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Sound (low frequency) waves in a gas are considered in the case of excitation that selects molecules 
with respect to velocity as a result of the Doppler effect. By expanding the solutions of the kinetic 
equation into a series in the eigenfunctions of the linearized collision operator, it is shown that the 
following events occur in a selectively excited gas: 1) the velocity of ordinary (longitudinal) sound 
depends on the direction of the sound with respect to the laser beam; 2) two new types of waves 
exist which, for small angles between the sound wave vector and the direction of the laser beam 
are a) thermal sound, in which temperature and gas density oscillations occur, and b) transverse 
sound, in which oscillations of the macroscopic gas velocity occur in a direction perpendicular to 
the wave vector of the sound. A gasdynamic theory of these processes is developed which yields 
the same results as the kinetic approach. The anisotropic corrections to the velocity of ordinary 
sound and the velocities and properties of the new types of waves depend on the frequency and 
intensity of the laser radiation and the properties of the excited gas. They may be as great as 
several millimeters per second. An experiment is proposed for observation of the anisotropic 
character of the correction to the velocity of ordinary sound. 

1. The beginning of a systematic investigation of kinetic 
processes in a gas in the case of velocity-selective excitation n l  (v) = r ~ ~ , , , l ? ~ [ ~ ~ +  ( ?v -Q)  '1 -i, 
was put forward in Refs. 1 and 2. Such excitation takes place 
when, on account of the Doppler effect, only atoms (or mole- 
cules) having certain projections of the velocity along the 
direction of a laser beam interact efficiently with the laser 
radiation. 

According to Ref. 3, the kinetic equation for a selective- 
ly excited gas can be written in the form 

af at 
- + s- = 51 d3ui PQG (w, cos 0) 
d t  8r 

under certain conditions. Here f (t ,  v, r) is the distribution 
function, summed over the internal states of the atoms, 
w = /v - v,/; u(w, cos 6 )  is the differential scattering cross 
section of atoms in the ground state; f '=f (v', r), f,=f (v,, r); 
the velocities v' and v; are expressed in terms of the velocities 
v and v,, and also the scattering angle is given on the basis of 
the usual conservation laws for elastic collisions. 

The factors [ l  + 6 (v)] describe the selective interaction 
and distinguish Eq. (1) from the ordinary Boltzmann equa- 
tion. For a two-level model of an atom in the case of weak 
excitation, we have the functions 

where u1 is the elastic scattering cross section of the excited 
atom by an unexcited atom, uo is the elastic scattering cross 
section of two unexcited atoms, and n, is the population of 
the upper level at the point v of velocity space. When the 
characteristic time of the radiation process is much smaller 
than the characteristic time for gaskinetic processes, 

where r is the radiation halfwidth of the absorption reso- 
nance line, cis the velocity of light, 1 is a unit vector along the 
laser beam, a= w ,  - w,, - is the difference between the 
frequency of the laser radiation w and the frequency of the 
resonance transition a,,, and n,, is the maximum popula- 
tion of the upper level. We emphasize that the dependence of 
6 (v) on v reduces to a dependence on v - 1  and we introduce - ,  , 

the notation 6 (v) = 6 (vl)+ ( v l  ) where vl = vll  . 
The stationary distribution function of the gas, which is 

described by Eq. (I), and which has the macroscopic velocity 
V, number density no and the mean kinetic energy density 
(3/2)n,T0, has the form3: 

" l+po (To, V) 

f+E (vl) 

where 

We assume 16 (v,, ) 14 1, /p, I g 1. For the calculations that fol- 
low, we shall use a dimensionless velocity for the atoms, 
u = v/u,, where v, = (7'/rn)'l2, and we shall normalize the 
distribution function accordingly. The coefficients ,LA, , writ- 
ten down without their arguments, will be assumed in what 
follows to be calculated at the value V = 0. Further, we shall 
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needpk with k = 0 - 5. We note that the theory developed 
below is valid for any relation between the Doppler and ho- 
mogeneous broadening of the absorption lines. In the parti- 
cular case in which the homogeneous broadening is much 
smaller than the Doppler, 

pk(To, V) = ( U , - V ~ ) ~  (mlT,)k 'Z~o (To, v). 
where the resonance velocity of the absorption is v, = R, / 
Wl. 

2. We now investigate the sound oscillat'ions in a gas 
described by Equation (1) with the stationary distribution 
function (2). Applying standard techniques (Refs. 4 and 5), 
we linearize Eq. (1) and seek a distribution function in the 
form 

f=f (u ln~ ,  To, 0) [ l+g(u,  r ,  t ) l ,  IglKl. 

For the function g, which contains only terms of first order 
in p, and [, we get from (1) 

where the operators 2, and 6 2 ,  have the form 

6&(g) =vTn, (2n)-% j j d3u l  d2Qwo(w, cos 0) , 

In the derivation of (3), it is important to note that the factors 
containing (1 + [ ) vanish under the integral sign. 

We seek a solution of (3) in the form g(u, r, t )  
= exp( - iwt + ikr)p (u), where w is the sound frequency 

and k is the wave vector. For the function p (u)  we have the 
equation 

-ioq (u) =i ) (q(u))  - [(l+po+E (u r ) )  $o+62?'-i~Tku] cp (u ) ,  (4) 

i.e., p (u) and -Lo are the eigenfunction and the eigenvalue 
of the ope~ator 0 which appears on the right side of (4). We 
represent 0 in the form 

A 

The operatorAV governs the selective excitation of the gas. 
The operator S has the same f y m  as in the ordinary kinetic 
theory of sound. The operator Y o i s  also the ordinary linear- 
ized Boltzmann collision operator. We define a Hilbert space 
through the scalar product 

containing the weight e - "'", which is identic9 with the ex- 
ponent f o ~ n d  in the kernel of the operator Y o .  Then the 
operator 9, will be Hermitian in this space, which makes it 
possible to apply standard stationary perturbation theory 
(see, for example, Ref. 5). Here we need to take it into ac- 
count that the operator S is  anti-Hermitian, while the opera- 

tor ?is non-Hermitian. The operator?must be regarded as a 
small increment to the operator Y o ,  since oscillations with 
the wave vector k<l/Akwhere A is the free path length, are 
studied. The %perator V is also to be regarded as a small 
correction to 3, (which is always valid when the intensity of 
the exciting radiation is low), yhile we shall be interested in 
effects which are first order in V. 

Let pk be the eigenfunciions and A ihe  corresponding 
eigenvalues of the operator 2,. Because 2, is Hermitian, it 
generates a complete ^orthogonal set (p, ).  As is well 
known,,., the operator 2, has the fivefold degenerate eigen- 
value A, O = 0 (a = 1 - 5); all the other eigenvalues are real 
and negative and have (for the case of stiff potentials) a value 
of the order of 1/r or greater, where T is the tim! of free 
flight.' The excited eigenvalues of the operator 0 corre- 
sponding to them also have negative real parts of the order of 
1/r and therefore the solutions corresponding to them are 
damped out within times of the order of 7. 

3. We are interested in sound with frequencies w< I/T. 
Therefore, we shall consider only the eigenfunctions 2r 
modes corresponding to the eigenvalues of the operator 0, 
into which^ the fivefold degenerate zeroth eigenvalue of the 
operator 9, transforms under the perturbation. We choose 
a set of coordinates such that the sound wave vector k has the 
coordinates (k, 0, 0), while the unit vector 1 in the radiation 
propagation direction vector has the coordinates (cosp, 
sin /3,0); it is clear thatpis the angle between the sound wave 
vector and the direction of the radiation. 

As the first five unperturbed eigenfunctions of the oper- 
ator we choose the following orthonormal set: 

The functions p, - p, correspond to five gasdynamic modes 
in a dissipationless monatomic gas. The functions p ,,, de- 
scribe sound propagation along the x axis in the positive (p,) 
and negative (p2) directions. The functions p, - p, describe 
the stationary distribution of they- and z-components of the 
velocity of the gas (p,) and (p,) and its temperature (p,) along 
the z axis. To find the correct eigenfunctions of the zeroth 
approximation agd thz eigenvalues to first order in the per- 
turbing operators + V, we should solve the secular equation 

det [KaB-h(i)6aB] =0, KaB'(qaISf T/IIqp). 

It is easy to see that the matrix Ka8 has only two nonzero 
elements: K,, and K,,. Therefore p, and pA are^ thecor- 
rect functions of the zeroth approximation in S + V; we use 
the notation p, = p,, , p, = p,, . The corresponding eigen- 
values are 

We note that in this approximation, the degeneracy p, - p, 
is not removed and the specifics of selective excitation are 
not affected. 

According to perturbation thegry, %e correction from 
the second-order approximation in S + V to the eigenvalue 
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for the acoustic modes is equal to 

Although p, with j = 5 enters into the determination of 
KLB, the explicit form of p is not needed for further calcu- 
lations. 

In second order, the degeneracy of p3 - p, is removed 
and the correct eigenfunctions are the superpositions 
c3p3 + c,p, + c5p5. The corresponding eigenvalue in the 
second approximation is the root of the secular equation 

det (Ka,'-h6ap) =0 (a, p43-5 ) .  (8) 

The coefficients c, of the superposition (a = 3-5) are the 
solutions of the set 

Taking account of the explicit form of the operators ?and 2, 
we have 

The first term in (lo), which is connected with dissipative 
processes, can be neglected under the condition that 
(kv,r(g (pol or (kA lpol. The second and third terms in 
(10) describe the effect of the excitation of the gas on the 
dispersion relations for the first five modes. 

To calculate the second term in (lo), we note that, to 
first order in p, 

Therefore, 

(for (a ,  p )  = (1, l) ,  (2, 2) and for a ,  p = 3-5). The origin of 
the matrix elements (12) is associated with the shift of the 
argument of the exponential of the stationary distribution 
function (2). For the third term in (lo), we have 

The calculation of the matrix elements according to Eq. (13) 
is conveniently carried out in the coordinate frame in which 
k = (k cos p, k sin p,  0) and 1 = (1,0, 0). 

By calculating the matrix elements K AB from Eqs. (10- 
13), for the longitudinal acoustic modes from (6) ,  (7), we ob- 
tain the dispersion relations (the upper sign corresponds to 
the S 1 mode the lower to the S 2 mode) 

To find the coefficients of the second-order superpositions, 
we obtain the system 

(3111 - pa) cos fi sin2 fi 
1 

- ;p2 -L , u 4 ) c ~ s  sin I::] =- ['I 
- ikv ,  

1 
0 -  1 (PC,-- $2 + P I )  cos p ?in fi 

1 
(- 3 ~ 1 4 -  Gp, -- pi) cos p C5 Cj 
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The values A are found from the secular equation corre- 
sponding to (1 5). We use for its roots the designations A,, A,, , 
A,, , the meaning of which is made clear in the discussion of 
the results. Solving the secular equation, we find 

For A, the eigenfunction p, is equal top ,  = p,. For A,, and 
A,, , the eigenfunctions, which we denote by pth and ptr , are 
superpositions of p3 and p, in the general case. 

In  the special case of small angles P ,  

ikv, 
Aih= - - 

10 
(-3pi f6p3-1 .15)~ ( P i h N ( P 4 ,  

(17) 
htr -lkur [ 6 p i - 2 p 3 - 2 .  (" -4p2+p4)2 ] s in2  p, cpiT;.9.. 

2 - 3p1+6~3-p5  

The dispersion relations corresponding to the th, tr, and z 
modes have the form 

- i O f h ,  t 7 ,  (k) =kt,,, t r ,  z ( k ) .  (1 8) 

4. We now discuss the results obtained. We recall that 
the sound is propagated parallel to thex axis; the direction of 
the laser beam lies in the (x ,  y) plane; P is the angle between 
this direction and the x axis. We consider the S 1 and S 2 
modes, which correspond to ordinary sound in the unper- 
turbed gas; S 1 corresponds to sound propagation in the posi- 
tive x direction, S 2, to the negative. In our case, the sound 
velocity s, = 1Sws2 /Sk / depends on the angle P while, 
wsl (p = 0) = ws2 = n-) as it should. Let fi = 0, i.e., the la- 
ser radiation propagates in the positive x direction. The 
sound velocity s, in the direction of the laser beam is differ- 
ent from the sound velocity s, propagating in the opposite 
direction. The velocity difference is equal to 

The excitation of the gas in the considered approximation 
has no effect on the dispersion relation for the mode with 
a = 5 (modez), which corresponds to macroscopic motion of 
the gas along the z axis. 

The oscillations in the two remaining, weakly attenuat- 
ed modes th and tr in the excited gas (in the general case) are 
superpositions of the oscillations of modes p3 and p, of the 
unperturbed gas, i.e., oscillations of the temperature and the 
transverse velocity u, . However, in contrast with the unper- 
turbed gas, the modes p,, and p,, in the excited gas are not 
stationary distributions, but traveling transverse-thermal 
waves with velocity s,,, ,, = iA,,, ,, /k. We note that atP( 1, it 
follows from (17) that the mode th is a thermal traveling 
wave, in which oscillations of the temperature and density, 
respectively, of the gas take place; the mode tr is a transverse 
traveling wave, in which oscillations of they component of 
the macroscopic velocity of the gas principally occur. 

Thus, the presence of velocity-selective excitation in a 

gas causes the velocity of ordinary (i.e., longitudinal) sound 
to depend on the direction of its propagation and gives rise to 
the appearance of two new types of traveling waves (modes 
th and tr),  which can be called, respectively, the first and 
second branches of transverse-thermal sound. Both the an- 
isotropic increments to the velocity of ordinary sound and 
the velocity of the new waves are of order xv,(a, - oo)/ao, 
where x is the fraction of the excited atoms in the gas. For the 
gas we can use, e.g., neon, on which experiments on velocity- 
selective excitation have been carried out.* Taking the realis- 
tic values (a, - ao)/uo=. lo-'  and x -  l o p 4  as estimates, we 
obtain a velocity on the order of v,, i.e., several milli- 
meters per second. The condition that the damping of the 
new types of waves be weak is given by the relation 
( T ~ u ,  I <x (a l  - a0)/u0, which ensures the smallness of the 
first term in (10). Taking as an estimate T- s, which is 
valid for a gas at room temperature and pressure on the order 
of 100 Torr, we obtain kg0.3 cm-'. This means that obser- 
vation of a wave with wavelength of order 10 cm and more is 
possible. 

Corrections to the velocity of the longitudinal wave can 
be observed, for example, in the following experiment. Let a 
standing wave be generated in a cavity, with a frequency w 
that is the same as one of the eigenfrequencies of the resona- 
tor. The gas is excited by laser radiation, directed parallel to 
the standing wave. Under the action of the radiation, the 
length of a sound wave of fixed frequency w begins to depend 
on the direction of sound propagation; the resonance condi- 
tions for the sound in the cavity worsen and the amplitude of 
the standing wave decreases. I t  is significant that this de- 
crease cannot be removed by changing the frequency w, since 
under the action of the radiation, the effective Q of the cavity 
decreases. Thus, we can quickly [within the time needed to 
establish the stationary distribution function (2)] switch the 
effective Q of the cavity. 

APPENDIX 

We have used the kinetic approach above. We now ob- 
tain and investigate the equations of gasdynamics for a selec- 
tively excited gas. Applying the operators 

to Eq. (I) ,  and using only the fact that the collision integral 
on the right side of (1) conserves the number of particles, 
momentum and energy, we obtain the equations of gasdyna- 
mics in the form of the conservation laws 

wherep = nm is the density of the gas, m is the mass of the 
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atom; the gasdynamic velocity V, the pressure tensor n,, and 
the additional (uncorrected) energy flux q that arise in the 
derivation of the set (A1)-(A3) are determined by the formu- 
las 

V,=(u,/n>, 

n,,=(rn (u,- 17,) (uk- V k )  ), (-44) 

The set (A1)-(A3) consists of five equations and permits 
formulation of the problem with initial conditions for V, p 
and some other scalar quantity, for which we choose the 
pressurep, equal, by definition, to (1/3)Trr. We shall con- 
sider gasdynamics as a theory of the field having the five 
components p,  V, p .  For this purpose, we close the system 
(A1)-(A3), i.e., we express rik and q, in terms ofp, V,p. The 
ordinary equations of gasdynamics (without account of dis- 
sipative processes) are obtained if we postulate the Pascal's 
law and the absence of additional energy flux: 

We note that (A6) is obtained if we take f(v, 
V) = f, (v - V), where f, is the equilibrium Maxwell func- 
tion. In our case, however, f is not a displaced Maxwellian, 
since there is still another vector in the problem-the wave 
vector of the radiation, k, . The function f depends on k, by 
virtue of the Doppler effect. Hence f (v, V, k, )  = f (v, V, 
c 1 k, 1 - k, v), where c /  k, I - k, v is the radiation frequency in 
the system of an atom having a velocity v (we assume v(c). 
We shall denote by a prime those quantities measured by an 
observer having the velocity w relative to the laboratory sys- 
tem. It is necessary that 

jf (v', Vf, cl k,'l -kifv') =j(v,  V, cl k,l -klv) 

in the case 

V / = ~ - ~ ,  Trf=V-\v, clk,'j-k,'\'=c/ k,l -k,v. 

The function 

satisfies this requirement. Substituting (A7) in (A4), and 
(A5), we find that n, and qi can be represented in the form 

where li = k, / k .  We have introduced two new functions, a 
and q, which depend o n p , p  and V I  = V e l ,  the projection of 
the velocity V in the I direction: 

a=aip, p,, Vll), qfq (P, P, Vlj). 

We emphasize that there is no justification for neglecting the 
dependence of a and q on any of the variables. Aside from the 
dependence explicitly indicated, a and q the functions natu- 
rally depend on the intensity of the scattering radiation, and 
vanish when there is no radiation. Thus, as has already been 
pointed out in Ref. 3, an additional energy flux (the function 

q) and anisotropic pressure tensor (the function a )  arise in a 
selectively excited gas." 

Taking account of (A8), the set (A1)-(A3) become closed; 
here a and q must be regarded as known functions of their 
arguments. 

We emphasize that in the derivation of (A1)-(A3), (A8), 
we have not used all the specifics of Eq. (I) ,  but have used 
only the conservation laws and the symmetry of the prob- 
lem. If the equilibrium distribution function f has the form 
(2), which takes into account the specifics of Eq. (1) in full 
measure, then a and q are expressed in terms of their param- 
eters as follows: 

Using the set (A1)-(A3), (A8), we can investigate the 
various modes of sound oscillations within the framework of 
gasdynamics. Taking account of (A9), the set (A1)-(A3), 
(A8), after linearization near the valuesp,,p,, V, = 0, we get 
the same results (14), (16) for sound as in the kinetic ap- 
proach. Here the velocity of ordinary sounds turns out to be 
equal to s = (5 po/3po)"2 (LL, - 0), as it should. 

The possible types of sound oscillations in a selectively 
excited gas have been investigated in the work of Ref. 10 on 
the basis of the various gasdynamic relations written there. 
Assumptions are made in implicit form in Ref. 10 which, in 
our notation, take the form 

Making the additional assumptions (AlO), we can obtain all 
the results of Ref. 10 from the set (A1)-(A3) for a selectively 
excited gas that is homogeneous in composition, including 
the presence of a new type of oscillation-thermal sound, 
whose velocity is found to be proportional to cos 8. 

However, the assumptions (A10) contradict the kinetic 
approach and the systematic gasdynamic theory based on it 
which, in addition to other waves reveal the presence of two 
new types of oscillations-thermal sound and transverse 
sound, the velocity of which is a complicated function o f p  
[see (16), (18)]. In spite of this, the work of Ref. 10 has value 
as the first indication that the sound oscillations in a selec- 
tively excited gas do not reduce to ordinary sound. 

The authors thank Ya. N. Isotomin, K. P. Zybin and 
other workers in the seminar of V. L. Ginzburg for discus- 
sions and also for reviewing the work of Ref. 10. 
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