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A critical analysis of the theory of light-induced drift (LID) is attempted. The need for this 
analysis is indicated by the experimentally established absence of this effect in a mixture of SF, 
with He. It is shown that for any central scattering potential one can calculate the lighter-compo- 
nent flux induced in a mixture with a heavy buffer gas by an arbitrary anisotropic perturbation of 
the distribution function. This possibility is used to calculate the LID line. It is established that 
the LID line shape is sensitive to the scattering potential, that the field-induced deformation of 
the line may be due to homogeneous saturation and is not due to broadening of the Bennett hole, 
and that the diffusion coefficient changes in a strong field and this change must be taken into 
account in the calculation of the signals due to the LID. It is shown that in molecules with 
rotational-vibrational transitions the LID may be decreased by the small ratio of the diffusive 
collision frequency to the rotational-relaxation rate. 

1. INTRODUCTION q, (52) = A N ~ ~ Z J ,  ( y ~ ~ z )  / (2ASvAvIvi) 7 (2) 
A number of experimental searches have been made for 

the sugge~ted"~ effect of selective diffusion1 or light-induced 
drift (LID)., Diffusion of SF, in He excited by C0,-laser 
radiation was investigated in Ref. 3. It was established that 
the change of the SF, density is due mainly to laser thermo- 
diffusion, and no LID is produced in this system. 

The /2 = 10 p m  transition in SF, satisfies all the LID- 
theory requirements for multilevel sytems. Indeed, it can be 
seen from the experimental data cited in Ref. 3 that the rela- 
tive difference betwen the relaxation characteristics of the 
upper and lower working levels can be close to 5. lo-'. These 
data are for SF, and not for the SF,-He mixture. This, how- 
ever, is of no fundamental significance. The parameters of 
various collisional relaxation processes have by now been 
spectroscopically measured and are as a rule of the same 
order. Thus, the dipole-moment relaxation rates in SF,-SF, 
and SF,-He collisions differ by a factor of 1.5 (Ref. 4), and 
the cross sections for SF,-SF, and SF,-He elastic scattering 
differ by a factor of two.' It is natural to expect the same for 
the difference between the relaxation characteristics. It was, 
however, established in Ref. 3 that according to existing LID 
theory the upper bound for this relative difference is (3-6) 

10W4. In light of the foregoing statements, such a small 
value seems unlikely. 

The absence of LID in a system such as SF, points to the 
need for a critical theoretical analysis of this effect, and this 
is the purpose of the present paper. We present the main 
results, needed to verify the experimental data, of the LID 
theory that has become in a certain sense "canonized" in a 
set of papers by Shagalin and G e l ' r n u k h a n ~ v . ~ ~ ~  

A flux J i s  produced in a gas of atoms that are resonant- 
ly excited by radiation and are mixed with a buffer gas. This 
produces in the gas-filled cell a density drop AN. The theory 
states that there exist combinations of experimentally mea- 
surable parameters that depend only on the frequency de- 
tuning R, on the field intensity, and on the transition width 
r. These combinations are of the form 

where y is the rate of relaxational decay from the upper level 
2 to the lower 1, vi is the collision frequency on the ith level, 
Av = Y, - vZ,o is the field frequency, N is the resonant-gas 
density, vo is the thermal velocity, p is probability, averaged 
over the velocities, of atom excitation per unit time, ASis the 
absorbed power density, V is some "intermediate" frequency 
between Y, and Y,, the functions p (R) and p l (R)  coincide and 
are equal to 

cp ( Q )  =cpi ( 9 )  =Re (zlu ( z )  ) /Re  w ( z )  , (3) 

where 

z=x+iy, x=Q/kv,,  y=r,/ku,, r,=r(l+?t')'", 

k is the wave vector, x' is the saturation parameter, and 

w ( z )  =exp (--z2) [ 1 + 2 i n 5  j d t  orp ( t 2 ) ]  . 
0 

In particular, in the Doppler limiting case y( 1 we have 

The functions q, and p, will be referred to as the LID line 
shapes. 

It has been assertedGp that Eqs. (1) and (2) are universal 
(in these papers a direct connection between the experimen- 
tally measured parameters is established, and it is proposed 
to determine Av/vl by measuring the LID), and that the 
LID line shape is not sensitive to singularities of the relaxa- 
tion processes. 

These are very strong assertions. The formalism for the 
description of the LID is based on the Boltzmann kinetic 
equation. Well-known difficulties (see, e.g., Ref. 11) are en- 
countered in solving this equation in the theory of transport 
coefficients, where fluxes induced by distribution-function 
perturbations that are smooth as functions of velocity and 
are anisotropic are calculated. In the LID case the perturba- 
tion is selective with respect to the degrees of freedom and, in 
the Doppler limiting case, also with respect to velocity. It 

945 Sov. Phys. JETP 61 (5), May 1985 0038-5646/85/050945-08$04.00 @ 1985 American Institute of Physics 945 



follows1' from Eq. (2) for M (see $3 below) that no new 
singularities whatever arise for selective perturbations. In a 
weak field this holds true in those cases when the collision 
integral multiplied by the velocity and integrated over the 
velocities yields an expression that is proportional to the par- 
ticle flux, i.e., in the strong collision m ~ d e l , ~ * ' ~ , ' ~ * ' ~  as well as 
in the familiar Maxwell molecule case, when the scattering 
potential U is proportional to r-4, and also for perturbations 
of heavy particles, when the diffusion approximation can be 
used for the collision integral. 

We consider in this paper the case when the mass m of 
the resonant-gas particles is smaller than the buffer-particle 
mass M: 

Besides providing the ability to check the final results,c8 this 
case is natural for further development of the LID theory, 
since we obtain here quantitative information on the singu- 
larities that arise in selective perturbation. Thus, whereas for 
a smooth perturbation and scattering, in the hard-sphere 
model, the expressions for the particle flux at small and large 
values of the parameter m/M differ by only 12% (cf. the 
exercise in 4 12 of Ref. 16), in the case of the selective pertur- 
bation corresponding to the LID the expressions for M un- 
der the same conditions differ near the line center by a factor 
2.35. 

Specifically, Eqs. (1) and (2) do not account for the fol- 
lowing circumstances. 

1. Only nonequilibrium increments to the population 
levels contribute to the expressions of Ref. 8 for the collision 
frequencies. Therefore the vi depend, for example, on the 
field frequency w .  Only by determining the character of the 
dependence (or the absence of this dependence) can we re- 
gard the LID line as definitely known. The procedure pro- 
posed below for the LID calculation can be used to deter- 
mine this dependence explicitly. It becomes clear in this case 
that the collision frequencies do not remain constant when w 
is varied within the limits of the Doppler profile, but can 
vary by a factor of 4. We shall therefore not use such quanti- 
ties below, We note, however that the fact that vi depends on 
w and on other parameters makes it impossible to measure 
the relative frequency difference, since the latter can change 
together with v, when the experimental conditions are var- 
ied. 

2. It follows from (1) and (2) that the only effect of the 
field on the LID line is the broadening of the Bennett hole. It 
is known that at not too small values of I'/kv, and at a suffi- 
ciently high collision frequency the homogeneous saturation 
of the populations plays an important role. The influence of 
these processes on the CO, lasing line was observed and ex- 
plained in Ref. 17, and their theory is given in Ref. 18. From 
the strong-collision model it followsc8 that they do npt af- 
fect the LID line shape. This result, however, is not general. 
We consider below a case when homogeneous saturation al- 
ters both the absorption line and the LID line. 

3. In the strong-collision model, Eq. (2) must be correct- 
ed. It takes no account of the obvious field-induced change 
of the gas diffusion coefficient. We present for it an expres- 

sion that is valid in this model in the case of a two-level 
system at vi )y: 

Sincep is a function of the detuning R, when account is taken 
of the field-induced increments to D the obtained field de- 
pendence of AN on R is different from (2). 

2. APPROXIMATE ANALYSIS 

We determine approximately how the flux depends on 
the detuning. If (5) is satisfied the collisions cause the direc- 
tion of the light-particle velocity to rotate, but leave its abso- 
lute value v constant. The angular velocity of this rotation is 
of the order of the collision frequency vi. At those instants 
when the velocity projection on the wave-propagation direc- 
tion (the z axis) is equal (to within the width Au, = T/k of 
the Bennett hole) to R/k the particle is in resonance with the 
field, excitation sets in, adds to the populations n, (v) and 
produces on the levels Ji (v)  - ( W k  )ni ( v )  fluxes along z, while 
for v ,  #v2  the total flux is J ( v )  = J , (v )  + J,(v). Thus, at high 
collision frequency (vi B y )  all the atoms brought by colli- 
sions to within the confines of the Bennet hole will contri- 
bute to the flux. Obviously, in the limiting Doppler case 
(Av, (v) contributions are made only by those atoms with 
v >  jfll/k. The field increments ni (v) are proportional to the 
number of particles whose absolute velocity is in an interval 
dv close to the given v, i.e., dvv2 . exp( - v2/v;), and to the 
time of interaction of the i-level particles with the field. The 
field is on the order of the ratio of the angle interval A$ in 
which the excitation takes place to the rotation rate vi . It can 
be seen from Fig. 1 that A$- I'/ku. Summing the contribu- 
tions of all velocities, we thus get 

e2 

Since the absorption line in a weak field has a Doppler pro- 
file, p a exp[ - (f l /k~,)~] ,  we obtain for 

cc 

9 ( P ) m Q  e~p[Q'/(ku.)~] 5 d u z e x p  (- -$) . 
Inl/k vi 

This line coincides with (4) only if vi is independent of veloc- 

FIG. 1.  Illustrating the approximate determination of the LID line shape. 
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ity. It will be shown below that if condition (5) is met the 
collision frequencies can be expressed in terms of the trans- 
port cross sections. Their velocity dependence is determined 
by the scattering potential, so that the LID line is sensitive to 
this potential. 

3. LIGHT-INDUCED DRIFT OF A RESONANT LIGHT GAS 

The kinetic equations for a gas of two-level atoms in a 
resonant traveling-wave field 

E (r ,  t )  =E cxp ( - i o t f i k r )  + C.C. 

where E, w, and k are the amplitude, frequency, and wave 
vector of the field, are of the form 

~ ~ z ( v ) - S t ( ~ z ( v ) )  = p ( v ) ,  
(71 

where v  is the atom velocity, pi ( v )  is the particle level distri- 
bution function normalized to 

.J dv (pi  (v) +p. ( v )  3 1 ,  

y is the radiative-decay rate of level 2, % ( p i )  is the integral of 
the i-level particle elastic collisions with the buffer-gas atom, 

is the probability of atom excitation by the field per unit 
time, G = dE / f i ,  where d is the dipole matrix element of the 
2-1 transition, r is the homogeneous line width, and 
fl = w - w,, is the detuning of the field frequency from the 
transition frequency w,,. 

To calculate the collision frequencies vi introduced in 
Refs. 8 and 9 at an arbitrary mass ratio, we must solve the 
kinetic equation. It can be shown, however that if the field is 
weak at vi ST and the differential cross sections doi for scat- 
tering on the levels have a constant ratio 

the ratio of these frequencies is also constant. If we assume 
also that / 1 - cl 4 1 ,  then v , z v ,  and hence Y = v,. At the 
end we obtain from (2)  

cp, ( Q )  = A N A o v o 1 2 A S ( l - c ) .  (10) 

We adopt Eqs. ( 1 )  and (10) as the definitions of the functions 
p and p,. We shall consider the function p ,  only under the 
conditions listed above, and set the collision frequencies in 
( I )  equal to vi = v, (u,), where 

a,,! is the transport cross section for particle scattering on 
level i, and N, is the buffer-gas density. 

Taking (5) into account we have in a weak field (Ref. 16, 
$ 1 1 )  

where n = v/v,  andFi = da,  /dnf for a central scattering po- 
tential depends only on the scalar product n . n'. 

We introduce the particle flux on the ith level in the 
space of the velocity modulus: 

Ii ( u )  = j dnnp i  ( n )  

The total flux is 

where J ( v )  = J,(v) + J,(v) and Nis the density of the resonant 
component of the mixture. From (7)  and the collision inte- 
grals ( 1  1 )  we can obtain algebraic equations for J,(v). Indeed, 
multiplying the integral terms by n and integrating over the 
angles, we get 

J d n n  st (pi ( n )  ) =-vi ( v )  J i  ( v )  

We have used here an equation that is valid for scattering by 
a central potential 

dnr  (n-n ' )  F , = ~ O , , ~ .  

We ultimately get 

J ( v ) =  i - c ( v )  j v2 (0) 
dnnp ( v )  , c ( v )  = - . 

y+vz(u) yl ( v )  
(13) 

Our calculation method is similar to that for obtaining 
the familiar Maxwell expression for the diffusion coefficient 
(see, e.g., Ref. 19). Whereas, however, in the standard meth- 
od of obtaining Maxwell's results we get, without solving the 
equations, expressions for the flux as a whole at an arbitrary 
mass ratio, but only with a potential Ua r-4 ,  in our case for 
m ( M  we calculate the flux density, so that we can determine 
the total flux for an arbitrarily weak anisotropic perturba- 
tion of the distribution function and with an arbitrary cen- 
tral scattering potential. 

If the field is weak, Eq. (7) can be solved by iterating 
with respect to the right-hand side of (8), putting 

where f ( v )  = 4 ~ - " ~ v ;  3exp ( - v2/vg ) is the Maxwellian 
atomic velocity distribution function. When 

c  ( v )  =c=const (14) 

we then obtain for the flux 

where n, = k/k ,  k  = / k / ,  

cD ( u )  =arctg [ (kv-Q)/I']+ arctg [ ( k v + Q ) / r ] .  (16) 

Hence, using an equation that is valid in a weak field6 

p=(21GI2/ku,) znh Re zu, 
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we obtain for the function defined in (1) 
m 

We consider the Doppler limiting case 

I'/ku,<tl. 

Here 

where 0 ( x )  is the Heaviside step function. Let the vi (v) be 
proportional to powers of the velocity 

v i ( u )  = ~ i ( u / v ~ ) ~ .  (20) 

We consider below the following cases: s = 1, which appears 
in the hard-sphere model; s = 1/3, which corresponds to a 
Van der Waals interaction with a potential U a  rF6;  s = 0, 
which corresponds to the Maxwell case; s = 3, which ap- 
pearsz' in the Born approximation (Ref. 20, 5 126). 

At vi >T we obtain then 

cp(8) =2x esp ( x 2 ) F i - , ( \ X I ) ,  (21) 

where x = Wkv,, 
ez 

F, ( r )  = j  dvvi exp ( -v2)  = 1/21. ( ( i f  1) 12, s2) ,  (22) 

and r is the r function. 
We proceed to calculate N. In a sealed cell the density 

drop produced by the LID in the absorbing gas is 

AN= d r l / D ,  (23) 

where J = J, .  For a transparent medium (AS>S, where S is 
the Poynting vector of the field), using the formula6 
S = NfiwpL, where L is the cell length, we obtain for the 
function defined in ( 10) 

In a weak field, the gas diffusion coefficient is D = D,, where 

Di= (2/3n1") 1. ( (5-s) 12)  (vo2/vi)  (24) 

is the diffusion coefficient of the Iight particle on the ith level 
in the heavy buffer gas (Refs. 16, 1 1) and r ( x )  is a r function. 
From this we get 

Near the line center O/kv, we obtain 

in the asymptotic approximation3' O ~ k v ,  we have 

3n'" 
cp1 ( Q )  = sign (52)  I Q/kvo  I '-S . 

41. ( (5-4 / 2 )  

Figure 2 shows a plot of the function p,(R). 

FIG. 2. LID line shape in a weak field for- different scattering potentials. 

4. FIELD EFFECTS 

When a light gas collides with a heavy one, the relaxa- 
tion in angle is known (Ref. 16, 522) to be M/m times faster 
than relaxation in the modulus of the velocity. The distribu- 
tion function can therefore be sought in the form 

and to consider the anisotropic parts ofp, (n) as small addi- 
tions. Then by omittingpi (n) in Eq. (8), we obtain 

where the saturation parameter, which depends on the ve- 
locity modulus, is 

x (v) =x ( v o / u )  @ ( v ) ,  (29) 

and 3~ = I G 1 Z/(yk~O)  is the characteristic homogeneous-satu- 
ration parameter. 

The equations for the isotropic part are 

The explicit form of the collision integral S ( pi (u)) is given in 
(Ref. 16, 522). Its distinctive feature is that it is of order 
vi (m/M )pi (u).  Therefore if the condition 

is satisfied in (14) along with v, )y, we obtain from (30), in 
analogy with Ref. 15, 

where A is determined from the normalization condition. 
We note that the condition (14) is of fundamental importance 
only in the strong-field case and is weaker than the condition 
(9) used in Ref. 15. 

In contrast to Ref. 15, where the case y>vi is used, we 
assume that the particle lifetime in the excited state is long 
enough for rapid relaxation to the equilibrium distribution 
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function in angle on each individual level, but is short com- 
pared with the kinetic-energy relaxation time. Our satura- 
tion parameters depend therefore on the modulus of the ve- 
locity and not on v, . 

Solving (32) for the LID line shape, we get 

We consider now limiting cases. We assume as before that 
the Doppler broadening is large. If 

only atoms with velocities v > I l/k are strongly saturated. 
Then 

At flgkv, and fl>kv, this function is given respectively by 

Now let 

In this case the populations of all the atoms become satu- 
rated. The denominator in (33) does not depend on the de- 
tuning a. The term proportional to @(v) in a(v) yields a term 
linear in fl, while the logarithmic term [see Eq. (16)] need be 
taken into account only at v < fll/k, where @(v) is small. 
Indeed, for these velocities, the parameter 

x  ( v )  =2xI'kuo [Q2- ( k v ) ' ] - '  

is large if condition (38) is satisfied, and enters in the denomi- 
nator of the integrand. In the final analysis, the contribution 
from the logarithmic term is comparable at u < 10 J/k with 
the other terms, and at so large a saturation it must be re- 
tained. We obtain then 

cp ( Q )  = 2 ~ - ' ~  [I'( (3 -S )  12) x- 1 dvvl-a exp ( -v ' )  (x2-v2)  
O 

At small f l  and s < 3 Eq. (39) coincides with (36), and at kv, 
we obtain 

( Q )  = ( ' / a )  ~ - ~ ~ ~ r  ( ( 5 - ~ ) / 2 )  k u o / ~ .  (40) 

Figures 3 and 4 show the LID line shape calculated fom (2 I), 
(35), and (39) for different scattering potentials. 

We present also expressions for the absorption prob- 
ability and for the gas diffusion coefficient in a strong field 

c.2 

FIG. 3. LID line shape in scattering by a Van der Waals potential and in 
the hard-sphere model in various ranges of the saturation parameter: x< 1 
(solid line), l < x < k u , / r  (dashed curves), and k v d r < x  (dash-dot). 

To obtain (42) it is necessary to introduce into the right-hand 
sides of (7) the terms - vV ln(N )pi (v), where pi (v)  are the 
solutions (32). Assuming the latter to be small, we calculate 
in analogy with $2 that part of the flux which is proportional 
to VN. It is assumed here that in the zeroth approximation in 
VN the level populations are ni (r,v) = N (r)p, (v), where pi is 
independent of the coordinates. For this assumption to be 
valid it is necessary, as usual, that the mean free path be less 
than 1V ln(N ) / - I .  Using Eq. (2), which is of the correct order 

FIG. 4. The same as Fig. 3, but for scattering in the Born approximation 
and by a Maxwellian potential. Except for the case n = 0 indicated in the 
figure, the solid, dashed, and dash-dot curves are for x < l ,  l < x < k v d r ,  
and k u d r < x .  
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FIG. 5. Diffusion-coefficient line shape for different scattering potentials 
(solid curves) and absorption line shape (dashed) for 1 <x<kudr .  

of magnitude, as well as the formula for A S  (Ref. 6), we find 
that a t p  5 y this condition is equivalent to (21). 

For ?t as bounded in (34) we obtain 

p=4yn-'"F, (1x1) [ l t c t  ( I -c)4n- '"F,( lx j  j j-', (43) 

Figure 5 shows the absorption lines and the increments SD to 
the diffusion coefficient at I 1 - c 1 < 1. When R = 0 and 
R)kv, we obtain 

p=y/2, D= (D,+D2)/2;  (45) 

n(i-C) vo2 
D=D, + 1 x 1 3-" exp ( - x 2 ) .  

3 ~ c " ~ v ~  

Equations (45) are valid for ?r as bounded in (38). This result 
has an obvious meaning: if the atoms are strongly saturated 
at all velocities, equal distribution functions close to Max- 
wellian are established on both levels. The absorption prob- 
ability reaches then the maximum value y/2 and the gas 
diffusion coefficient is the average of the diffusion coeffi- 
cients on the levels. 

Equations (33), (41), and (42) can be used to calculate the 
gas-density changes. For a transparent medium we obtain 

AN= [ ( I - c )  uoAS/tiov2D] cp (52). (47) 

5. LIGHT-INDUCED DRIFT IN MOLECULAR SYSTEMS4' 

Multilevel molecular systems can undergo several re- 
laxation processes that differ both in their rates and in their 
influences on the translational degrees of freedom. Thus, the 
fastest in SF, is rotational relaxation, and its rate R = 3 . lo7 
s-' . Torr-' (Ref. 4) exceeds both the vibrational relaxation 
rate and the quantity Y = ut/W introduced in Ref. 7, which 
we shall call the diffusional collision frequency. This relation 
between the parameters is typical of molecules. Allowing for 
it can alter, compared with (2), not only the density-variation 
line shape but also the order of magnitude of the estimate of 
this signal. 

The diffusion coefficient in an SF,-He mixture at 1 
Torr is D = 300 cm2/s (Ref. 21), whence 

The model considered in Ref. 6, from which it follows that 
Y-R, is thus inapplicable. We present estimates that show 
that the same can hold also for the model13 in which it is 
assumed that the rotational-relaxation rate does not change 
at all, so that the translational relaxation is due only to elas- 
tic collisions. But in that case it is they which will cause the 
diffusion. Assuming in accordance with Ref. 5 that the elas- 
tic croqs section u, and the cross section for rotational relax- 
ation are equal, and using the expressions for D (Ref. 16, § 12) 
and a, (Ref. 20, §127), we find that with a scattering poten- 
tia15' U = ar6  we have U = a/r6, Y/R = 0.6(M/m)6 'I3, 
where m and Mare the masses of SF, and He, 6 = (fi/Mvh) 
~(a/fivA)-'I5 is the elastic-scattering angle, and vA is the 
thermal velocity of He. For SF,-SF, collisions, we have 
6 = 6.4.10W3 (Ref. 22). Assuming that in SF6-He collisions, 
where there are no exchange processes, 6 does not exceed 
this value, we obtain Y/R ~3 . which is 6.6 times 
smaller than (48). This difference shows that both in the case 
of diffusion and in the case of LID the translational degrees 
of freedom can be mainly affected by collisions with changes 
of the rotational quantum number. Retaining in the kinetic 
equation only the contribution from these collisions, we ob- 
tain, say for the distribution function on the lower vibration- 
al term, 

where j, is the lower working sublevel. We proceed now to 
the equations for the fluxes and populations 

the forms of which are 

where e, (R) coincides with the value given in Refs. 6-8. We 
have formally obtained algebraic rather than integral equa- 
tions, but their coefficients are expressed in terms of the solu- 
tions (49). Thus, for example, 

Transformation from (49) to (5 1) therefore yields nothing. 
Although such an approach is used in the LID theory9 and is 
basic for the derivation of Eqs. (1) and (2),8 the kinetic equa- 
tion cannot be solved by this method. We, on the other hand, 
need the system (51) only for a definite qualitative deriva- 
tion. 

In the absence of vibrational relaxation, the field incre- 
ments to the populations increase without limit in absolute 
value, i.e., det (RN 1 = 0. But it does not follow from this at all 
that the same is valid also for Rc .  The equations for the 
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fluxes can perfectly well be linearly independent. 
In the calculation of the diffusion coefficient we must 

put in (49) 

Aj(v) =-vV ln ( N ) p j o  (v) , (52) 

wherepp(v) is the distribution function in the absence of the 
field. Let Rd be the matrix of equations for the flux corre- 
sponding to (52). It follows from (48) that the det 1 Rd /R ) ( 1. 
At the same time det I Rc /R I can be - 1. In fact, however, the 
right-hand sides of (50) and (52) differ significantly: Eq. (50) 
is selective with respect to all degrees of freedom, and (52) 
only with respect to the vibrational quantum number. The 
solutions (49) are consequently also substantially different, 
and with them the matrices R~ and Rc .  It must be empha- 
sized here that in a multilevel system even a small difference 
Ri is sufficient to cause detRi/R to become of order of 
unity. 

If det(Rc/R 1 - 1, the flux due to the LID is Ji -pvdR 
on each of the vibrational terms. There is no LID if the rota- 
tional relaxation processes on the terms coincide. Conse- 
quently, if the difference between them is small the total flux 
is J-(AR /R )Ji, where AR /R is the characteristic relative 
difference between the relaxation properties on the terms 
[the analog of Av/v, in (1) and (2)]. Collecting all the factors, 
we obtain for AN an estimate that contains the small factor 
(48) besides the factors taken into acocunt in (2). 

We present now estimates for SF,. If we assume in ac- 
cordance with Ref. 3 that the relative difference between the 
relaxational characteristics on the terms is of order 5 . lo-', 
the upper bound obtained in Ref. 3 for the LID is smaller by 
two orders of magnitude than predicted by Eq. (2). To ex- 
plain this difference it suffices to take into account the de- 
crease of the signal by the factor (48). However, even if this 
decrease is not fully effective, the onset in the medium of 
temperature and intensity gradients and of laser power and 
frequency fluctuations can additionally decrease the LID.23 
The reason here is the dependence of the collision frequen- 
cies on the rotational quantum number. 

6. CONCLUSIONS 

Let us compare the end results of our paper with the 
results of previous work. Although direct comparison is dif- 
ficult, there are two cases in which Eqs. (3) and (4) of Refs. 6- 
8 should be valid for the functionsp and p, we have calculat- 
ed. 

1. If the right-hand sides of (2) and (10) are equal (see 93 
for the necessary conditions), the lines (25) and (4) should 
also coincide. We emphasize that in Refs. 6-8 it is proposed 
to calculate the experimental data by using Eq. (2) with only 
the right-hand side, which coincides at v2) y with the right- 
hand side of (10) in which 1 - c = Av/v,, and with a func- 
tion p,(R) equal to Eq. (3) or in Doppler limit to (4). Yet the 
line (4) agrees with (25) only for a Maxwell scattering poten- 
tial. In other cases the slope of the p,(fl)  plot at the line 
center changes according to (26) from 2.35 (ku,)-' in the 
hard-sphere model to 0.29 (kv,)-' in the Born approxima- 
tion. At large a ,  within the limits of the Doppler profile (see 
footnote 3) this function increases like O4 and in the 

Born approximation and for an a/r6  potential, while in the 
hard-sphere model it tends to a constant value. The cause of 
the difference is that the LID-induced flux in ( I )  contains the 
collision frequency that depends on S1, whereas the collision 
frequency contained in the diffusion coefficient has no such 
dependence [see Eq. (24)l. 

2. In the case of a Maxwell scattering potential the colli- 
sion frequencies are independent of the nonequilibrium in- 
crements to the level populations, and hence of the field pa- 
rameters. The dependence of the flux on the detuning is 
determined here by (33), in which we must put v,(v) = v,. It 
can be shown that it is precisely this expression, and not Eq. 
(3), which follows from the definition given in Refs. 6 8  for 
p (a). The difference between (3) and (33) is connected with 
the peculiarities of the homogeneous saturation of the 
Doppler-broadened line. Its value can be assessed by com- 
paring the dash-dot and solid curves of Fig. 4 at s = 0. At 
larger Eqs. (39) and (40) yield, within the limits of the 
Doppler contour, not the linear law (4) but to the exact oppo- 
s i t e ~  (a) = kvdfl.  For (39) to be valid wemust havex)kv,,/ 
0, but here the inhomogeneous saturation can be neglected 
only i f M / m ) ( k ~ J r ) ~ .  It is important to us nonetheless that 
by solving analytically the kinetic equation we have obtained 
here an example that confirms the following conclusion: to 
determine the dependence of the flux on the detuning in a 
strong field it is necessary, at any scattering potential, to 
obtain an exact or an approximate expression for the gas 
distribution function. 

We note also that if Av/v, is not small the field depen- 
dence of the diffusion coefficient makes it impossible , as can 
be seen from (47), to obtain a combination of the experimen- 
tally measured parameters that is linear in ANand is equal to 
the relative difference of the collision frequencies. 

As for multilevel systems, it can be seen from the quali- 
tative treatment in §5 that the LID-induced signals can 
change not only in shape but also in order of magnitude. The 
reason here can be the small value of the parameter V/R as 
well as the gradients and fluctuations of the system param- 
eters. We assume that these factors can be of importance, to 
one degree or another, not only in SF, but also in other mole- 
cules. From this viewpoint the LID in molecules can hardly 
be used to measure Av/v,. We doubt therefore that the pa- 
rameter measured in Ref. 24 is directly conencted with this 
quantity. 

To sum up, the statement that Eqs. (1) and (2) are uni- 
versal is not a rigorous consequence of the kinetic equation 
and is not reliably confirmed by experiments known to us. 
Deviations of the LID line shape from (4) can be quite finite 
in value. But this is not all that matters. The universality 
premise, if accepted, leaves an isolated line with only one 
"degree of freedom" with which to explain the experiment, 
namely the parameter Av/v,. This is confirmed by the analy- 
sis13 of the situation in SF,, which was reduced in effect to 
the statement that Av/v, is less than 4 in absolute 
value. We however, regard other factors as physically more 
plausible causes of the absence of the effect. These, however, 
do not agree with the postulated universality. 
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