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An analytic expression is derived for two-dimensional radiative cascades between Rydberg atom- 
ic states, i.e., for transitions that involve changes in both the principal and the orbital quantum 
numbers n and 1. It is shown that if the familiar Bethe rule is used for the radiative transition 
probabilities, the population of the levels in the cascade can be described purely classically as a 
"flow" of the electron fluid in nl-space corresponding to the classical radiative energy and mo- 
mentum losses. The boundary in nl-space separating the regions of quantum and classical (contin- 
uous) electron motion is analyzed, and a general algorithm for calculating the level populations is 
discussed which is based on the semiclassical method for summing the terms in the cascade 
matrix. The populations for a photorecombination source are calculated in some specific cases, 
and the results agree closely with numerical quantum-mechanical calculations even for small n 
and I. The scaling parameters for the populations are found. The calculations indicate that the 
populations differ substantially from the statistical-weight distribution, particularly for low tem- 
peratures. 

1 .  INTRODUCTION 

Many physical applications require the calculation of 
radiative cascades between highly excited atomic states. Ex- 
amples include calculations of the populations and line in- 
tensities of hydrogen and ionized He 11 in interstellar gas 
plasmas (nebulas)'-3; spectral line calculations for highly- 
stripped ions in hot rarefied plasmas whose levels are popu- 
lated by charge transfer4 or by dielectronic recombination5; 
level population calculations for atoms excited by stepwise 
laser  transition^,^ etc. 

Techniques for calculating the parameters of radiative 
cascades were developed by Seaton' and are discussed in 
detail in Ref. 5, Sec. 17. Beigman and Mikhal'chy7 proposed 
an analytic computational method which yields results in 
close agreement with numerical calculations (cf. also Refs. 5 
and 8). All of this work deals with one-dimensional radiative 
cascades, in which the populations f,, of atomic states with 
different orbital moments I are assumed to be determined by 
the statistical weights: f,, = (21 + 1) fn/n2. The radiative 
transitions thus occur between levels with principal quan- 
tum numbers n, and the corresponding probabilities WE,. 
are averaged over the orbital quantum numbers I (this is 
called the n-method). 

Pengelly2 and Summers3 have carried out numerical 
calculations for two-dimensional cascades, i.e., with 
allowance for the populations of the individual nl-sublevels 
(this is called the nl-method). Because Summers also consid- 
ered collisional transitions, it is difficult to follow the chain 
of cascades using his data. 

The amount of data that must be handled and the mag- 
nitude of the numerical calculations clearly increase rapidly 
with n in the nl-method. Approximate methods for treating 
states with large n thus become essential (cf., e.g., Ref. 2). 
The error in the approximation increases with n and I, and 
Pengelly2 estimates that the error reaches 30% even for rela- 
tively small n = 10 and I = 5. On the other hand, the semi- 
classical methods should accurately describe the radiative 

transition probabilities and the bound electronic states for 
n) 1 and 1% 1, as is confirmed by the close agreement with 
quantum-mechanical calc~lat ions .~-~ ' We therefore expect 
that models of radiative cascades based on the semiclassical 
approach will be quite accurate, and the purpose of the pres- 
ent paper is to construct such a model. We will show below 
that the semiclassical model yields manageable analytic so- 
lutions which can be used to identify the parameters in terms 
of which the numerical data can be interpreted in a consis- 
tent, unified way without recourse to laborious numerical 
methods. 

Apart from its "utilitarian" significance, the study of 
radiative cascades between Rydberg states is of general 
physical interest for the light it can shed on the relative im- 
portance of direct and cascade population and on the dichot- 
omy between the quantum-mechanical and classical descrip- 
tions of the electron motion among the levels. Indeed, the 
problem can be solved in two extreme cases. 1) The nl-state 
may be assumed to be populated directly by a source q,, , 
after which it decays with equal probability A,, into all of 
the lower-lying states; the population will then be equal to 
q,, A ; ' (this is the direct-population model). 2) One may 
assume that the electron can reach level nl only by cascading 
downward through all of the higher-lying states (cascade po- 
pulation model). The latter approach is closely related to the 
classical concept of motion in nl-space, in which the motion 
is associated with gradual loss of energy (E = - 1/2n2) and 
momentum [M = fi(l+ 1/2)] at a rate which is determined 
by classical quantities.'2 Belyaev and Budker13 employed 
this classical description in their treatment of radiative cas- 
cades; their method is equivalent to using the equation of 
continuity in phase space for the population f (E, M ). On the 
other hand, the cascade populations were calculated by the 
n-method in Refs. 7 and 8, where it was shown that the clas- 
sical "flow" description with respect to the energy variable E 
is invalid-the electron always moves in quantum-mechani- 
cal jumps. It  will therefore be of interest to examine the re- 
gion of nl-space within which the electron can be considered 

937 Sov. Phys. JETP 61 (5), May 1985 0038-5646/85/050937-08$04.00 @ 1985 American Institute of Physics 937 



to move classically; we will investigate this problem in detail. 
Photorecombinative population of the atomic states is 

of particular interest. In this case free electrons with an equi- 
librium (Maxwellian) distribution fill the states, and the ra- 
diative transitions determine both the population source and 
the subsequent radiative cascades. It is noteworthy that the 
distribution of the atomic electrons with respect to the orbi- 
tal number 1 is by no means always proportional to the statis- 
tical weights, even if the source of electrons populating the 
levels is in equilibrium (cf. the numerical calculations in Ref. 
2). 

We will examine the classical kinetic equation for radia- 
tive cascades in Sec. 2 and consider the quantum-mechanical 
kinetic equation semiclassically in Sec. 3. The relation of the 
semiclassical solutions to the cascade matrix formalism used 
in Refs. 1 and 2 is analyzed in Sec. 4. The level populations 
for a photorecombination source are calculated analytically 
in Sec. 5, and the results are used to identify the scaling pa- 
rameters in Sec. 6 ,  where a detailed comparison with nu- 
merical calculations is given. Finally, the results are dis- 
cussed in Sec. 7. 

2. CLASSICAL KINETIC EQUATION 

Following Ref. 13, we will use canonically conjugate 
action-angle variables to analyze the classical kinetic equa- 
tion for the electron distribution function (DF) in an atom or 
ion. These variables are convenient because the action varia- 
bles for a radiating electron vary slowly compared with the 
orbital period of the electron (the latter is the characteristic 
time over which the angle variables vary); the D F  may there- 
fore be regarded as independent of the angle variables. We 
take the initial kinetic equation to be the continuity equation 
in 6-dimensional phase space; after averaging over the angle 
variables, this equation takes the form 

where the I, are the action variables, 

I,= ( m a 2 / 2 E )  '", I,=M, I,=Mz, a=Ze2, (2) 

and the I, are the corresponding generalized momenta 
(averaged over the angle variables)": 

They give the rates at which a classical radiating electron 
loses energy and momentum (I, is the rate of change of the z- 
projection of the momentum).12 

We will consider only the stationary case in what fol- 
lows. The spherical symmetry of the Coulomb field implies 
that the D F  f must be independent of M, .2' Equation (1) 
thus simplifies to 

Here the superscript indicates the dimensionality of the 
space in which f is defined. We note that the phase space 

variables E ,  M, and M, satisfy the classical kinematic con- 
straints 

M<M,,,(E) -- ( m a 2 / 2 E ) ' " ,  IMzI<M. 

In deriving (5) we have used the important property 

div,,, I = O ,  ( 6 )  

of the generalized momentum, which implies that the elec- 
tron flux may be uniform in the space E, M, M, 
[ f ',' = const satisfies Eq. (1) if q = 01. 

Solving (5) by the method of characteristics, we find 

f ( " 'E ,  M )  =(p[M(7 ,  Eu) I 

wherep ( M )  is the boundary condition for Eq. (5) (we take the 
boundary to be the line E = E,; the generalization to arbi- 
trary boundaries is evident), 

z = ~ ( E ,  M )  - - 1 W 3  (1 -2EM2/ma2)  9 (8) 

E is the eccentricity of the electron orbit, and the dependence 
M (r ,E ) in (7) is determined parametrically by (8). Using (7), 
we can rewrite the Green function for Eq. (5) in the form 

G (E 'Mr+EM)  = q ( E - E ' ) 1 6 [ M ' - M  ( 7 ,  E ' )  
B ( E ' ,  M ' )  

- - - 6 [E'-E ( r ,  M ' )  I ,  
l a ( E ' , M f )  I 

(9) 

where 17 = 0 for x < 0 and 17 = 1 for x > 0. The S-function in 
(9) corresponds to classical motion of the radiating electrons 
in the two-dimensional (E, M )  space; the trajectories coin- 
cide with the characteristic curves of Eq. (5) defined by 
r(E, M )  = const. Since the energy loss rate il exceeds the 
momentum loss I,, E decreases during the radiation process 
and the orbits become "rounder." 

3. QUANTUM MECHANICAL KINETIC EQUATION IN THE 
SEMICLASSICAL APPROXIMATION 

We will consider the quantum-mechanical kinetic 
equation for the distribution function f in the two-dimen- 
sional space (11,12) and use the formulas 

Il=tin, 12=fi (1+'12), 13=Amz , (10) 
which relate the action variables to the quantum numbers n, 
I ,  and rn, . Because f '3' is independent of M, , f '2' and f '3' 

obey the simple relation 
jcZ) ( I ~ ,  I ~ )  = 2 ~ f ( ~ )  ( z l ,  14 = (21+1) f ( 3 )  ( z l ,  z 2 ) .  (11) 

The kinetic equation has the standard form 
m 

f ( 2 ) ( r f ) w ( r r + r ) + q ( r ) = A  ( r ) p ) ( r ) ,  
n = n + i  1 ' = 1 * 1  r= (n, 1)  , (12) 

where we have allowed for cascades from higher-lying 
states; Wis the probability per unit time for a radiative tran- 
sition I"T, q is the external population source, and A is 
the total rate of radiative decay for the r level: 

r-1 
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For n)l we can replace the sum in (12) by an integra- 
tion, and f (r') can be expanded in I near the state r for l> l .  
This leads to the integro-differential equation3' 

rn 

q + j [ f ( n f ,  1 )  ~ ( n ~ - + n l )  
n + i  

where 

The semiclassical kinetic equation (14) reduces to 
simpler one-dimensional integral or two-dimensional differ- 
ential equations, depending on the region in the nl-plane, 
and the solutions can be pieced together uniquely because 
the corresponding regions overlap. 

Indeed, consider (14) for the region Ign, for which the 
Kramers approximation is valid for the radiative transition 
probabilities W. The radiative momentum loss (A1 = + 1) 
for Ign is slower than the energy loss, because transitions 
with An) 1 (including those with An -n) are more likely to 
occur. If the DF f is smooth enough we can therefore dis- 
card the differential term in (14), so that 1 appears merely as a 
parameter in the resulting integral equation 

Here E = 1/2n2 (in atomic units), M = fi(1 + 1/2), and as 
before f (E, M ) is normalized in r space. The function Go is 
related to the leading term in the expansion of the transition 
probability W (nl+nl ) [Eq. (1 5)] with respect to fi for Ign (cf. 
Refs. 10 and 1 1): 

Go ( x )  = x  [ Kla2 ( 2 )  +Ka2 ($1 I .  (17) 

The function A (r) corresponding to (17) is the total radiative 
decay rate for the level r = n,l 1,  

The first (cascade) integral in (16) is negligible for small x, , 
so that the population of level r is determined by the contri- 
bution from direct population by the external source q, 
f (I?) = q(r)/A (r). The cascade term becomes important as 
X, increases. 

The kernel of the integral equation (16) depends on x 
only through the difference 1 - x/x, , because the Kramers 
transition probability W depends only on the energy differ- 
ence between the initial and final states; we can therefore 
solve Eq. (16) by taking Laplace transforms. The latter sa- 
tisfy the equation 

f ( s )  =Q ( s )  /sG2 (s) (19) 

where s is the Laplace variable conjugate to x, , 

G 2  ( x )  = J Go ( x ' )  dx'=xK, ,  ( x )  K,  ( 2 ) .  

scz (s) =Go (0) -Go (s) . 

We can approximate G, to within 10% by the expres- 
sion 

G2 (2.) =a exp ( - 2 x ) ,  G2 ( s )  =a ( s )  / (s+2), (21) 

where the function a(s) is slowing varying, a (s  = 0) = n2/ 
6 =  1.64;a(s= co)=r/fl= 1-81. I fweseta  = 1.7,ensur- 
ing at most a 10% error in (2 l), we get the approximate ana- 
lytic expression 

for an arbitrary source q; here the quantity f i i t I ,  gives the 
rate of energy loss E [Eq. (3)] for Ign. 

Equation (21) embodies the semiclassical approxima- 
tion for G,. Indeed, (21) together with (20) implies that 
Go(x) = 2G,(x); for comparison, the exact result is 

The correction D (x) is proportional to the (Kramers) transi- 
tion probability for a transition with A1 = - sgn(An), i.e., 
for transitions when the change in I is opposite to the change 
in the principal quantum number n. Bethe established em- 
pirically14 that such transitions are actually somewhat less 
likely than transitions with A1 = sgn(An), and the magnitude 
of the suppression increases with An (this effect is discussed 
heuristically in Ref. 10 for n> 1, 1) 1). These transitions are 
essentially quantum-mechanical in nature, since both n and I 
decrease in the classical treatment. The semiclassical ap- 
proximation thus consists in neglecting D (x) in (23), which 
we may call the Bethe correction (BC). Numerical calcula- 
tions of the ratio D /G,  reveal that the Bethe correction be- 
comes significant only for very small x 5 l oF2  and thus pro- 
vide a numerical justification for the Bethe rule. The 
semiclassical approximation is therefore quite generally val- 
id for x 2 lop2. 

The DF (22) satisfies Eq. (14) for x, 5 1 (including 
x, (I), where the two integrals in (16) have the same order of 
magnitude. The integrals cancel for x, > 1, which corre- 
sponds to the classical limit in Eq. (12). We can follow this 
transition by expanding f (T') in the integrand with respect 
to both n and I [cf. (14)l. This expansion, which is valid for 
x, $1, leads to the two-dimensional differential equation 

for f "'(I?); recalling (1 I), we see that (24) is equivalent to Eq. 
(5). 

We note that since the classical limit is consistent with 
the inequality Ign, it should be describable in terms of the 
Kramers transition probabilties W. The leading terms in the 
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ft-expansion for the transition probability vanish because of 
the above-mentioned cancellation between the cascade and 
direct-population terms; it is thus necessary to examine the 
first-order quantum-mechanical correction to the classical 
probability W which was calculated in Ref. 11. This correc- 
tion corresponds to the third term in the left-hand side of Eq. 
(24), so that failure to include this correction will cause a 
superfluous term to be present in (5). We give an explicit 
expression for Win Appendix I. 

As ft-0, a continuous classical flow of electrons de- 
scribed by Eq. (24) thus replaces the discrete quantum-me- 
chanical motion specified by the nonlocal coupling in the 
integral equation (16). 

We will now consider how the semiclassical and classi- 
cal distributions (22) and (7) are to be matched. Comparison 
in the Kramers region l(n shows that the first term in (7) (the 
contribution from the boundary condition) must be replaced 
by the contribution from direct population. The resulting 
distribution function is valid for the entire semiclassical 
range of n and I, including the non-Kramers region 1-n: 

where I (r,n) is given by (8). Indeed, the boundary condition 
contributes to the classical distribution (7) mostly for large n 
and small x, , for which a purely classical description breaks 
down. In Sec. 6 we will carry out calculations for a specific 
(photorecombination) source and piece the solutions togeth- 
er explicitly; the results will confirm the correctness of the 
semiclassical expression (25). 

4. RELATIONSHIP OF THE SEMICLASSICAL SOLUTION TO 
THE QUANTUM-MECHANICAL CASCADE MATRIX. 
ALGORITHM FOR FINDING THE GENERAL SOLUTION 

We will interpret the above result by using the quantum 
cascade matrix formalism, in which the cascade matrix 
C (T1--+T) plays the role of the Green's function for the quan- 
tum-mechanical equation (12). The DF solving (12) can be 
expressed in the f ~ r m ' . ~ . ~  

The C-matrix can be regarded as the probability of a T'+T 
transition via all possible cascades [C (T-T) = 11 and obeys 
the two equivalent recursion formulas , 

Comparison of (26) with the semiclassical function (25) 
shows that the cascade population will be purely classical if 
f in (12) is smooth enough [so that f (T') can be expanded as 
a Taylor series for T'z TI. In the classical limit, C takes the 
form 

where r [cf. (8)] describes the classical trajectory. A similar 
expression for C also follows directly from Eqs. (27) in the 
classical limit-if we let ft+O as in the derivation of Eq. (24), 
we find that C (I?' - T)  a MA ( T ) F ( r , r l ) ,  where the function 
F is arbitrary. 

We will now estimate the error in the classical descrip- 
tion of cascades for arbitrary sources q [including selective 
population sources q a S(T - To)] by substituting the ap- 
proximate solution (22) for n(l into the corresponding equa- 
tion. The noncanceling term can be transformed into 

2, 

The expression in square brackets in the integrand coin- 
cides with the Bethe correction (23) to within 10%. Equation 
(28) implies that the terms in the square brackets cancel only 
for those x for which the Bethe correction can be neglected. 
The distribution function f (T) given by (25) cannot be used 
for sources q whose main contribution to the integral in (28) 
comes from small x, for which the terms in square brackets 
do not cancel. 

In what follows we will assume a 6-function source. 
Equation (25) is clearly inapplicable if direct transitions from 
the level r populated by the source are important (this corre- 
sponds to the leading term in the Bethe correction as x-0). 
In any case, such direct transitions will be important for 
levels T' close to T, as well as for more remote levels that are 
populated solely by BC-transitions, i.e., by electrons lying 
far from the classical trajectory. Classical cascades may oc- 
cur between levels which lie close to the classical trajectory 
provided they are sufficiently far from the levels T populated 
by the source (Ax, 2 1). The quantum-+classical transition 
in this case can be described in terms of a modified classical 
cascade. For example, in the Kramers region this gives 

rn 

However, there is an alternative, more systematic meth- 
od for treating the "quantum mechanical" properties of the 
source. This method exploits the fact that the form of the 
quantum-mechanical kinetic equation remains unchanged if 
we subtract arbitrarily many of the leading terms in the ex- 
pansion of the distribution function in powers of T'-I? (here 
T' = (nl,l ') is an arbitrary level populated by the source and 
T = (n,l ) is the final level in the cascade). Indeed, Eq. (12) 
continues to hold for f - q / A  if we replace q by 
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Proceeding as in Sec. 3, we thus arrive at the distribution 
function 

f=(f>=q/A+<q)/A+6[(q>], (31) 

which may be compared with (25). The general result is 
N 

where the effective source ( q ) ,  describes the population of 
the level T by all N-stage (N-photon) cascade transitions 
from all points of the source, 

and the appropriate selection rules must be used in calculat- 
ing the radiative transition probabilities W(Ti--r,, , ). 
Each additional summation in (33) smooths the effective 
source further and thus decreases the error caused by sum- 
ming the remainder terms in the series "classically" to 

10% (cf. Sec. 3). The error in the final result depends both 
on the specific form of q and on n, I. The error will be small if 
the neglect of an additional term corresponding to an 
(N + I)-stage cascade T ' + r  produces little relative change 
in f (T). The above algorithm can be used to calculate f for 
radiative electron cascades between Rydberg atomic or ionic 
states for arbitrary sources and quantum numbers (in parti- 
cular, n and I may be small). 

We note that the extent to which the population source 
is "quantum mechanical" depends partly on how "spread 
out" it is [cf. (27)] and partly on the range of values n, I in 
which the source is concentrated. For example, the D F  is 
highly quantum mechanical if a distributed "classical" 
source is concentrated in the "quantum" region x, < 1 (cf. 
Sec. 5). On the other hand, the cascade population can be 
described classically even for a selective source if the latter is 
concentrated in the "classical" region I-n. Thus, if the Iev- 
els with 1 = n - 1 are selectively populated by the source, 
the population of the lower levels by cascades can be de- 
scribed purely classically and the result agrees with the exact 
quantum-mechanical expression. Specifically, if we use the 
quantum cascade matrix and recall the relations 

lhl=111=A(n, 1 )  =W(n,  l-tn-I, 1-1)=2/sn-5, 

we find from (26) that 
f ( n ,  1 )  =q (no ,  Lo)A-i (n, 1 )  L, no-k61, I O - ~ ,  

where S is the Kronecker symbol and k>O. A calculation 
using Eq. (25) leads to the same result. 

5. POPULATIONS FOR A PHOTORECOMBINATION SOURCE 

We will now use the results in Secs. 3 and 4 to calculate 
the level populations for a Rydberg atom populated by a 

photorecombination source. Since the same radiative transi- 
tions are involved in both cases, the above approximations 
for cascades can also be applied to the photorecombination 
source. This will enable us to relate the error in the approxi- 
mation (21) to the error in the semiclassical D F  (25) in a 
specific case. 

We begin by calculating the populations in the Kramers 
region lgn .  If the atomic levels are populated by phototran- 
sitions of free electrons with a Maxwellian D F  

( 2 )  f, =2MA exp ( - Z I T ) ,  A= (2zmT) -'h 

we have [cf. (16)] 
% 

Q (r)= f : 2 )  ( E (I - I ) ,  &I) Go (x) ~ X = ~ ~ I Z X {  G* ( x m )  
Jr, 

X m  

(34) 
ca 

Using (21) to evaluate (34), we get Q=:2(2 + x,)-'G,(x,). 
However, this result is invalid for small x, and largex,, i.e., 
in the "quantum" region in which the Bethe correction D (x) 
cannot be neglected. Indeed, the singularity in Go is impor- 
tant here and substantially determines the value of the entire 
integral with respect tox.  If we separate out the contribution 
from this singularity, (34) becomes 

2 X T  Q(r)=- GI(xn) + -1-1' exp ( E I T ) ,  2+x, 2+XT 

where we can now approximate G, by (21). Equations (35) 
and (36) show that as expected (cf. Sec. 3), using (21) is equi- 
valent to neglecting the Bethe correction (23) in the source. 

We will next calculate the D F  (22) for a source (35); this 
corresponds to including the Bethe correction in the source 
but neglecting it in the Green function for Eq. (16). It will be 
helpful to express the result in the form 

r(r) =2AM exp (EIT)  b (r), 
so that f (T)/b (r) coincides with the equilibrium distribution 
(E > 0). Here b is given by 

2 1 
b (I?) = b,, = - exp (-EIT) f - $ (x,, x,) , 

2 + x ,  a 

and q5 and a are defined by (36) and (21). The function D can 
be simplified in various ways, depending on the values of n,l; 
$can then be expressed in terms of exponential integrals and 
incomplete gamma-functions (Appendix 11). 

For n,l, I, the second term in b,, [Eq. (37)] is important 
only for x, 4 1, x, & 1; f is therefore independent of the en- 
ergy E at the edge of the Kramers region, where 
I-n(x, 2 1). This implies that the solution outside the 
Kramers region can be found from the first term in (37), 
regarded simply as a classical boundary condition. Because 
this term is independent of E,  the resulting D F  will be the 
same regardless of which line in nl-space is chosen as the 

941 Sov. Phys. JETP 61 (5), May 1985 A. B. Kukushkin and V. S. Lisitsa 941 



FIG. 1. Regions in the E, M plane corresponding to semiclassical (I) and 
classical electron motion (11). Curve 1 demarcates the region of classically 
allowed motion:   EM' = 1 [M = M,,, (E)]; curve 2 separates regions I 
and 11: EM - 1 (x, - 1). The arrows indicate the classical trajectories [the 
characteristics of Eq. (5)]; the classical boundary conditions are imposed 
on the line E, = const. 

boundary. If we then use (7), (8) to continue (37) along the 
characteristic curve, we get the final result 

2 1 
b,, = - exp ( -E /T )  + - .ICi(xm, XT),  

~ + X T E '  U 

which is valid for all semiclassical n,l. We are able to contin- 
ue the solution in this way because the source (35) is concen- 
trated in the Kramers region, so that there is no need to 
evaluate (25) directly (recall that A and n there involve the 
transition probabilities for arbitrary l /n). Indeed, a calcula- 
tion using (25) for (I/n - 1)<1 reveals that these states are 
populated solely by classical cascades; moreover, most of the 
contribution comes from transitions far from the curve 1 - n. 
The latter result corresponds precisely to the classical be- 
havior, in which the states near the boundary M = M,,,,, (E ) 
(Fig. 1) can be populated by a source concentrated in a region 
with eccentricity ~ - + l  (Sec. 2). For a photorecombination 
source, the Kramers region shrinks along the n axis as I in- 
creases (as the edge of the continuum is approached) and 
thus is effectively transformed into a boundary condition. 

We will now show that the algorithm in Sec. 4 in fact 
incorporates some additional Bethe corrections to the DF.  
For a singly averaged source (N = I), (30) gives 

to within the 10% error in approximating the coefficient a in 
(2 I), this gives 

am 

D (x) Q (r,-X) ax, (40) 

FIG. 2. Atomic level populations from Ref. 2 replotted as a function of the 
parameterx, = 3/TM for several values ofx, =  EM'/^: 0, x, = 0.77; 
n ,0 .42;  + ,0.28;.,0.15; A,0.072; 0, 0.026. 

Since the factor multiplying is significant only for x ,  1, 
x ,  ) 1, we conclude as in Sec. 4 that the error Eq. (37) forb (T)  
is lo%, the same as in (21). 

6. SCALING LAWS. COMPARISON WITH NUMERICAL 
QUANTUM-MECHANICAL CALCULATIONS 

The semiclassical D F  (38) derived above can be used to 
establish approximate scaling laws for the level populations. 
These laws are a consequence of the fact that f (I?) in (38) 
depends on fewer variables than is the case for the quantum- 
mechanical DF. Indeed, f,, depends only on x ,  and x ,  for 
x, (1, x , )  1. If one of the parameters x, or  x ,  ' becomes 
- 1, the second term in (38) is much less than the first and f 
depends only on x,. Elsewhere in nl-space, f depends on 
the parameter x,E'. We thus have a smooth transition 
between three scaling laws for n,l) 1. Comparison of the se- 
miclassical D F  (38) with the results of numerical quantum- 
mechanical calculations2 reveals that the semiclassical D F  
can also be used for relatively small n and I (cf. the remark in 
Sec. 1). 

We will use the numerical data in Ref. 2 to check the 
similarity rules implied by the semiclassical method; accord- 
ing to Fig. 2, these data depend smoothly on x ,  for 
x, = const. Figure 3 gives a particularly striking illustra- 

for ( f )  in (31); here f is defined by (25). A calculation of 
( f )  for our photorecombination source reveals that the 
Bethe corretions are smaller than the 10% error in (21). 
Thus, if we include the linear corrections to (37) in (40), we 
find that 

FIG. 3. Universal dependence of the level populations b,, from (38) as a 
function of the parameter x, = 3 / T M 3  (solid curve); the points . and + 
show the numerical values calculated in Ref. 2 for the states n = 10,1= 3 
and n = 6,1= 2, respectively (x, = 0.072). 

942 Sov. Phys. JETP 61 (5), May 1985 A. B. Kukushkin and V. S. Lisitsa 942 



FIG. 4. The populations b, ,  for an n = 6 hydrogen level as a function of 
the orbital quantum number I for several temperatures. T = 8 . lo4 K: 0, 
numerical data from Ref. 2; A ,  calculated from Eq. (38). T =  lo4 K: 0, 
Ref. 2; A, Eq. (38). The points + and give 10' b from Ref. 2 and Eq. 
(38), respectively, for T = 1/8 . lo4 K. 

tion of the accuracy of the semiclassical result. The symbols 
and + in Fig. 3 indicate values taken from Ref. 2 as 

functions of x, for the two states n = 6, 1 = 2 and n = 10, 
I = 3, for which x, ( = 0.072) and E~(-0.83 and 0.87) are 
similar. We see that although these values correspond to dif- 
ferent n,l, they lie on a single curve which coincides to within 
20% with the semiclassical result (38). 

The population distribution with respect to the orbital 
quantum number 1 is also of interest. Figure 4 plots the rela- 
tive populations b as functions of I for several different tem- 
peratures. We see that, as noted in Sec. 1, the dependence b (I ) 
in general differs from the statistical-weight distribution 
corresponding to b (I ) = const-for low temperatures (large 
x, ) b (1 )increases much more sharply with I, while for large T 
(small x,) b (I )=const. These results clearly agree with the 
semiclassical formula (38). 

Finally, the similarity law with respect to x, is illus- 
trated in Fig. 5, which plots 6,) for I = 1 (the p-state) as a 
function of x, for n = const. We see that even for these 
small values of I, the semiclassical formula (38) agrees to 
within 35% with the quantum mechanical calculations in 
Ref. 2. 

We can also use Eq. (22) to illustrate the relative impor- 
tance of direct and cascade population in the Kramers re- 
gion for a photorecombination source; we find 

for the cascade and direct populations f, and fD. The con- 
tribution from fD clearly decreases as x, increases, and the 
sum f, + fD coincides with (37). The numerical values of 
fD /( f, + f, ) agree reasonably well with the data in Ref. 2- 
for n = 6 and T = lo4 K, e.g., (42) implies that fD ( fD + f,) 

FIG. 5. The level populations b,, as a function of the parameter 
x ,  = EM3/3 for fixed x ,  = 214 ( T  = 1/8 . lo4 K, 1 = 1); x,,, was varied 
by changing the principal quantum number n (top scale). The points 
show numerical values from Ref. 2; the curve was calculated using Eq. 
(38). 

is equal to 96% for I = 1 and 87% for I = 2; the correspond- 
ing values from Ref. 2 are 8 1 % and 73 %. 

The momentum-averaged dependences f (n) are also of 
interest. The major contribution to the integral over I comes 
from the first term in (38), which gives 

We see that f (n) depends on the product Tn3 (this result 
differs from the dependence on Tn2 found by the n-meth- 
0d'9~1. 

CONCLUSIONS 

The above semiclassical method for calculating the 
atomic level populations for multistage radiative cascades 
yields results accurate to within 10%. The most difficult step 
in the numerical calculations is to sum the contributions 
from the various transitions. Indeed, the 6-function proper- 
ties of the cascade matrix that correspond to radiating elec- 
trons moving along characteristics in the classical region [cf. 
(27)] are difficult to discern numerically. For example, the 
calculations in Ref. 2 detected only the boundary character- 
istic corresponding to 1 = I,,, = n - 1. 

The algorithm in Sec. 4 for calculating the population in 
the quantum case for arbitrary sources can thus be used to 
treat cascades through arbitrarily many Rydbergstates. The 
number of quantum-mechanical cascade transitions which 
cannot be described classically may be quite small in prac- 
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tice, particularly for distributed sources. For example, the 
cascade population is purely classical for a photorecombina- 
tion source (Secs. 5,6). 

Expression (38) for the D F  for a photorecombination 
source is directly related to the "effective" recombination 
coefficient2 that accounts for both direct and cascade popu- 
lation of levels. Equations (35) and (36) describe direct popu- 
lation by phototransitions from a Maxwellian continuum. 
Appendix I1 gives an analytic approximation for the func- 
tion 3 associated with the "Bethe correction" (Sec. 3); this 
approximation makes it relatively easy to calculate the rate 
of direct photorecombination. 

We thank I .  L. Beigman and I. I .  Sobel'man for valuable 
discussions. 

APPENDIX I 

Equations (28)-(30) in Ref. 1 1  lead to the explicit form 
W .,. (n l+nf l ' )  

- . 2 z i 2  x { ( K . ~ ( X )  -ALK~,~(X))~+L$(~, A l ) }  
3n2C3 ( n n ' )  5Jf 

(1.1) 
for the probability W of a Kramers ( I & ,  w n 3 )  1) radiative 
transition in a Coulomb field, including the first quantum 
correction to the classical limit. Here S is Kronecker's sym- 
bol, A1 = I ' - I ,  x = (OM 3/3)a,,, --[(E, - E,, ) ( I  + 
3],,, , and the quantum correction 6 is of the form 

$ ( x ,  AL) =Kli12 ( 5 )  [33x+ (7+18x2) AL] 

+K,2 ( 3 ; )  [27x+18x2AL]-Klh ( x )  KY, ( x )  [ 7 + 3 6 ~ ' + 6 0 ~ A 1 ] .  (1.2) 

An expression is also required for the probability 
W(n '1  '-nl ) for the backward transition as a function ofx; it 
can be derived as in ( I . l ) ,  (1.2) by recalling the relation 
between the arguments x and x' = [(E, - E,. ) ( I  ' + 
3Ia., . 

APPENDIX II 

The function D ( x )  in (23) (the "Bethe correction") must 
first be approximated before we can find an approximate 
analytic formula for $in (36); we recall that $ appears in Eq. 
(35) for the rate of population of atomic states by photore- 
combination transitions from a Maxwellian continuum. It is 
helpful here to express the modified Bessel functions in 
terms of the Airy function (cf., e.g., Ref. 15): 

where derivatives are indicated by a prime. Using the tabu- 
lated values for Ai and Ai' in Ref. 15, we then get the ap- 
proximations 

1-2,7~'"  
D ( X )  -1 .15  , , 0 1 ~ ~ 4 5 ~ 1 0 - ~ - C ~ .  

D ( x )  =O.Ilx--", C l<xG3.  10-2=C2, 
(11.2) 

D ( x )  =3.45. 10-2x-', C,<x<O, 1=C3, 

D ( x )  =4,8. 10-2x-' exp ( -2 .8x) ,  C 3 4 x ,  

which are accurate to 5% for the x values of importance in 

the integral in (36). The desired approximation 

~ = q  (C,-x,) J,+q (CZ-xrn) J 2  ( m a x  {Ci, x m )  ) 
(11.3) 

+q (C3-xni) J3 (mas {C,, x,} ) +J, ( m a x  {Cs,  2,) ) , 
then follows from (11.2); 77 = 0 for x <: 0 and 77 = 1 for x > 0 ,  
and the functions J, are defined by 

J$ = 

3 1 + ( e - C , l r - e - E / T  

x r 
1. 

(11.4) 
J3 ( x )  =3.45.10-2 [Ei ( x T x )  -El (C3xT) 1, 

J ,  ( x )  =4.8. 10-2Ei ( ( 2 , 8 + ~ , ) ~ )  

Here E,(x) -  - Ei( - x )  is the exponential integral function 
and I ( x ,m)  is related to the incomplete gamma-function by 

I ( $ ,  m) =r-, (n) j e-ltrn-' d t .  (11.5) 
0 

The extensive tabulations ofE, and I ( x ,m)  in Refs. 16 and 17, 
respectively, are helpful in calculations. 
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