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The melting and various characteristics of two-dimensional electron, dipole, and Lennard-Jones 
systems are studied. The characteristics of a phase transition in a system are discussed as func- 
tions of the stiffness of the interaction potential between particles. Molecular-dynamics calcula- 
tions are carried out over broad ranges of the temperature and the density to find thermodynamic 
functions, the structure factor, the dielectric function, the translational and orientational correla- 
tion functions, the number of disclinations, the velocity and displacement autocorrelation func- 
tions, the self-diffusion coefficient, and a modified Lindemann ratio. A two-step picture of the 
melting, involving the formation of a hexatic intermediate phase, agrees with several results 
which have been found for a Wigner crystal, on the nonsimultaneous discontinuities in the trans- 
lational and orientational correlation lengths, the exponent in the orientational correlation func- 
tion, and the direct observation of topological defects. Data on dipole and Lennard-Jones systems 
imply a first-order phase transition. The calculations yield a negative sign for the static dielectric 
function E-'(k  ) not only for an electron crystal but also for a comparatively broad region in an 
electron fluid. 

INTRODUCTION 
Just how two-dimensional (2D) systems melt has been 

the subject of a spirited debate (see Ref. 1 and the bibliogra- 
phy there). Although there can be no long-range crystalline 
order in 2D there may exist phases with different 
degrees of order, characterized by different asymptotic 
forms of the translational and orientational correlation func- 
tions'' (Refs. 4-7). A low-temperature phase with a power- 
law decay of the translational correlation should have a non- 
zero shear modulus and should support the propagation of 
transverse sound. In other words, this phase should exhibit 
properties of a crystal. 

Among the questions being debated are the nature of 
the phase transition and the associated question of the exis- 
tence of an anisotropic liquid phase (a hexatic phase) as an 
intermediate step between a crystal and an isotropic liquid. 
Two possibilities are being discussed: 

I. Two-step topological melting.'-' Initially (at a tem- 
perature T = TI) dislocation pairs dissociate, and a crystal 
with a power-law translational order and a long-range orien- 
tational order goes into a hexatic phase (with a short-range 
translational order-an exponentially decaying transla- 
tional correlation function-and with a power-law orienta- 
tional order). Later (at T = T, > TI) a transition occurs from 
the hexatic phase to an isotropic liquid as the result of the 
dissociation of a pair of disclinations. Neither of these transi- 
tions causes observable features in thermodynamic quanti- 
ties. 

2. A single first-order transition. Specifically, there is a 
transition from a crystal (with a power-law translational or- 
der) to an isotropic liquid. In this case one should in principle 
be able to observe discontinuities in the thermodynamic 
quantities at the point of the transition, the coexistence of 
two phases, hysteresis, and other effects. The occurrence of a 
first-order transition may be related to either an instability 
of the lattice [the vanishing of the shear modulus p ( T ) ]  be- 

cause of a phonon anharmonicity below the dislocation dis- 
sociation point" or, for example, a high density of disloca- 
tions because of the comparatively small energy of the 
dislocation core,'' for which the theory of Refs. 5-7 does not 
apply. 

Either of these scenarios might be valid, depending on 
the behavior of the shear modulus as a function of the tem- 
perature (or as a function of the energy of a dislocation core; 
in addition to these two scenarios, there might be transitions 
of various types in various parts of the phase diagram). At 
the accuracy of the calculations which have been carried out, 
the temperature at which the phonon anharmonicity causes 
an instability and the temperature of the dislocation melting 
agree fairly well with experiments and numerical simula- 
tions (more on this below). There is accordingly a need for a 
more detailed study of the behavior of various structural 
characteristics as functions of the temperature. Effects 
caused by substrates and defects greatly complicate experi- 
mental efforts to unambiguously resolve the question of the 
melting mechanism. 

An effort has therefore been undertaken to study melt- 
ing by numerical simulation,' where the substrate can be 
ignored and where there is the unique possibility of extract- 
ing all possible physical characteristics of the system-ther- 
modynamic, structural, and kinetic-under known condi- 
tions. 

In this paper we report studies of three different 2D 
systems: electron, dipole, and Lennard-Jones systems. We 
discuss the effect of the stiffness of the interaction potential 
on melting characteristics. 

In our calculations we use a molecular dynamics meth- 
od to study the behavior of the thermodynamic characteris- 
tics, spatial and temporal correlation functions, the static 
dielectric permeability, and a modified Lindemann ratio. 
We also analyze lattice defects. 

Study of these characteristics shows that the electron 
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crystal comes closest to the picture of topological melting 
($$2,5). The clearest pieces of evidence in favor of this pic- 
ture are (a) the direct observation of topological defects and 
their progressive conversion, with increasing temperature, 
from bound pairs of dislocations into free dislocations (pairs 
of disclinations) and then into free disclinations and (b) the 
behavior of the correlation lengths for the translational and 
orientational correlation functions. Specifically, these corre- 
lation lengths begin to decrease sharply at different tempera- 
tures: The translational order disappears from the system 
first, and then the "quasi-long-range" orientationat order 
disappears. In addition, the coefficient v6, a measure of the 
decay of the orientational function [g6(r) - r - 76 1, has a value 
at T = T, which is close to the value of 1/4 predicted by the 
theory of topological melting6 (v6 = 0.26 + 0.03). A differ- 
ent situation, to within the accuracy of our calculations, is 
found for the dipole crystal ($3) and the Lennard-Jones crys- 
tal ($4). The thermodynamic functions jump noticeably, and 
the translational and orientational correlation lengths de- 
crease sharply, at the same temperature or density, furnish- 
ing evidence for a first-order transition in these systems. 

Among the rather curious results which have emerged 
are those resulting from a study of the picture of particle 
trajectories. It turns out that over a broad region of the liquid 
phase diffusion occurs preferentially along boundaries 
between distinct clusters. In the course of this study, another 
interesting result has been established. The static dielectric 
function E-'(k ), k $0, of a 2D electron system is negative, 
not only in the crystalline phase but also in a certain region in 
the liquid phase. 

In $1 we discuss our calculation method and the parti- 
cular characteristics which we calculate. In $2 we report 
results calculated for an electron system; in $3 and $4 we 
report results on the dipole system and the Lennard-Jones 
system, respectively. In $5 the results are compared with the 
theory of dislocation melting and the theory of melting due 
to anharmonicity effects. We also discuss the conditions for 
the occurrence of a topological transitional. 

$1. CALCULATION METHOD 

For the numerical simulations we use the molecular dy- 
namics r n e t h ~ d . ' ~ , ' ~  We place N particles in a rectangular 
sample with dimensions L, and L,, choosing N, L,, and L, 
in such a way that a periodic continuation through the boun- 
daries of the sample does not disrupt the triangular lattice 
formed by the N particles. In the case of long-range poten- 
tials we are forced to choose a square sample (and thus slight- 
ly distort the lattice) because of our use of a fast-Fourier- 
transform algorithm. At the value N = 504 which we chose, 
the distortions amount to less than 2%. 

In calculating the forces acting on a particle we cut from 
the plane a circle of radius r, centered on the given particle. 
Binary forces are taken into account exactly inside this cir- 
cle. 

Long-range effects are important for the Coulomb and 
dipole systems, so we use a method which is a combination of 
a particle-particle method and a particle-grid method.15 All 
other particles outside the circle r, and also the periodic 

transforms of all of the particles are incorporated through a 
solution of the Poisson equation by fast Fourier transforms. 

For the Lennard-Jones system, we find corrections to 
the pressure and to the interaction energy from the assump- 
tion that the particles are distributed in a radially symmetric 
way. We use a link-list algorithm15 to rapidly search for and 
find the particles. 

In our calculations for the Lennard-Jones system we 
use rc = 2.4a, where a is the parameter in the Lennard- 
Jones potential, a, - ,(r) = 4&((a/r)12 - ( ~ / r ) ~ ) ;  this choice 
is equivalent to incorporating the first three coordination 
spheres. For Coulomb and dipole systems we use rc = 5.6a, 
where a is the "ion" radius, a = 1/(n-n)'I2, and n is the den- 
sity. The classical equations of motion are solved by a tem- 
porally second-order accurate method. The time step is cho- 
sen in such a way that the total energy of the system is 
conserved within -0.05% over the calculation time. 

The calculations for any of the systems begin with the 
crystalline phase. The particles are placed at the sites of a 
regular lattice, and small displacements are specified by a 
random-number generator. The system then relaxes to the 
given temperature. This relaxation continues for several 
thousand time steps. A switch to a different temperature is 
made by scaling the velocities; then the system relaxes freely 
to equilibrium. A switch to a different density is made in two 
stages: first the coordinates are scaled and then the velocities 
are adjusted to the necessary temperature. 

In addition to calculating the thermodynamic proper- 
ties (the temperature, the pressure, the internal energy, and 
the specific heat) we calculate density correlation functions: 
the translational correlation function 

where u(R) is the displacement of a particle from site R, and 
G is a reciprocal-lattice vector; and the orientational correla- 
tion function 

where n is the coordination number of thejth particle, Bkj is 
the angle between some fixed axis and the vector r,, , which 
connects nearest neighbors, andg(r) is the radial distribution 
function. The structure factor is calculated by a numerical 
integration from the expression 

S ( k )  =l+2rtn 5 dr ( ,q ( r )  -1) r ~ "  (izr),  (3) 
0 

where J,,(kr) is the Bessel function. The static dielectric func- 
tion E-'(k ) is calculated in terms of S (k ). 

The temporal correlation functions, i.e., the autocorre- 
lation functions for the velocity, 

and for the displacement, 
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are averaged over the N particles and also over the initial 
times (over a random sample of 60 time points). 

The self-diffusion coefficient is calculated in two ways: 
by integration of the velocity autocorrelation function, 

and from the Einstein formula 

D, = lim x ( t )  . 
i-co 

In the calculation of the correlation lengths and the ex- 
ponents for the power-law decay we study the decay of the 
correlation functions g,(R ) and g6(r) at large distances by 
finding a fit with simple functions of the type 

f ,  ( r )  =A exp (-r/g) ,  f z ( r )  = B r 9 .  (8) 

A transition from one phase to another must be accompa- 
nied by a change in the asymptotic behavior, so that there 

must be changes in the exponent 17 or the correlation length 
5. From the displacements of the particles from the lattice 
sites we calculate the modified1 melting parameter 

YM = (Iui - ~ ~ + ~ 1 ~ ) / a ~ ,  

where ui + ui+ , is the relative displacement of two neigh- 
boring particles (lattice sites in the crystalline phase). The 
quantity y,, in contrast with the Lindemann parameter 
y = (u2)/a2, does not diverge in an infinite 2D system, so 
that it can serve as a phenomenological melting parameter. 
Indeed, the values of y, turn out to be nearly independent of 
the nature of the 2D crystal according to the theory of melt- 
ing due to phonon anharmonicitiesl' and according to our 
numerical calculations (as discussed below). 

52. COULOMB SYSTEM 

The classical Coulomb system is characterized by the 
dimensionless parameter 

where n is the 2D density. 
Figure 1 shows the calculated behavior of the internal 

energy of the system, U = U(T).  The behavior changes sig- 
nificantly at I? = 145-159. B y  calculating the fluctuations of 
Tor  taking the derivative aU/dT, we can calculate the spe- 
cific heat. The calculations yield C = 1.8 1 k,N at T <  Tl (the 
crystal) and C = 1.57kBN at T >  T,. As the temperature is 
raised further, the specific heat falls off, but only very slight- 
ly. 

The reason the specific heat has approximately the 
same values in the crystalline and liquid phases lies in the 
persistence of the (dynamic) cluster structure well into the 

FIG. 1. The internal energy per particle versus the temperature T * = l/r 
for a 2 0  Coulomb system. The energy is expressed in units of e2a, where 
a = (.nn)-"'. 

liquid phase. l4 Most of the particles are in clusters and are 
oscillating near their equilibrium positions; only a few of the 
particles move between clusters. 

There are two ways to reproduce the crystalline phase. 
First, the initial state of the system can be specified as a 
random sprinkling of the particles over a square. In this case 
a slow "cooling" of the system to large values of r leads to a 
triangular equilibrium lattice. However, dislocations, inter- 
stitial~, and other defects arise in the system in the course of 
such calculations; in other words, the system goes into a 
metastable state, from which it cannot escape, at least during 
the calculation time. Accordingly, for an adequate repro- 
duction of the crystalline phase we specify at the outset an 
ideal lattice with small random displacements (3 1). When we 
take this approach we observe, after the relaxation of the 
system, only quartets of disclinations (pairs of dislocations 
with opposite Burgers vectors) in the crystalline phase. 

Figure 2 shows the growth of disclinations with the 
temperature. Calculations of the number of disclinations by 
two algorithms yield approximately the same results.16 
These involve (1) calculating the number of disclinations 
from the number of nearest neighbors which lie within a 
circle of radius R, [R,=:(R, + R,)/2, where R, and R2 are 
the radii of the first and second coordination spheres] and (2) 
calculating the number of disclinations from the number of 
vertices in Voronoi polygons. We accordingly used the first 

FIG. 2. Increase in the number of disclinations with the temperature. 
Coulomb system. Cnega t ive  disclinations, N , ,  ; 0-positive disclina- 
tions, N , ,  . 
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FIG. 3. Some typical snapshots of the particle configurations in the Cou- 
lomb system in the transition regi0n.r = 149. Free dislocations can be 
seen. 

and simpler algorithm. More important is the average over 
the period of the oscillations, which slightly lowers the effec- 
tive number of disclinations. 

Before the beginning of the phase transition there is an 
insignificant concentration of disclinations in the crystalline 
phase, -0.02. After the phase transition at T,, this concen- 
tration changes to -0.2. In the intermediate region, 
T, < T < T,, dissociated dislocation pairs appear (Fig. 3), and 
ultimately free disclinations appear. 

We have also calculated the translational correlation 
functions (1) for several values of r near the phase transition. 
In the crystal (r > 159, T <  T,) the translational correlations 
decay only slightly and propagate out to the middle of the 
calculation cell ( Z  30 coordination spheres). The exponent 
q G  increases with the temperature, having the value 
qG = 0.14 at r = 189, for example. At r < 159 the transla- 
tional correlations decay in accordance with exp( - r / 5 )  
(5 = 1 . 4 ~  at r = 149). 

We carried out calculations of the orientational correla- 
tion function g,(r) for various of r. In the crystalline phase, 
the function g,(r) approaches a constant value g,(L /2) at 
large distances (Fig. 4); this constant value decreases as the 
liquid phase is approached. A correlation is also retained in 
the orientation in the intermediate region, TI < T <  T2, while 

FIG. 4. "Asymptotic behavior" of the orientational function for a Cou- 
lomb system. The approach to a nonzero constant value and the slow 
decay to zero on the interval T, < T <  T, cannot be distinguished because 
the dimensions of the sample are too small. T* = 1/T. 

it fades away (begins to fall off exponentially over distance) 
at temperatures T >  T,. In the interval T, < T <  T,, approxi- 
mating g,(r) by the function f,(r) = Br - q6 leads to an expo- 
nent 77, 5 0.26, which reaches a maximum value at T = T,. 

That the order disappears at different times in the orien- 
tation and the translation can be seen in Fig. 5, which shows 
the behavior of the corresponding correlation lengths. Note 
that the dimensions of our system make it possible to follow 
the transition from a power-law decay to an exponential de- 
cay (thejumps in Fig. 5), although it is not possible to reliably 
distinguish a power-law decay with a small exponent from 
the approach to a nonvanishing constant value in the case of 
the orientational correlation function. There is accordingly 
a temperature interval T, < T <  T2 (corresponding to the in- 
terval 145 < r < 159) in which the orientational order per- 
sists, but there is no translational order. The melting region 
found here agrees with the results of actual experiments on 
electrons at the surface of liquid helium. l 7  

Calculations of the radial distribution function g(r) and 
of the structure factors (k) show that the heights of the peaks 
decrease, while their widths increase, with increasing T. At 
very high temperatures, r z 1, the peaks disappear, and the 
structure factor becomes a monotonic function of the wave 
vector. In the latter case, S (k) agrees with the Debye-Hiickel 
approximation. 

The modified melting parameter" y, increases almost 
linearly with increasing T. Near the melting temperature, 
T,, the increase in y,(T) becomes sharper, and at the point 
T = T, there is an abrupt increase in y,. At T2 we have the 
value yM(T2)z0.1. Qualitatively the same behavior is ob- 
served for y,(T) for the dipole system and the Lennard- 
Jones system. The critical values of y,(T2) for those systems 
are again -0.1; i.e., y,(T) is a nearly universal parameter. 

From the calculated structure factor we calculated the 
dielectric function E-'(k, w = 0) (Fig. 6). It follows from 
these calculations that the dielectric function is negative, 
~ - ' ( k )  <O, over a rather broad range of the parameter T, 
including the liquid phase. In this range of r, there are some 
quite distinguishable clusters. It might thus be suggested 
that the negative sign of&-' here is associated with the short- 
range crystalline order. With increasing r in the liquid 
phase, a maximum appears in E-'(k); this maximum ap- 
proaches zero at kaz4.5,  signalling the proximity of the 

FIG. 5. Reciprocal correlation lengths (in units of a-I). A-Transla- 
tional; a-.a-ientational. The sharp increase is evidence of the vanishing 
of the corresponding order parameters. Here T* = 1/T. 
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FIG. 6. Static dielectric constant. Coulomb system. r: 1-1; 2-10. The 
quantity ~ - ' ( k  )becomes positive everywhere and amonotonic function of 
the wave vector when the spatial correlations disappear from the system. 

point of the transition to the crystalline phase. These results 
on E - '  agree with the analyses by Kirzhnits and by Dolgov 
and Mak~imov. '~ 

Our calculations of the autocorrelation functions for 
the velocity and the displacement illustrate the changes in 
the kinetic properties of a Coulomb system at the various 
values of r. The velocity autocorrelation function oscillates 
at a characteristic frequency w, 1.27-'(7 = (ma3/e2)"*); 
the damping of the oscillations becomes more pronounced as 
the temperature is raised, but the frequency w, does not 
change. The displacement autocorrelation functionx(r ) has 
three characteristic regions (Fig. 7): 1) a linear region, with a 
slope which increases with the temperature; 2) a transition 
region with several oscillations; and 3) the onset of satura- 
tion in the liquid phase (the onset of a diffusive regime) or a 
decay in the crystalline phase (due to the finite particle oscil- 
lation amplitude). The time over which saturation sets in is 
determined by the characteristic "free-flight" times, which 
are determined by short-range correlations in the system. 

53. DIPOLE SYSTEM 

Let us examine a classical 2D system of parallel dipoles. 
Such a system is characterized by the dimensionless param- 
eter r,, given by 

(D is the dipole moment). In a dipole system, in contrast with 
a Coulomb system, there is no need to introduce a compen- 

I ! j  
IO 20 JO 4U t/r 

FIG. 7. The displacement function. Coulomb system. T: 1-144; 2-184. 

FIG. 8. The internal energy per particle as a function of the temperature 
T* = 1/2r.  Dipole system (the energy is expressed in units of DZ/2a3). 

sating background. In the calculation of the interaction po- 
tential energy, the series converge. 

The initial energy of a dipole system has a discontinuity 
(Fig. 8) of 0.16kTm per particle at the melting point, 
I?, = 62 + 3. Also jumping sharply at the point of the phase 
transition is the amplitude of the first maximum of the struc- 
ture factor. The correlation lengths calculated from observa- 
tions of the damping of the oscillations of the radial function 
g(r) and of the orientational function have structural features 
at a common temperature (Fig. 9). 

54. LENNARD-JONES SYSTEM 

The search for the hexatic phase and the analysis of the 
properties of the Lennard-Jones system were carried out for 
the T*  = 1.0 isotherm and for the isochore n* = 0.8 
( T *  = kT/&, n* = nd). 

4.1 Isochoric ensemble. The system goes through sever- 
al phases as it moves along an isochore. We have identified 
the following phases: a phase in which a gas and crystal coex- 
ist, at 0 < T * < 0.37; a phase in which a liquid and a crystal 
coexist, at 0.42 < T * < 0.69; and a liquid phase at T * > 0.69. 

In the region in which the gas and crystal coexist (low 
temperatures) the system "collapses" into one of the possible 
metastable states2' in the course of its evolution; correspond- 
ingly, the internal energy is higher and the pressure lower 
(negative). 

These states are associated with the presence of an ener- 
gy barrier for the formation of a vacancy in the interior or at 
the surface. We have calculated the average interparticle dis- 

FIG. 9. Reciprocal correlation lengths. Dipole system. A-Transla- 
tional; A--0rientational. Within the errors, the two order parameters 
disappear simultaneously (cf. Fig. 5). 
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tance as a function of the temperature, finding it by system- 
atically processing all pairs of nearest neighbors. In one of 
the metastable states (the "stretched crystal"), the average 
distance between particles is slightly greater than in a crystal 
with pores. Below the temperature T* ~ 0 . 2 7 ,  the average 
distance d /u does not change, while in an ideal crystal this 
distance would have to decrease tod /a = 21f6=: 1.1225, cor- 
responding to the lowest potential energy of the interparticle 
interaction. This value can be found by extrapolating the 
calculated data from the interval 0.27 < T * < 0.4 into the in- 
terval 0 < T * < 0.27. 

A correlation analysis of this system leads to a tempera- 
ture dependence of the correlation functions which is qual- 
itatively the same as that for a Coulomb system. 

The orientational order (Fig. 10) is retained in all the 
phases, including the coexistence phases, disappearing only 
in the liquid phase. 

Analysis of the autocorrelation functions of the veloc- 
ity, Z (t ), suggests a fundamental distinction between a sys- 
tem with a short-range interaction potential and systems 
with a long-range interaction. The function Z (t ) exhibits a 
quite rapid asymptotic decay. Only for the low-temperature 
phase do we see several oscillations. The autocorrelation 
functions for the displacements are of the same nature as in 
Fig. 7. 

A calculation of the self-diffusion coefficient from ex- 
pressions (6) and (7) reveals good agreement. 

4.2 Isothermal system. The calculation of an isotherm 
begins in the crystalline phase (n* = 0.94). The pressure has 
a characteristic van der Waals loop with a metastable region 
(ap/dn < 0) in which two phases coexist: a crystal and a liq- 
uid. Away from the phase transition, small systems repro- 
duce quite well the results derived with a large number of 
particles. Near the phase transition, the depth of the metas- 
table state depends on the dimensions of the system (on the 
number of particles). 

In our calculations, the metastable states occupy the 
interval (along the density scale) 0.88 < n* < 0.90. At 
0.865 <n* <0.88, a new phase is nucleated, and the old 
phase is progressively displaced. The disruption of the crys- 
talline order can be seen from the change in the number of 
those particles in the system which have the correct number 
of neighbors (Fig. 1 1). Analysis of topological defects shows 
that in the crystalline phase there are only quartets of dis- 
clinations, while in the transition region we find more com- 
plicated defect formations, including free disclinations of 

FIG. 10. "Asymptotic behavior" of the orientational correlation function 
in a Lennard-Jones system. The isochore n* = 0.8. 0-Crystal with 
pores; C"s t re tchedW crystal. 

FIG. 11. The number of particles having the correct number of neighbors. 
Lennard-Jones system. The isotherm k T / &  = 1. 

both signs. A disclination pile-up creates liquid-phase nu- 
cleation regions, which can be seen on our maps of the parti- 
cle paths as regions of elevated diffusion. 

The correlation functions gG(R ) and g,(r) are similar to 
those found for the Coulomb system. In a crystal, the trans- 
lational correlations decay slightly over a distance equal to 
half the calculation cell and have an exponent 7, = 0.05 
(n* = 0.885). At n* = 0.87, there is a sharp change in the 
nature of the decay of gG(R ), and a correlation length 
6 ~ 2 . 6 0  is established. In the liquid phase, gG(R ) decays ra- 
pidly over a distance on the order of the first coordination 
radius (n* = 0.85). 

The behavior of the orientational order during the melt- 
ing is analogous to that ofthe translational order. This asser- 
tion is supported by the behavior of the correlation lengths as 
functions of the density (Fig. 12). The orientational order 
and the translational order disappear simultaneously at 
n* ~ 0 . 8 7 .  At the same density, the yM(n*) goes to zero. The 
critical value of yM(n*) is approximately the same as the 
corresponding values for the Coulomb and dipole systems, 
and it is about twice as large as in the 3D case. 

55. DISCUSSION OF RESULTS 

Let us compare the results on the melting temperature 
with the theory of a topological transition, actual experi- 
mental results, and the theory of melting due to a phonon 
anharmonicity. 

The melting point found above for the electron crystal, 
r = 145 (cf. Refs. 24-27), agrees well with the experimental 
value r = 137 + 15 found for the melting of an electron 

FIG. 12. Reciprocal correlation lengths (in units of a-'). A-Orienta- 
tional; A-translational. Lennard-Jonessystem. The isotherm k T / &  = 1. 
Within the errors, the two order parameters disappear simultaneously. 
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crystal above liquid helium1' (cf, the results of Refs. 28 and 
29). The value Td = 62 (see also Ref. 30) calculated for a 
dipole crystal (see Ref. 3 1) agrees with experiment. 

The results found for the melting points also agree well 
with the results calculated in Ref. 11 for the point in which 
the lattice losses its stability because of phonon anharmoni- 
cities (Lozovik and Farztdinov" used a version of the self- 
consistent theory which incorporates skeletal diagrams of 
order y,). The values found in Ref. 11 are r = 139.7 for an 
electron gas and rd = 55 for a dipole system. We also note 
that the critical values of the modified melting parameter 
y,(T,) = 0.1 (Ref. 11) are essentially the same as those 
found in the present study by the molecular dynamics meth- 
od. It is important to note, however, that near the point 
where the shear modulusp(T) vanishes it changes quite ra- 
pidly (because of phonon anharmonicities), so that the solu- 
tion of the equation T = p ( T ) / 1 6 ~ ,  which determines the 
temperature of dislocation melting for an electron crystal, 
lies extremely close to the temperature at whichp(T) vanish- 
es. Another possibility is that this equation has no solutions 
at all in the region T <  To, where To is the temperature at 
whichp(T) vanishes. In this case, there would be no disloca- 
tion melting at all. At the accuracy of the calculations of Ref. 
11, it is this latter situation which holds for the dipole and 
Lennard-Jones systems, in qualitative agreement with the 
results of our own numerical simulations. 

The results presented in 992-4 show that the pictures of 
the dipole crystal and of the Lennard-Jones crystal are simi- 
lar in significant ways: At the melting point there are signifi- 
cant jumps in the thermodynamic quantities (e.g., the jumps 
in the internal energy per particle are AUz0.20 kTm and 
AUz0.16kTm, respectively, for the Lennard-Jones and di- 
pole systems). The orientational order and the translational 
order disappear at the same point. Furthermore, the melting 
temperatures agree reasonably well with calculations based 
on phonon anharmonicities. All these results are evidence of 
a first-order phase transition. 

The results on melting for an electron crystal are appar- 
ently evidence of a different picture (52). Here the behavior 
of the thermodynamic quantities is smoother. Analysis of 
topological defects shows that the transition is accompanied 
by the appearance of free dislocations and free disclinations. 

The most important result is that the orientation and 
the translational order disappear at different temperatures 
T, and T,( Fig. 5). This result is a strong argument in favor of 
the existence of a hexatic phase between T, and T,. Further- 
more, the exponent of the orientational correlation function 
is found to be 77 = 0.26 + 0.03 as T, is approached, in agree- 
ment with the value of 1/4 predicted by the theory of a topo- 
logical transitiom6 

We are very indebted to V. L. Ginzburg, L. V. Keldysh, 
D. A. Kirzhnits, V. L. Pokrovskii, S. M. Stishov, A. A. Cher- 
nov, and the participants of seminars led by V. L. Ginzburg 

and V. L. Pokrovskii for a useful discussion of these results 
and for several useful comments. 
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crystal with pores (calculation A) and a "stretched" crystal (B). Some 
intermediate states were found in Refs. 19-23. 
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