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A generalized thermodynamic potential is employed to describe systems of spindles that form 
during electrohydrodynamic instability in nematic liquid crystals, and the potential is related to 
the elasticity theory for smectics. It is shown that the incommensurability between the periods of 
the initial system and applied modulated field leads to the formation of a two-dimensional lattice 
of twisted spindles previously observed experimentally. 

INTRODUCTION 

The D, ,  symmetry of nematic liquid crystals (NLC) 
should rule out helicoidal structures, provided the NLC is in 
equilibrium. However, steady-state nonequilibrium dissipa- 
tive structures such as Williams domains can form in applied 
electric fields. Our theory of dissipative structures developed 
below predicts that spindle systems of nontrivial symmetry 
can form during electrohydrodynamic (EHD) instability and 
provides a qualitative explanation for the recent experimental 
findings in Ref. 1 . ' I  

Various qualitative and quantitative perturbation-theo- 
retical techniques have been developed for describing the es- 
sentially nonlinear behavior of systems with EHD instability. 
However, the physics of nonlinear isotropic liquid crystals 
(LC) is very diverse and much remains to be explained. Pro- 
gress has been hindered partly because of the inherent com- 
plexity of these systems and partly because of the lack of a 
reasonably simple theoretical formalism. 

In this paper we introduce new variables which are par- 
ticularly well suited for describing EHD instability. These 
variables appear as order parameters in the generalized ther- 
modynamicpotential which we employ to find novel spatially 
periodic structures in a system of EHD spindles. 

1. DERIVATION OF THE FUNCTIONAL 

In this section we will briefly outline the derivation of the 
thermodynamic functional; the reader may consult Ref. 2 for 
details. We start with the system of equations 

d 
I - Q= [nh] -r, 

dt 
div V=O, div D=4scq, (1) 

1 dB a q  
rotE=--- - + div J=O, 

c at ' at 

which describe an LC in the hydrodynamic approximation.3 
Here the notation [AB] denotes the vector product AX B; I i s  
the inertial moment per unit volume of the NLC; fl is the 
angular velocity in the direction of the unit vector n; f and g 
are the forces associated with the Maxwell and LC stress ten- 
sors, respectively; his the molecular field; r is the torque; V is 
the hydrodynamic velocity of the LC; q, J, and p are the 

charge, current, and mass densities of the LC. The remaining 
terminology is standard. 

Let an NLC film of thickness 1 lie in thexy plane with an 
external electric field E, applied normal to it (along the z 
axis). We will assume for definiteness that the unperturbed 
NLC molecules are oriented by glass surfaces (plates) so that 
they are aligned along the x axis. It has been found experi- 
mentally that LCs become electrodynamically unstable (me- 
chanical equilibrium is lost) for fields E exceeding a critical 
strengthE, . We are interested in describing the behavior that 
occurs for E slightly greater than E,. It will be helpful to 
introduce the 9-dimensional vector 

U= (V ,  n, E )  (2) 

in the analysis of Eqs. ( I ) ,  which we rewrite symbolically as 

A 

ThematrixformofthedifferentialoperatorL followsdirectly 
upon comparing ( I )  with (3) and using the definition (2). We 
will use perturbation theory to solve (3) for E-E, by taking 
the solution of the linearized form of system (1) 

L o [  Uo] =O (4) 

as the lowest-order approximation. Just as in Ref. 2, Eq. (4) is 
easily seen to have the solution 

One of the damped modes is found to have the damping rate 

Hereil, is the damping rate in the absence oftheexternal field 
(E, = O), and 

R-R, 
&=- 

pZ2EoZ R=- 
R, ' aoZ ' (7) 

where a,  is the viscosity. The damping rate 2, thus tends to 
zero as E, -+ E, , and EHD instability can develop. We take E 

to be the small parameter in the perturbation expansions. 
The simplest type of expansion is of the form 

U ( t )  =U,( t )  +&Ui ( t )  +c2U2( t )  + . . . 
However, more accurate perturbation expansion can be de- 
rived by recalling that the linear theory implies that a change 

974 Sov. Phys. JETP 61 (5), May 1985 0038-5646/85/050974-04$04.00 @ 1985 American Institute of Physics 974 



in R by ER will scale the dimensions of the characteristic fluc- 
tuations by E-' and E -  ' I 2  along thex andy axes, respectively, 
while the fluctuation times are scaled by eP2. We thus follow 
Ref. 4 and define new variables 6, 7, and r by 

and make the substitutions 

h 

We then expand L as a series 

and set the coefficients of each power of& equal to zero. Carry- 
ing out the same procedure for U (t ), we thus get a different set 
of perturbation-theoretic approximations. 

We will seek a solution of the nonlinear equation (3) of 
the form2' 

As usual in the analysis of hydrodynamic instability, we will 
derive the equation for the amplitude Wby including random 
noise (thermal fluctuations) in addition to the nonlinear 
terms. If we confine ourselves to the nonlinearities of lowest 
order in W, we can truncate the series at z3. The Langevin 
equation for W then takes the form 

C"(l,W=[C, (R-R,) -C21 W j 2 ]  W + C , C ~ ~ ~  CV 

-iC4dCaq2W-Cjd4W+ 27 ( E ,  11, T) . (12) 

Elaborate expressions are available for the dimensionless co- 
efficients C, in terms of the NLC parameters (cf. Ref. 2). The 
quantity y in (12) describes random forces whose correlation 
can be found by the standard technique. 

Equation (12) can be reduced by the familiar procedure4 
to the Fokker-Planck equation for the probability density dis- 
tribution for the amplitudes W, W *; following Ref. 2, we can 
use the latter equation to derive the functional 

which approximately describes the properties of the NLC for 
E, slightly above the threshold E, for EHD stability. Here we 
have reverted to the original variables x, y, z, t. 

If we use the fact that 

C, I a,W(2+iC4(a,Way2W'-a,W~a,2W) +c51 a2w l 2  

and recall that C,-k, (Ref. 2), it is clear that (13) is un- 
changed if x is replaced by - x. The functional is therefore 
invariant under the replacements x -+ - x,, k, -+ - k,, 
where k, is the wave vector of the original (unperturbed) sys- 
tem of spindles aligned along the x axis. 

The estimates for MBBA in Ref. 2 show that the coeffi- 
cients of the first two terms in (13) are numerically much 
largerthantheothers, whichinvolvederivatives. Wemay thus 
assume that in the long-wavelength approximation I W / re- 
mains constant as Wvaries in space (cf., e.g., the "modulus 

conservation principle" in Ref. 5). This prompts us to write 

W= I W o  / el", W*= I W, 1 e-"% I W, I xconst,  (14) 

where 

q~--k,X(x, y )  

This substitution reduces the functional (13) to 

A@=k,'I W ,  1 "  Jdx dy {C, (a,x)'+2k0c&(a~x) (a~x)' 
+kOZIC, (3,X) '+C5 (dy2X) '1). (16) 

2. HELICOIDAL STRUCTURES 

The term with the coefficient C4 in (16) can give rise to 
new qualitative behavior; in particular, the spindles may be- 
come twisted helicoids. This twisting seems to have been first 
observed experimentally only recently in Ref. 1, where Wil- 
liams domains were studied. The domains were produced by a 
slight modification of the standard technique-an additional 
voltage, which was spatially modulated along the x axis and 
exceeded the bias voltage by 0.6 V, was applied to one of the 
plates. The spindle system was deformed and two-dimension- 
al structures were observed (these structures are clearly seen 
in Fig. 3 in Ref. 1). 

Inorder to satisfactorily describe theexperimental situa- 
tion using the potential derived above, we must include an- 
other term which arises from the effects of the additional vol- 
tage on the LNC plate. The form of this term can be found by 
the following arguments. 

Strictly speaking, if a weak external periodic electric 
field is applied to an NLC in addition to a bias field, the 
problem must generally be reformulated and the potential 
rederived. However, the effects of the periodic field can be 
accommodated by the functional (16) if we note that only the 
long-wavelength contribution is important, because the peri- 
od of the applied field is comparable to the distance between 
the spindles and is much less than the characteristic scale of 
the inhomogeneities described by (16) (the spindle system is 
regarded as a continuous medium). The longwave contribu- 
tion is due to beating associated with the small difference 
between the periods of the applied external and modulated 
self-consistent internal electric fields. This method of treating 
the beat contribution to the long-wavelength part ofthedielec- 
tric permittivity is familiar from solid-state theory (cf., e.g., 
Ref. 6). 

The first term in the functional (13) gives the dominant 
contribution to the electric field (R a E i). We specify the ex- 
ternal modulated field to be of the form 

EZb=AE cos (k,x) 

and write 

E,=E, cos [k,x+q (x) ] 

for the internal self-consistent field. The phase q, in (18) al- 
lows for the effect of the external modulated field and varies 
slowly over distances - l/k,. We will derive an expression for 
p (x) below from the condition that the free energy be a mini- 
mum. 
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Under the experimental conditions in Ref. 1, 

The expression for E: contains the product of the fields (17) 
and (1 8), averaged over the period 2a/k0. As a result, an addi- 
tional term of the form 

box-rp 
C l p l  I W ,  I 'A0 sinz----- 

2 (20) 

appears in the functional (13). Here 1 WoI is the modulus of 
the order parameter. Formula (37) in Ref. 2 gives an explicit 
expression for p , ;  here we simply note the estimate pl - - - 1.5 lo4 for MBBA. We observe that (20) differs from 
the term postulated in Ref. 1, where the important fact that 
the system is sensitive not to the individual phases but to their 
difference was overlooked. 

Now that we have the full expression for the generalized 
thermodynamic potential appropriate to the experimental 
conditions, we can use it to study the two-dimensional struc- 
tures. We note that the specific sign of A, is of little impor- 
tance in thesubsequent calculations; only the fact that A, does 
not change sign is important. Again, we will assume that the 
modulus of the order parameter is independent of the spatial 
coordinates, so that we need examine only the coordinate de- 
pendence of the phase. 

Following Kantorovich,' we seek to minimize the func- 
tional by a function of the form 

where we have used the fact that the NLC system is unbound- 
ed along they axis. Here p (x) is the desired phase and the 
parameter k, is to be determined. The corresponding func- 
tional (per unit area of the NLC film) is 

where C,-R, Cl(AE /E,)Ip, 1 and I, is the characteristic 
length over which p (x) varies. We minimize the functional 
(22) by solving the associated Euler equation, which simplifies 
whenexpressed in terms ofthe function pl = - (p - A+)/2. 
Function (22) then becomes 

- 1 B drp 
A@ = -j d ~ { ~ ( d )  -bg- asin2rp,) +2~,W.lk,' 

1% 0 

where we use the terminology 

adopted in Ref. 8. We have thus reduced the problem to the 
one considered in Ref. 8, with the formal difference that the 
coefficient b contains a new variational parameter k :. 

If we substitute the solution of the Euler equation found 
in Ref. 8 into (29), we get 

Herex, = (2aB )'I2/b, and thevariational parameterx intro- 
duced in Ref. 8 is related to the first integral of the Euler 
equations by the formula 

Unlike the case in Ref. 8, here we must also minimize (25) 
with respect to the parameter k :. 

The value of k: for which (25) is a minimum is given by 

Substitutinginto (25) and differentiating with respect to x,  we 
get the condition 

for the minimum. Equation (28) coincides with the result in 
Ref. 8, apart from the last term in the square brackets. How- 
ever, this term tends to zero near the phase transition (x  + I), 
whereas the first term in the square brackets remains con- 
stant. 

The phase transition point is thusdeterminedby solvinga 
strictlyone-dimensionalproblem.Thecorrectionsforthetwo- 
dimensionality along the x axis are small near the phase tran- 
sition point. A periodic structure therefore exists along the x 
axis with the same period as was found in Ref. 8; in our nota- 
tion, the period is 

We recall that all lengths are divided by the thickness of the 
NLC film. Unlike Ref. 8, however, in our case thex-periodic 
structure is also accompanied by a y-periodic structure with 
period determined by (27). We see from (27) that the latter 
period is uniquely determined by the spatial structure along 
the x axis. 

We have thus shown that the two-dimensional periodic 
structures observed in Ref. 1 can form when a weak external 
periodic electric field is applied to an EHD spindle structure 
whose period is incommensurable with the period of the field. 

We have thus far confined our analysis to purely two- 
dimensional systems. However, it should be noted that even 
though the system is bounded along the z axis, spindle defor- 
mations ofthe type considered abovemay also occur along the 
z direction. Indeed, because of the preferential alignment of 
the director along thex axis, each spindle may be regarded as 
a highly anisotropic "elastic rod"; spindledeformations in the 
x-y plane will thus inevitably produce deformations along the 
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z axis. Since the film is bounded along the z axis, realignment 
ofthe spindles so that they are no longer parallel to the top and 
bottom of the film should be accompanied by periodic break- 
age along they axis. The combined deformation in both thexy 
and the yz planes twists the spindles, and the periodic break- 
age along they axis can be regarded as a type of "helicoidal" 
structure in bounded systems. In the foregoing analysis we 
used the boundedness of the system along thez axis to justify 
neglecting the z-dependence of the thermodynamic func- 
tional. The latter thus actually describes a two-dimensional 
projection of a three-dimensional problem. 

We note that the twisting of the spindles in theyz plane is 
particularly pronounced ifthe spindle diameter is appreciably 
less than the thickness of the plate. This can occur, e.g., when 
high-frequency chevron-type domains are formed. Such do- 
mains cannot be described directly by means of the above 
functional, because the latter was derived assuming a single 
amplitude for all of the components of the vector (2) in func- 
tion space; however, a similar, suitably modified functional 
should also apply to the high-frequency case. It should be pos- 
sible to treat the different relaxation times of the vector com- 
ponents (2) in this case by increasing the number of tensor 
dimensions of the order parameter. Because the spatial per- 
iods of the components (2) also differ in the high-frequency 
case, the beating effects noted above may give rise to incom- 
mensurable structures even when no external spatially modu- 
lated field is applied. We have already noted that the spindles 
should then be more highly twisted than was found in the case 
analyzed above. However, the detailed investigation of chev- 
ron domains in terms of generalized thermodynamic poten- 
tials constitutes a separate problem. 

In closing, we note that in general the thermodynamic 
potential should also involve a term of the form (aX/dY)2 
which describes the anisotropy energy of the spindles. This 
term will be present if the projection from the three-dimen- 
sional to the quasi-two-dimensional case is carried out by 
averaging the functional over the thickness ofthe plate in or- 
der to allow for the rigid boundary conditionsfor the director. 

The structures considered above will then appear only above a 
certain threshold. This case readily be seen if a< 1; indeed, in 
this case expression (23) simplifies to 

If we now include the term associated with the spindle anisot- 
ropy, we get 

in place of (30). We note that by the above arguments, the 
contribution from the anisotropy term is given by the addi- 
tional term in the curly brackets in (16) and is of the form 
C,(a,,X )' K C,k i. The two-dimensional structures will thus 
form when Ao>C,/4C,. 
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coefficients C, in the functional (cf. below). 
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