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We consider in this paper the Kadomtsev-Petviashvili (KP) equation for media with a decay-type 
dispersion law. We show that the exact solution of this equation which is a periodic chain of two- 
dimensional solitons is unstable against small perturbations. We use the inverse scattering meth- 
od to construct a perturbation mode which increases with time. We find the maximum growth 
rate of the perturbation mode. 

INTRODUCTION 

We consider the Kadomtsev-Petviashvili (KP) equation 

where P2  = + 1, u is a scalar wave field. Equation (1) de- 
scribes weakly nonlinear waves in media with a weak disper- 
sion and is a quasi-two-dimensional generalization of the 
well known Korteweg-de Vries (KdV) equation. The quasi- 
two-dimensionality consists in the fact that the transverse 
scale (along the y-axis) of the wave motions is much larger 
than the longitudinal scale (along the x-axis). The case 
P 2  = - 1 corresponds to media with a decay-type disper- 
sion law and P2 = 1 to media with a decayless dispersion 
law. The properties of Eq. (1) withP2 = - 1 differ qualita- 
tively from the properties of the equation with P = 1, and 
the first one is therefore customarily called the KP I equa- 
tion and the second the KP I1 equation. The KP I equation 
occurs when one describes capillary gravitational waves on a 
liquid surface, when one considers magnetoacoustic waves 
in a plasma, and so on. The KP I1 equation is, for instance, 
applied in the theory of long-wavelength gravitational waves 
on shallow water. Kadomtsev and Petviashvilil were the 
first to obtain Eq. (1). They were interested in studying the 
problem of the stability of a plane KdV soliton against small 
two-dimensional perturbations which are long in the trans- 
verse direction. They showed in Ref. 1 that in media with a 
decay-type dispersion law the soliton is unstable, but in me- 
dia with a non-decay dispersion law it is stable. The interest 
in Eq. (1) renewed appreciably after it was shown in Ref. 2 
(see also Ref. 3) that the inverse scattering method was appli- 
cable to Eq. (1). The procedure which was proposed in Ref. 2 
for simultaneously constructing integrable equations and 
their exact solutions was subsequently called the "covering 
method". Up to the present time a wide class of exact solu- 
tions has been constructed for the KP I and KP I1 equations 
(see, e.g., Refs. 2,4,5). It has been ascertained that only the 
KP I equation has two-dimensional localized solutions (two- 
dimensional solitons). Using direct methods recently in 
Refs. 6,7 a new solution of the KP I equation has been con- 
structed-a periodic chain of two-dimensional solitons. In 
Ref. 7 also a hypothesis was expressed that this solution is 
the result of the development of the instability of a plane 
soliton of the KP I equation (see Ref. 1). 

It is the aim of the present paper to study the stability of 
the new solution using the covering method. The possibility 
of applying the inverse scattering method to the KP I equa- 
tion enables us to solve the problem exactly. We ascertain 
that the periodic chain of two-dimensional solitons is unsta- 
ble against small perturbations. The hypothesis in Ref. 7 is 
thus false, as the process of evolution of one solution of the 
KP I equation-the plane soliton-cannot asymptotically 
lead to the state described by another unstable solution-the 
periodic chain of two-dimensional solitons. The result ob- 
tained is unexpected as a single two-dimensional soliton tak- 
en separately is stable (see Ref. 8) against two-dimensional 
perturbations. In 5 1 we expound the method used. In 5 2 we 
give the solution of the simplest particular case of the prob- 
lem (we consider a periodic chiain moving along the longitu- 
dinal x-axis). The axis of the chain is the same as the y-axis. 
We shall also represent in 5 2 the results of the solution of the 
general case of the problem: we investigate the stability of an 
arbitrary periodic chain of two-dimensional solitons. 

5 1. METHOD FOR CONSTRUCTING SOLUTIONS OF THE KP I 
EQUATION 

The solution considered depends in the general case on 
four real parameters which determine the velocity, slope of 
the axis and period of the chain of two-dimensional solitons 
(the initial phase of the chain is assumed to equal zero). For 
greater clarity we consider initially the simpler special case 
of the problem in which the axis of the chain is the same as 
the y-axis and the chain itself moves along the x-axis. In this 
situation the problem depends solely on two real parameters 
' 71  and '72: 

where 

Ao (x, Y, t )  

=I-2 cos[ (qZ2-qi2) y]exp[ (q1+q2)x-  (qi3+qz3)t1 

From the condition that the solution be regular it follows 
that 

q1q2<0. (4) 

Let 
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q1>0, q2<0, q1+q2<0. (5) 

If we let the period of the chain T = 2 ~ 4 7 7 :  - v:) tend to 
infinity using the limit 

qi=q, 1lL=-q+E, E+O, (6) 

we get a single two-dimensional soliton: 

Recently the covering method was refined in Ref. 9 (for 
details see Ref. 10) by applying it to a problem of complex 
analysis-the (nonlocal) (3 = a /ax, where k is a 
complex variable and the bar over the k indicates the com- 
plex conjugate.) The (local) was first used in Ref. 
11. We expound briefly this new method for constructing 
exact solutions of the KP I equation. 

We take the function 

T ( k i ,  k ,  X ,  Y ,  t )  

=T(k , ,  k ) exp  [ i ( k , - k ) ~ + i ( k ~ - k , ~ ) y + i  (k i3-k3) t ]  

and, for all x,  y, and t ,  we solve the equation 

where dkldEl = d (Re kl )d  (Im k,). Let 

The quantity 

is then a solution of the KP I equation. The condition that 
the function u(x, y,t )be real imposes a restriction on the form 
of the function T: 

T (k t ,  k )  =F ( E ,  E , )  . (9) 
In particular, the periodic chain (2),(3) is obtained as follows: 

T ( k , ,  k ,  X ,  y, t )=To(ki ,  k ,  X ,  y, t )  

=r ( x ,  y, t )  6 (ki+iqz)  6 (k - iq i )  

+F(x, y ,  t )  6 (ki+iqt)  6 (k- i l l2) ,  

where the functions r, x,,, and ,yO2 have the form 

r=2n(qt+qz) e w  [ (qi+q2)x+i(v,2-v12) Y -  (qi3+ 1 1 ~ ~ )  t l ,  

The following condition is then satisfied: 

We now proceed to construct a perturbation mode u, of 
the ground state u, which increases with time: 

u=uo+ul, ut<<uo, 

where the function u, is described by the KP I equation, 
linearized on the background u,: 

(10) 
The treatment which follows is carried out in a coordinate 
system fixed to the chain moving with a velocity 

~=qi~ -q lq2+q2~ .  (11) 

To construct solutions of Eq. (10) we use a method first 
proposed in Ref. 4. One must linearize the basic Eq. (8) about 
the background of the ground state: 

T=To+Tt, ~ = x o + x i >  

where 

The linearized Eq. (12) is obtained from (8) when we substi- 
tute instead of the scalar functions x and T the triangular 
matrices [? :; 1. 

5 2. BENDING INSTABILITY OF A PERIODIC CHAIN OF TWO- 
DIMENSIONAL SOLITONS 

The growing perturbation mode is constructed as fol- 
lows. Let 

T i  ( k i ,  k ,  x ,  y, t )  =id (k,-is) 6 (k - iqL)exp  [0 ( s ,  x ,  y, t )  I ,  
(13) 

where f, is an arbitrary complex constant, s an arbitrary real 
constant, and 

0 ( s ,  x ,  y ,  t )  = (q2-s)  x + i ( ~ ~ - q , ~ )  y+ [ s ~ - ~ ~ ~ + u  ( q 2 - s ) ]  t. 

(14) 
We look for a solution of Eq. (12) in the form 

~ ~ = ~ ~ ~ l ( k - i q ~ )  +xi2l ( k - i q2 ) .  

The condition 

is then satisfied. As the function T, does not satisfy the rea- 
lity condition (91, the perturbation (15) will be a complex 
function. Splitting off either the real or the imaginary parts 
of u, we get a real perturbation which is a solution of Eq. (10) 
by virtue of the linearity of Eq. (10) and the reality of the 
function u,. 

Using the following relation from the theory of general- 
ized functions (see Ref. 12): 

8 ( k )  = G  (Re  k ,  Im k )  . we get a set of two linear algebraic equations for the un- 
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known functions xl1 and x12. Solving this set we have 

The conditions that u ,(x, y,t ) decrease as Ix 1 -+ cc and that it 
be finite on the axis of the chain enable us to fix the real 
parameter s within the range: 

q,<s<-q,. (17) 

Here 
ui ( x ,  y ,  t ) ~ - l e x p  [ ( q 2 - S ) X ]  +O, x--+M, 

U, (5 ,  y, t )  mexp [- (q,+s) x]  +O, x+-w. 

The growth rate y of the perturbation mode which we have 
constructed equals 

7 ( s )  = ( s -q2)  ( s+qi )  ( ~ + q ~ - q ~ ) .  (18) 
The maximum of the growth rate is reached in the point 

--3-'" 
0- (q12-qlq2+q22)"2, (19) 

which lies within the range (v2, - rll). If 7 ,  = 0 ,  we have 

max y=2.3-"u" (qi=O, q 2 )  =2.3-ah 1 q z  1 
8 

where the velocity v of the chain is given by Eq. ( 1  1 ) .  
Settings z 772 and f, = 4n-1rr],(v1 + 774(s - v2), in ( 1  6 ) ,  we 

get 

where the function 0 is given in (14). The first term on the 
right-hand side of (20) corresponds to the fact that sections of 
the chain at right angles to the axis are stretched in opposite 
directions, while the second term corresponds to compres- 
sion and extension of these parts in the longitudinal direc- 
tion along the axis of the chain. This scheme enables us to 
construct various perturbations, among which are some 
against which the periodic chain of two-dimensional solitons 
is stable. Giving 

T1 ( k , ,  h., x, y, t )  =fo6 (k,+is) 6 (k- iq,)exp [O ( s ,  x, y, t )  I ,  
where 
8 ( s ,  X, y ,  t )  = (q1+s)x+i (s2-qi2) y- [s3+qi3-u (qi+ s ) ]  t, 

we can construct yet another perturbation mode. One can 
show that the chain is stable against this mode-the pertur- 
bation is damped with a damping rate 

6 (s) =-y ( s ) ,  

where y(s) is given by (18). As before the parameters if fixed 
in the range (v,, - vl ) .  

Using the results obtained we consider the case of a 
single two-dimensional soliton, (7) .  To do this we take the 
limit (6)  in Eq. (16). First putting f, = 27477, + 77,)(s2 - v:), 
we get 

It is clear from Eq. (22) that the simultaneous decrease of the 
function u, (x ,  y,t ) as x + f cc can be obtained provided 
s = - 77. The function u,(x,y,t ) of (21 ),(22) then degenerates 
into a superposition of shifted modes of the two-dimensional 
soliton: 

Each term in (23) is an exact solution of Eq. (10). 
We now consider an arbitrary chain of two-dimensional 

solitons: the velocity, slope of the axis, and period are arbi- 
trary. The chain then depends on four real parameters: <,, 
< 2 ,  771, and 772: 

where 

@ I ( x ,  Y? t )  

= (q i+q2)~ -2 (E iq i f  E 2 ~ 2 )  Y+ (3E22qz-q23f 3gi2qi-qi3) t l  

(26) 
@ 2  ( x ,  y, t )  = (E , -E , )  x+ (Eiz-qi2+q22-E2Z) y+ 

+ ( ~ 2 " 3 ~ Z ~ 2 2 + 3 E 1 ~ i " ~ i 3 )  t ,  (27) 

X I ,  2==E1, 2+iqi, 2 .  (28) 

The parameters 7 ,  and v2 must satisfy the regularity condi- 
tion (4). Let y 1  and 77, satisfy Eqs. (5) .  The simplest chain 
(2) ,(3)  is obtained from (24)-(28) if <, = 6, = 0 .  In the limit 
x ,  + Z ,  we get from (24)-(28) a single two-dimensional soli- 
ton: 

We give the expression for the corresponding function To: 

T o  ( h i ,  k ,  x ,  y, t )  =r (x ,  Y ,  t )  6  (k,-%,) 6  ( k - x i )  + F ( x ,  Y ,  t ) 6  ( k ,  
- 

-xi)  6 (k -%'?) ,  (30) 

where 
r l=2i ; l (~2-x i )exp  [ i ( 3 ( 2 - ~ i ) x + i ( x i 2 - ~ d 2 )  y+i(EZ3-xi3)t] .  

(31) 
To solve the problem we must construct only two perturba- 
tion modes of the chain. One of them is given by the function 

Ti ( k , ,  k ,  x, y ,  t )  =jo6 (k,-s)  6  (k -x , )  exp [0 ( s ,  x ,  y, t )  I ,  
(32) 

where 

0 ( s ,  x ,  y ,  t )  = i  ( s -xz )x+i  (xZ2-s2)  y+i [ s ~ - x ~ ~ +  v1 ( s - x Z )  

+v2 ( X ~ ~ - S ? )  ] t ,  (33) 

where 
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Ti ( k , ,  k ,  x ,  y, t )  =f,6 (ki+s) 6 (k -x , )  exp [8 (s, x, Y ,  t )  1, 
(34) 

where 

8 ( s ,  x ,  y, t )  =- i ( s+x i ) x+ i (~ ,Z - sZ )  y-i [ s ~ + ~ L ~ ~ + u ~  ( s+x I )  

+uz ( ~ ~ - x 2 ~ ) ]  t. (35) 

We have written Eqs. (24)-(31) in the laboratory system of 
coordinates and (32)-(35) in the system of coordinates fixed 
to the periodic chain which moves in the xy-plane with a 
velocity u = (u,,~,). Omitting the calculations we give the 
main result: any periodic chain is unstable against small per- 
turbations. The maximum growth rate of the perturbation 
equals 

3 (Ez-Ei)2~iqz max y= (so-q,) / (so+qi)[sa-nl+ql + - 
8 so (q1+q2)2 II 

where 

We must in (36) substitute from (37) an so which satisfies 
inequality (17). As before, inequality (17) arises due to the 
boundedness of the perturbation u ,  on the axis of the chain 
and its decrease along any other straight line in the xy-plane 
a s x 2 + y 2 -  m. 

For arbitrary values of the parameters {,, &,, T,, and 7, 
one of the two points so from (37) necessarily lies in the range 
(r12, - 7,). If, however, for some values of the parameters 

both points fall into that range one must substitute that value 
ofs, which gives the maximum of the right-hand side of (36). 
Putting 6, = 6, = 0 in (36) and (37) we get the maximum of 
the growth rate (18),(19) for the particular case of the sim- 
plest chain considered above. When studying the special 
case 7, + q 2  = 0 (the axis of the chain is the same as the x- 
axis) it is sufficient to take in (36),(37) the limit 7, + v2 -+ 0. 
As a result we get 

max y ='Il? ( E z - E l )  ' . 
8 

In conclusion the author thanks V. E. Zakharov for sug- 
gesting the problem and for useful discussions. 
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