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Kinetic phenomena in superfluid He3-He4 solutions are investigated by calculating the velocities 
and damping of first and second sound in the hydrodynamic as well as in the kinetic regime. The 
results point to the presence of velocity dispersion of second sound and to its substantial absorp- 
tion in the transition frequency region. The calculation procedure employed has made it possible 
to write down in explicit form all the dissipation coefficients of the phonon-impurity system of a 
superfluid He3-He4 solution. The times contained in the dissipation coefficients for low-density 
solutions differ by more than an order of magnitude from those of an earlier theory. The calcula- 
tion results are compared with the available experimental data. 

The fundamentals of the kinetic theory of the He3-He4 
quantum-liquid solutions were set forth by Khalatnikov and 
Zharkov.' Using the basic ideas of this paper, Baym, Saam, 
and Ebner24 developed a detailed theory of kinetic phenom- 
ena in the phonon-impurity system of He3-He4 solutions at 
T  < 0.6 K. Baym's theory, while in good agreement with ex- 
periment for sufficiently concentrated solutions at relatively 
low temperatures, diverges substantially from it with rising 
solution temperature and with decreasing solution concen- 
tration. Attempting to eliminate this divergence, some 
workers calculated the phonon-impurity time using an un- 
justified averaging procedure that contradicts the theory of 
Refs. 1-4 and is shown in Ref. 7 to be incorrect. The use of 
the intermediate results of Ref. 3 gave them grounds for stat- 
ing that they follow this theory. Most investigators (see, e.g., 
Refs. 8 and 9), after reducing the data in full accord with 
Baym's theory, found in a number of cases a deviation from 
experiment by approximately an order of magnitude. This, 
in particular was the size of the disparity between the ob- 
served and calculated values of the second-sound absorption 
coefficienL9 

The purpose of the present paper is to calculate the ve- 
locitv and absor~tion of second sound in the ~ h o n o n - i m ~ u r i -  

dynamic limit. Here we consider for a 
phonon-roton-impurity system a hydrodynamic regime not 
subject to this restriction and obtain the time that deter- 
mines the second viscosity in a phonon-impurity system. 

Starting with the complete system of linearized equa- 
tionsI4 that describe solution of He3-He4 quantum liquids 
and yield the dispersion equation w = w(k ), we have in accor- 
dance with Ref. 7 for the renormalization of the velocity c of 
the first-sound absorption coefficient a , ,  in an approxima- 
tion linear inp, /p4 ( p, = p,, + p,, is the total normal den- 
sity), 

0 
a,=--ImK, 

2p,c 
where 

ty system of an H e 3 - ~ e 4  solution with alloGance, as in '~e f .  is the Veed in Pure He4 at T =  0, x = n,/n4 
7, for the phonon-phonon small-angle scattering and for the is the Pf is the impurity-gas Pressure, 
inelasticity of the phonon-impurity scattering. A general Pi = nimi are the densities of the solution components, g4 is 

expression is obtained in the hydrodynamic regime for the 
renormalization of the velocity and of first-sound absorption 
in superfluid He3-He4 solutions; this explains, in particular, 
the high-temperature data of Refs. 10-12. The results per- 
mitted all the dissipative coefficients of the phonon-impurity 
system including the second viscosities, to be written in ex- 
plicit form. We have used in the calculations the results of 
Ref. 1 as well as of Refs. 2-4, and stress therefore that we are 
dealing here not with the correctness of the Baym-Saam- 
Ebner theory, but with the range of its validity. 

VELOCITY RENORMALIZATION AND FIRST-SOUND 
DAMPING. DISSIPATION COEFFICIENTS 

We have previously7 obtained the renormalization and 
damping of first-sound in a phonon-impurity system, assum- 
ing that the condition C4/C,< 1 (where Ci are the quasiparti- 
cle heat capacities per unit volume) is satisfied in the hydro- 

the energy of the He4 quasiparticles, 
E, = E~ + E~ = .z0 + p : / 2 m  is the energy of the impurity ex- 
citation (impuriton), Sm = m - m, is the renormalization 
correction to the impuriton mass, fl is the distribution func- 
tion, 

The expression for K is 

K=-(VI V)+(VIRol V ) ,  

where 
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and the operator matrix is 

R= (o-kv-iI) -', 

Thez axis is chosen here along k ,  pi and vi  = d ~ ~ / d p ~  are the 
quasiparticle momentum and velocity, and I,, are linearized 
collision operators. The scalar product of the bra-vector ( $ 1  
by the ket vector Ip ) is defined as follows: 

The matrix elements of the operator 9 , k*v P,  are cal- 
culated by starting from the definitions (6 )  and (7) :  

iE,I ~ U , I E ~ ) = ~ U Z N ,  ( ? z I ~ u ~ I  ? 3 ) = k ~ ~ 6 ~  (13) 

where 

where f is the derivative of the distribution function with 
respect to energy. 

In the calculation of the second term in (3)  it is necessary 
to separate in R the part corresponding to the subspace of the 
collision invariants of the operator I, and then use the r- 
approximation for the operators I i i .  We choose as the basis 
vectors of the subspace of the collision invariants 

where C ,  = C3 + C,  is the heat capacity, 
A E ~  = E~ - E3,  and E3 = +(dPf/dn3)Tn,.  The vectors 12,) and 
I&), which contain x and y components of the momenta, 
drop out of the calculations, since the z axis is directed along 
k .  

We introduce, for the mixture of the phonon and impur- 
iton gases, operators for projection on the subspace of the 
collision invariants 

J 

and on the subspace Y n  = 1 - 9, orthogonal to it. Further 
transformations are carried out to go from the operator I  to 
Y , I P , ,  where the T approximation is used. We start from 
the equation 

(o-kv-iI) R=l .  

We multiply it from the left and from the right by F , ,  and 
then from the left by 9, and from the right by 9,. Solving 
the system of two equations we obtain 

9 ,R9,=PC [o-9,kvBC-9,k~9', 

In the hydrodynamic limit, which will be considered for 
first sound, the terms w - 9,  k-v 9, can be left out of the 
expressions in (9) .  We calculate similarly in this limit 

.F,,R9n=iY,, (.Yn19',,) -'Ynl .FcR9'n=.PcR9ck~9nR9n. 

(10) 
From ( 3 ) ,  (9),  and (10) we obtain 

with S4 the entropy per unit volume of pure He4. 
Calculating the matrix elements of the operator 

(w - 9 c k - v F , ) - 1 ,  we obtain for (12) after rather laborious 
algebra 

where 

are vectors that determine the first and second viscosities of 
the solutions, while 

] p,> = T- 

are vectors that determine the heat conduction and the diffu- 
sion 

The vectors (16) and (17) are mutually orthogonal. They con- 
tain expressions that enter in the hydrodynamic definitions 
of the corresponding dissipative coefficients: 
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where 

Here u: is the squared second-sound velocity in the solution, 
and 

1 d P  
3 = z ( z ; l T , ,  (20) 

From the relations (1 1) and (1 5)-(18) and from the defin- 
ition (1) we have for the first-sound absorption coefficient 

where 

- 1  ) , x=-(Cp,I ( 9 , , 1 9 , )  -'(0,> (22) 

are the velocity and heat-conduction coefficients: 

are the diffusion coefficient and the thermal-diffusion ratio; 

c , = - A : 2 ( ~ t l  (9, I Y n ) - ' J c p b )  

is a combination of the second-viscosity coefficients. Rela- 
tion (21) was recast in a form that allows us to compare it 
with the corresponding result obtained from the hydrodyna- 
mics equations.', For nondegenerate solutions, the thermal- 
diffusion ratio defined by (23) coincides in this case with the 
expression given in Ref. 1. Calculation in accordance with 
(21) yields for the phonon system the results of Ref. 14. 

We calculate now the dissipation coefficients contained 
in (21) for the phonon-impurity system (T< 0.6 K). We re- 
write the matrix element for the first (shear) viscosity 7 in 
(22) in the form 

(cFT,l ( 9 n I 9 r O  -' I c p , ) = ( c p n l x s ) ,  (25) 

where /x, ) is defined as 

9",I9, Ixs)= I T , , ) .  
Allowing for the orthogonality of lx,, ) to the subspace of 
the collision invariants of the operator I,,, we have in ex- 
panded form 

( - ~ 3 3 - ' + 1 3 ~ )  I ~ 3 q ) + I 3 4  I x L ~ ) =  I ( ~ 3 . ) ~  

(27) 
[ - T I , - '  ( 1-91,) +I,, I I x,,)+I13 1 ~ 3 ~ )  = / (~d .  

To derive (27) from (26) we used the T-approximation for the 
impurity-impurity interaction 

133=-~33-1 (4-g3,.) (28) 
and for the phonon-phonon interaction 

I~,=-T,~-' (I-Fll), P9) 

Ic,, ), in contrast to Z3j), is normalized to quantities pertain- 
ing only to the impurity subsystem. The operators I,, and I,, 
exert different actions in the angle and energy subspaces. We 
have therefore introduced vectors Ib ), and la), defined re- 
spectively in energy and angle subspace, and the correspond- 
ing scalar products.' In I,,, account is taken only of the fast 
longitudinal relaxation that has a characteristic time T , ,  and 
is due to three-phonon processes. This approximation is val- 
id if x > lo-,, since the establishment of total equilibrium in 
the phonon system of these solutions is governed by phonon- 
impurity collisions rather than by transverse phonon relaxa- 
tion. 

The action of the operator I,, and I,, on a vector is 
defined in standard fashions7 We shall find it useful to ex- 
press I,, in terms of projection operators on a basis of Le- 
gendre polynomials P, : 

1 P , ) v  ,,(PI 1 PI = - -- 
,(PI / PO, 

Starting with (3 I), we can represent the operator I,, that acts 
in phonon-vector space in the form7 

co 

where, using the corrected numerical values of the impurity 
spectrum, we have according to Refs. 2 and 3 

At the temperatures and concentrations we have con- 
sidered, the inequalities p,, /p,, < 1 and f ig 1 hold. This al- 
lows us to leave out of (27) the terms I,,x,, ), I,,lx,, ), 
I,,Ix3,). The system (27) breaks up then into two indepen- 
dent equation, and the shear viscosity becomes a sum of an 
impurity viscosity 

and a phonon viscosity 

In the derivation of (35) it was recognized that, in accordance 
with (32), 

Relation (34) coincides with the expression obtained in Ref. 
2, and goes over for the nondegenerate case into the result of 
elementary gas kinetic theory. We note that the equality 
7 = 7, + 7, agrees with the results of Ref. 1 and, as follows 
from the calculations presented here, is valid only in the 
zeroth approximation in p,,/p,, and in P. The matrix ele- 
ment (35) is calculated in the same manner as in Ref. 7: 

where T2 is determined from the expression 
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Equation (37) represents various mechanisms, discussed in 
Refs. 7 and 15, that establish equilibrium in the phonon sys- 
tem when impurities are present. In low-concentration solu- 
tions, for which 7, S T ,  we must put r ,  = 0 in (37), and then 

w 

Equation (38) differs substantially from the theoretical re- 
s u l t ~ ~ ~  in which no account was taken of the phonon times; 
this corresponds to the limit r l l - + ~ ,  for which (37) yields 

m 

Substitution of (33) in (39) produces at the lower limit a 
divergence that was eliminated in Refs. 2-4 by taking into 
account the absorption of long-wave phonons by the impuri- 
ties, with a characteristic time t,. Equation (37) is therefore 
valid at T,, ( t o .  This inequality does not hold for concentrat- 
ed solutions at low temperatures and at high pressures, when 
the phonon spectrum becomes nondecaying. In this case 
Baym's theory is applicable, as confirmed by experiment. In 
the general case it is necessary to replace t ,- ' in (37) by 
t ,- ' + t i  '. Since the averaged quantities are the frequency 
t ; ' with weightp?; in (38) and the time t ,  appears in (39), it 
follows that 77 differs from r," by more than an order of 
magnitude, as shown in Fig. 1. It can be seen from this figure 
that in the general case r, has a rather complicated depen- 
dence on temperature and concentration. At pressures 15- 
20 atm, when the phonon spectrum is non-decaying, (38) 
should go over into (39), as was indeed observed in Refs. 16 
and 17 for x -- lop3. The large measurement error, however, 
prevents an accurate quantitative comparison. 

The thermal conductivity x = x, + x, is calculated in 
the same manner as the viscosity. In accordance with Ref. 1 
we have here x, = 0, and 

1~3=(T+73X(1 (~3 )0733 .  (40) 

For the nondegenerate case we obtain 

~ ~ = ~ / ~ n ~ z ~ ~ T / r n .  

The matrix element in (23), which determines the diffu- 
sion, is 

( ' ~ 0 1  ( ~ n I ~ n ) - ' I q D ) = ( ~ D l ~ ~ ) 7  (41) 

where Ix, ) is given by an equation similar to (35). 
In Eq. (41) the jxiD) are detetmined in terms of lpiD), 

which contain vectors that pertain the subspace of the colli- 
sion invariants of the operators I,. To use the r-approxima- 
tion it is therefore necessary to separate in Ix,,) the terms 
pertaining to the subspace of the collision invariants of these 
operators: 

I x ~ D ) = I x ? D " ) + u ~ D I  q , D )  (42) 

with the orthogonality condition 

We express the desired matrix element (41) in terms of a, in 
the form 

Substituting (42) in the equation of jx, ) in the r-approxima- 
tion, we get 

Solving the system (45) for /x;) with the condition (43), 
subject to the constraints above, we obtain the diffusion coef- 
ficient 

D= ( p , , r / ~ n )  ~ n s ' T l .  (46) 

Substituting D and k ,  in the relation for the effective heat- 
conduction coefficient,' we obtain 

"A,, , = ' / 3 C L ~ 2 ~ I + % 3 .  (47) 

Relation (47) allows us to determine the time r, from heat- 
conduction experiments (Fig. 1). It can be seen from this 
figure that the times obtained in Refs. 6, 18, 19, and 5, 16, 17 
by the same procedure differ by approximately a factor of 
two. The reason for this difference is apparently that in the 
first set of references the width of the heat pulse was a factor 
of ten larger than in the second. Therefore in the first case the 
regime was closer to hydrodynamic, determined by the time 
r, ,  while in the second it was closer to kinetic with a time r,,, 
> 7,. The difference between r, and r,,, agrees approxi- 
mately with that observed in experiment. We note that the 
time obtained in Ref. 20 from thermal-conductivity datas 
agrees with r, of Fig. 1. 

The matrix element 

which defines in (24) a combination of second viscosities, is 
calculated in analogy with the diffusion. The difference is 
that the relaxation time rt is substantially longer than not 

FIG. 1. Temperature dependence of the phonon-impurity relaxation 
times for x = lop3 (a) and x = 1.3.10-' (b): 1-theoretical c a l ~ u l a t i o n , ~ ~  
2--calculated from (37), 3-calculated from (38); data of Refs. 5, 18, 
and 19, O - o f  Refs. 6, 16, and 17, 0--of Ref. 20,O-f Ref. 2 1. 
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only r,, but also r,, . In this approximation we obtain 

where 

t t ' - ( & 4 / & ~ ) / ( & & l l ~ 3 I E ~ )  

is the time that determines the second viscosity. According 
to (32) and to the definition of the action of the operator I,, 
on an arbitrary vector we have 

where w,, is the transition-probability density. We note that 
in perfectly elastic scattering (E, = E;) expression (5 1) van- 
ishes. It is therefore necessary to retain in the difference 
E, - E; the terms that contain the small parameter u,/c; this 
is equivalent to allowance for the inelasticity of the phonon- 
impurity scattering. According to the conservation laws we 
have 

We ultimately obtain, accurate to within terms of order (u,/ 
cI2, 

~ ; = p - ' t ] ~ .  (52) 

The time rc describes the slow establishment of energy 
equilibrium between the phonons and the impurities. The 
situation is similar here to that considered in Ref. 14 for a 
phonon-roton system. The difference is that in the latter the 
parameter p is not as small, so the first-viscosity time is of 
order rt . 

Leaving out of (18) the terms containing the small pa- 
rameters p and (u,/c)', we obtain according to (21) for the 
coefficient of first-sound absorption in the phonon-impurity 
system 

The dissipation coefficients rl = 7, + v4, x3, D, and 6, in (53) 
are given by expressions (34), (36), (40), (46), and (49). 

When the inequality C,/C,( 1 is satisfied, Eq. (53) goes 
over into the result of the Ref. 7, where the third term, pro- 
portional in this case to the small quantity p, was left out. 
The contribution of the second viscosity to the first-sound 
absorption coefficient was calculated here in explicit form. If 
the phonon heat capacity and the impurity-gas thermal con- 
ductivity are neglected, Eq. (53) agrees with the result of Ref. 
4 to an accuracy of order the times T,, r,, and rc . The differ- 
ences between the times, as noted above, is due to neglect, in 
Refs. 2-4, of the three-phonon processes and of the inelastic- 
ity of the phonon-impurity scattering. It was assumed on 
this basis that the energy equilibrium between the phonon 
and impurity systems is ensured by processes in which the 
phonons are absorbed by impuritons, with a characteristic 
time t, that determines in that case the second viscosity. 

It follows from our present result that the establishment 

of the indicated equilibrium and the second viscosity are de- 
termined by two processes that proceed in parallel: inelastic 
scattering and phonon absorption by the impurity. Numeri- 
cal estimates show that absorption must be taken into ac- 
count at low temperatures and high densities, and at in- 
creased pressures. In this case r i l  must be replaced by 
r l l  + t i 1 .  

The main contribution to first-sound absorption is 
made by second viscosity. From this viewpoint it would be of 
interest to measure sound absorption in the hydrodynamic 
regime at T< 0.6 K, for this would permit comparison of the 
theoretical value of rj  with the experimental one. To our 
knowledge, only kinetic data on sound absorption in this 
temperature region are available at present,22 and agree with 
the calculations of Ref. 7. 

Let us calculate the renormalization of first-sound ve- 
locity in the hydrodynamic limit. According to (1) and (11) 
we have 

The calculation takes the rotons into account, so that this 
result can be compared with the available experimental data. 
Calculating the matrix element contained in (54), we get 

where 

The hydrodynamic expression (55) is exact in the approxi- 
mation linear inp,/p,. If the impurity-gas and roton densi- 
ties are small compared with the phonon density pph , then 
Eq. (55) leads to the result of Ref. 14 in the zeroth approxi- 
mation in the small parametersp,, /pph andp,/pph . For the 
roton system, Eq. (55) with the numerical values of the pa- 
rameters taken into account goes over into the result of Ref. 
23, in which the second derivatives of the roton-spectrum 
parameters with respect to density were disregarded. Nu- 
merical estimates show that the contribution of the latter is 
insignificant at saturated vapor pressure. Neglecting the ro- 
ton contribution, we obtain from (55) at C,/C,< 1 the results 
of Refs. 7 and 24. 

Equation (55) with account taken of the rotons and of 
the results of Ref. 7 explains the experimentally observed1° 
decrease of the temperature-dependent part of Ac/c at 
T> 0.6 K. A quantitative comparison, however, is hardly 
useful here, since the hydrodynamic conditions do not ob- 
tain at all times in Ref. 10. A numerical comparison of (55) 
with experiment in the high-temperature region bounded by 
the inequality p, /p,< 1 is shown in Fig. 2, where calculated 
and experimental data are given for a solution with 
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FIG. 2. Second-sound velocity of c, + Ac at c, = 238.3 m/s: 1-xalculat- 
ed from (55) for x = 0; 2--calculated from (55) for x = 6.3.10-'; 0-data 
of Ref. 11, @ 4 a t a  of Ref. 12. 

x = 6.3.10W2 (Ref. 11) and for pure He4 (Ref. 12). It follows 
from (56) that the phonon contribution to the renormaliza- 
tion of the first-sound velocity by the phonon-roton cross 
term is significant at T >  1 K. 

SECOND-SOUND DAMPING AND VELOCITY DISPERSION. 
SECOND-VISCOSITY COEFFICIENTS 

We calculate now the velocity and absorption of second 
sound in a phonon-impurity system when wr,,(l holds in 
the zeroth approximation in the small parameter p, /p, the 
problem reduces to solution of the kinetic equations 

( ~ - k v ~ - i I ~ ~ - i I ~ ~ )  g3-i13,g4=o, 
157) 

where g, determines the deviation off; from equilibrium.' . 
The system (57) yields 

( o - k ~ ~ - i l , ~ - i I ~ , + I , , , R ~ I ~ ~ )  g d ,  ( 5 8 )  

R.= ( ~ ) - k v ~ - i I ~ ~ - i I ~ ~ )  -'. (59) 

The problem of finding w = w(k  ) that satisfy Eq. (58) is 
equivalent to determining the poles of the resolvent of this 
equation 

R3== ( ~ - ~ V ~ - ~ I ~ ~ - ~ Z ~ , + I ~ ~ R ~ I ~ ~ )  -'. (60) 

For an impurity system in the hydrodynamic approxima- 
tion, we must project Eq. (60) on the subspace of the invar- 
iants I,, and find the poles of the expression 

9'3,R393,=93, (o-93cQ93c) - ' 9 3 c ,  (61)  

The derivation of (61) and (62) is similar to the derivation of 
(9) .  It was recognized in the derivation of (62) that the param- 
eters p,, /pn , B and are small. 

It is necessary next to find the matrix of the operator 
w - 9 ,, R 9 ,, in the basis I c , ~  ) . By setting the determinant 
of this matrix equal to zero we get a dispersion equation for 
o ( k  ) in the form 

(63) 

where 

The energy and momentum conservation laws were used in 
the derivation of (63). 

We calculate now the matrix elements in (64). The vec- 
tors (w - k*v,)lZ,,) that they contain are proportional to 
Ip,) and belong to a subspace projected out by the operator 
9,, . Equation (64) therefore usually contains matrix ele- 
ments of the operator 9 R , P l i ,  that can be reduced to the 
form 

Relation (65)  is obtained from the equation 

R4=R+i-r -LRl,9!1R4r (66) 

for R,. Multiplying (66) from the left and from the right by 
P I  we obtain Eq. (65).  

Since the times (33) differ little, we shall simplify the 
derivations and the final results by regarding them as identi- 
cal and equal to tphi. This assumption is inessential, since in 
the kinetic limit, when wrPhi > 1 ,  all equations contain only 
rphi, as follows from the calculations, and the generalization 
of the hydrodynamic equal-time approximation to include 
the case t ,  # t ,  # tphi is trivial; this is done by replacing rPhi by 
T ,  in the term corresponding to the shear viscosity, and by 
replacing rPhi by r, in the diffusion and thermal-diffusion 
terms. 

Consider the frequency region 

In this case 

Rll=-i(~ll-1-143) -'. 
Substitution of (68) in (65) yields 

where 

( I ~ ~ ) R = Z ( ~ & I  ( T I I - ' - I A ~ ) - ' \ ~ ~ ) ~ - '  & ( p ~ l  ( T I , - ' - I ~ ~ ) - ' I ~ S ~ P ~ ) ~  

(70) 

is an operator in angle space. From the definitions (32),  (37),  
(52),  and (70) we have in the equal-time approximation 

- 1 - 1  
( I l 3 >  = - Tphi + (1-0) ~ ~ h ~ 9 0 ,  (71)  

wherep = rphi/rc. TO obtain (71) we left out the terms con- 
taining /3 (7, / rphi )< 1. By an iteration procedure we reduce 
(69) to the form 

~ I I R ~ ~ I I  
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where 

where 

Calculating in (64) the matrix elements of the operator 
(721, we obtain after straightforward but rather laborious 
calculations 

Relations (63) and (73) solve the problem of finding the sec- 
ond-sound dispersion law at frequencies that satisfy the ine- 
quality (67). 

The result is greatly simplified in the kinetic limit 
orphi $u,/c (but 1 and or,, <u,/c). In  this case we have 
from (63) and (73) for the second-sound velocity and absorp- 
tion coefficient 

The physical meaning of (74) is obvious and is similar to that 
described in Ref. 14 for a phonon-roton system. When the 
phonon mean free path crP,, substantially exceeds the sound 
wavelength k -', the second sound propagates through the 
impurity gas with velocity u,  and damping a,, the latter de- 
termined by the impuriton hydrodynamics and by the 
phonon kinetics. For the impurity system we have p,, = 0 
and C, = 0, and (75) becomes equal to the result of Ref. 7. 

In the opposite limiting case orphi  gu,/c, according to 
(63) and (73) the dispersion equation takes the form 

pn.c2 ~ O T :  4 113 
i--o 

3p, 1 - i o r b  3 p,, 
(76) 

to simplify the result. We have left out of (76) small terms due 
to the phonon shear viscosity. 

In the limit orc g 1 it follows from (63) and (73) that 

is a combination of the second-viscosity coefficients. Taking 
an earlier remark into account we have written out here the 
result with the various 7, that are contained in the corre- 
sponding dissipation coefficients. 

Expression (78) was reduced to the same form as the 
result of Ref. 13, which follows from the complete system of 
hydrodynamic equations. Analysis of the result (78) shows 
that the main contribution to second-sound absorption is 
made by diffusion, thermal diffusion, and second viscosity. 
Figure 3 shows the temperature dependence, calculated 
from (781, of the second-sound absorption coefficient in a 
solution with x = 1.3.10-', as well as experimental data 
from Ref. 9 and a curve plotted in accordance with the the- 
ory of Baym and Saam. So large a deviation of the latter from 
the experimental values and from those calculated from (78) 
is due to the need for taking small-angle phonon-phonon 
scattering into account; this scattering, as follows from Fig. 
1, is important for the establishment of total equilibrium in 
the phonon system. In  addition, the equation used for sec- 
ond-sound absorption in Ref. 9 differs, in particular, also by 
a numerical coefficient from the result of (78). It is impossi- 
ble at  present to identify the cause of the difference, since 
Ref. 9 cites only the results of an unpublished paper by Saam. 
We note that the discrepancy seen in Fig. 3 between our 
theoretical values and the experimental data at T< 0.2 K is 
due to the fact that the hydrodynamic approximation no 
longer holds at low temperatures. 

The discrepancy between the calculation by the Baym 
theory and experiment increases with decreasing concentra- 
tion. Measurements of second-sound absorption in low-con- 

FIG. 3. Temperature dependence of the second-sound absorption coeffi- 
cient in a solution withx = 1.3.10-*: 1-values calculated by the Baym- 
Saam-Ebner theory, k x p e r i m e n t a l  data of Ref. 9; 2--calculations in 
accordance with (78) with the time shown in Fig. 1. 

984 Sov. Phys. JETP 61 (5), May 1985 I. N. Adamenko and V. I. Tsyganok 984 



centration solutions with x z  lop3  are contained in Refs. 17 
and 19. For these solutions, just as for x = 1.3. lo-,, calcula- 
tions by means of (78) with the time shown in Fig. 1 yield 
values close to the experimental ones, and the latter differ by 
approximately an order of magnitude from those calculated 
with the times of the Baym-Saam theory.24 

Relations (74), (76), and (77) allow us to track the disper- 
sion of the second sound whose velocity ranges from u, in the 
high-frequency limit to u, in the hydrodynamic case. Analy- 
sis of the dispersion equations (63), (73), and (76) shows that 
there are two second-sound dispersion domains: a space do- 
main, where ckrphi - 1 and the second-sound wavelength is 
of the order of the mean free path, and a frequency domain 
where art - 1 and the dispersion is due to the slow establish- 
ment of energy balance between the phonon and the impuri- 
ty systems. 

The second-viscosity coefficients f ,, f,, f,, and f 4  can 
be determined by comparing (53) and (78) with their hydro- 
dynamic expressions. We take into account here that accord- 
ing to Refs. 14 and 25 the second-viscosity coefficients are 
connected by the relations 

c&=ci,  C i 2 = b 2 % 3 .  

We finally obtain 

The time rt is given by (52), according to which the second 
viscosity is determined by the slow establishment of energy 
balance between the phonon and impurity systems. 

CONCLUSION 

Collective modes in the quantum-liquid He3-He4 solu- 
tions have been investigated in a wide frequency range. The 
calculation procedure employed made it possible to express 
in explicit form all the dissipation coefficients of a phonon- 
impurity system, including the second-viscosity coefficients 
(80). The times (37) and (52) that determine these coefficients 
differ substantially from those obtained earlier in Refs. 2-4. 
The projection-operator method employed can be used to 
solve in practice similar problems for a mixture of arbitrary 
gases. 

A general expression (21) was obtained in the hydrody- 
namic limit for the coefficient of first-sound absorption by a 
system of phonons, rotons, and impuritons. Calculation by 
means of (21) yields for a phonon-impuriton system an 
expression that differs substantially, in the pertinent limiting 
case, from that given in Ref. 4. The difference is due to two 
circumstances: allowances for the small-angle phonon- 
phonon scattering that causes rapid two-stage relaxation in 
the phonon gas, and the phonon-impurity scattering inelas- 
ticity that determines, according to (52) and (80) the second- 
viscosity coefficients. 

The relaxation time obtained agrees with the experi- 
mental data (Fig. 1) and differs substantially from that calcu- 
lated 

Renormalization of the first-sound velocity in a 
phonon-roton-impurity system explains qualitatively the ex- 
perimentally observed abrupt decrease of this velocity at 
T >  0.6 K, and agrees qualitatively with experiments in the 
high-temperature region (Fig. 2). 

The second-sound velocity and damping in a phonon- 
impurity system have been determined in the frequency, 
temperature, and concentration ranges defined by the ine- 
quality (67). Relations (74), (76), and (77) permit the second- 
sound velocity dispersion to be tracked from the value u, (74) 
in the high-frequency limit down to u, (19) in the hydrody- 
namic limit. 

The calculated second-sound absorption coefficient (79) 
agrees with the experimental data (Fig. 3) and differs sub- 
stantially from the result obtained in the theory of Baym et 
al. 
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