a distance r,<ld apart. Their presence 
should be detectable from the additional vortex peak in the 
NMR signal, to which only vortices withp = 1/2 can contri- 
bute. For the other vortices withp = 1,2, the field d and the 
vector 1 are both uniformly distributed down to small dis- 
tances -r, from the vortex axis; as a consequence, they ei- 
ther produce no vortex peak at all, or else the peak is so weak 
and close in frequency to the main peak that it cannot be 
detected. If a regular satellite peak is found in the NMR 
spectrum for 3He-A, one can thus be sure that exotic vortex- 
disclination hybrids with half-integral circulation are pres- 
ent. 

If the plates are brought even closer together or if thin 
films are used, the system will become effectively two-di- 
mensional and a Berezinskii-Thouless-Kosterlitz vortex 
phase transition, accompanied by a sudden change in the 
density of the superfluid component,14 should occur. This 
transition in 3He was ascribed in Ref. 14 to depairing of vor- 
tices withp = 1. However, if the magnetic field is normal to 
the film the energy (E,)"~ of a p  = 1/2 vortex is less than 
(E,)' for a p  = 1 vortex at all temperatures, so that the phase 
transition in this case should be associated with depairing of 
p = 1/2 vortices; both the spin rigidityp, and the densityp, 
of the superfluid component should then change abruptly. 
This behavior reflects the hybrid nature of the linear defect 
(vortex-spin-disclination combination), which disrupts both 
the superfluid long-range order and the long-range order in 
the spin orientation. 

The present work is the result of joint studies carried 
out under the Soviet-Finnish ROTA research program. 
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