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We present the conditions for the onset of an isolated nonlinear resonance and the criterion for the 
overlap of such resonances in an electron system over a helium surface in a clamping field. The 
analysis is carried out in the classical and quantum approximations. We discuss the feasibility of 
experimental study of the dynamics of an isolated quantum resonance and of quantum stochasti- 
city. 

1. INTRODUCTION external field. Assuming an energy < 1 eV, we shall approxi- 
The dynamic properties of quantum systems under con- mate hereafter the potential (1.2) by the f ~ n c t i o n " ~ ' ~  

ditions when the classical approach (fi = 0) leads to stochas- V ( x )  =m, x (0 ,  
ticity have recently attracted much According (1.3) 
to Refs. 3-8 allowance for quantum effects can give rise to V (x) =-Ze2/x, 2 1 0 .  
substantial anomalies in the manifestation of s&chasticity 
even when the initial population of the system is quasiclassi- 
cal. For example, as demonstrated for very simple models of 
nonlinear quantum systems excited by a periodic sequence of 
S function pulses, the quantum correlation functions attenu- 
ate much more slowly than in the classical limit, which in the 
end, reduces the rate of quantum It must be 
noted, however, that under certain conditions quantum dy- 
namics can be brought closer to the classical stochastic ap- 
proach for systems evolving over finite time~.~-"t is there- 
fore of interest to study under real experimental conditions 
the dynamics of nonlinear quantum systems that are sto- 
chastic at fi = 0. 

The feasibility of a stochastic mechanism of collision- 
less dissociation of polyatomic molecules that interact with 
coherent IR laser emission is discussed in Refs. 9 and 10. 
Stochastic ionization of a hydrogen-atom electron excited 
beforehand by a microwave field is analyzed analytically and 
numerically in Refs. 1 1-14. It was proposed in Ref. 15 that a 
suitable object for the study of stochasticity in quantum sys- 
tems is a system of electrons located over a liquid-helium 
surface and interacting with a periodic microwave field po- 
larized perpendicular to the surface. The system proposed in 
Ref. 15 is convenient primarily because it is effectively one- 
dimensional, since the electron motion can then be resolved 
into free motion in a plane parallel to the helium surface and 
motion perpendicular to this surface; the latter is described 
by the Hamiltonian16-l8 

H=P,"/2m+V(x) -I- e 8 x  cos olt, (1.1) 
V (x) =Va, x<O, 

(1.2) 
V ( x )  =-Ze" ( x+k) ,  x>O. 

Here x is the distance of the electron from the helium sur- 
face, m and e are the electron mass and charge, Ze is the 
imaginary charge induced by the helium surface; 8 is the 
amplitude of the external field polarized along the x axis, Vo 
is the potential barrier to electron penetration into the heli- 
um (Vo = 1 eV), ,$ = 10-lo cm, and w is the frequency of the 

Note that in this case the system considered is directly relat- 
ed to the problem of stochastic ionization of a hydrogen 
atom in an electromagnetic-wave field. 

The condition for the onset of stochasticity in a system 
with the Hamiltonian (1. I), (1.3) was investigated in Ref. 15 
in the classical approximation (fi = 0). The stochasticity 
threshold was estimated from the overlap of the nonlinear 
resonances. It was shown in Ref. 15 that random motion is 
produced in the system when external-field amplitudes ex- 
ceed some threshold g > g,,(w) and leads to a diffusive 
growth of the energy right up to the ionization energy. 

The concept of isolated nonlinear resonances (first used 
in the quasiclassical approximation9) can be introduced also 
in the quantum case, and the overlap of these resonances can 
be considered. 

Numerical investigations of the quantum-mechanical 
system (1.1), (1.3) with an initially high level population 
(n =: 50) have demonstrated the essential role of quantum ef- 
fects in the electron-excitation mechanism.13 According to 
Ref. 13, the level-population distribution function is strong- 
ly resonant, and the diffusion is substantially reduced com- 
pared with the classical case. Similar effects were observed 
also in numerical experiments14 with a time-dependent per- 
turbation operator in the form of a periodic train of S-func- 
tion pulses. 

These differences between the dynamics of quantum 
and classical systems are due both to the considerable differ- 
ences in the dynamics of the individual nonlinear resonances 
and to differences in the way they interact, relative to the 
classical case. It follows from Refs. 19-21 that how closely 
the dynamics of interacting nonlinear quantum resonances 
approximate stochastic motion of the corresponding classi- 
cal system is determined not only by their overlap and popu- 
lation conditions at high level numbers, but also by the re- 
quirement that each resonance capture a large number 
(Sn> 1) of levels. I t  will be shown below that the last condi- 
tion is difficult to meet in an actual experiment in the case of 
the system ( l . l ) ,  (1.3). 

We present below a classical and quantum analysis of 
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the dynamics of the system (1. I), (1.3) with allowance for an 
additional clamping field go. The parameters that describe 
the dynamics of an isolated resonance are presented, and the 
case of resonance overlap is considered. We show that vari- 
ation of the strength of the clamping field permits the system 
dynamics to be studied at different values of Sn. The results 
are discussed in connection with the feasibility of observing 
an isolate quantum nonlinear resonance and of studying the 
stochasticity in a system of surface electrons under real ex- 
perimental conditions. 

2. CLASSICAL LIMIT OF NONLINEAR RESONANCE IN A 
CLAMPING FIELD 

We consider in this section in the classical approxima- 
tion an isolated nonlinear resonance for the system (1.1), 
with allowance for the additional clamping field. To facili- 
tate the subsequent comparison with the quantum case, we 
transform in (1.1) to new dimensionless variables 

The quantity a has the meaning of the reciprocal Bohr radi- 
us: a = mZe2/fiz0. 14.106 cm- '. In the variables q and p, 
the Hamiltonian for a surface electron in a clamping field 
takes the form 

H=Ho+H,,t ( t ) ,  

H,=R (p2 /2- l /y i~ ,q )  =RE, (2.2) 

H,,,=Req cos Y T ,  

where 
R=h~a ' /ms1.3.10-3 eV, 

~ , = e 8 ~ / a R ,  ~ = e Z l a R ,  

v=oh/R, -c=Rt/h. 

R has the dimension of energy and the meaning of the Ryd- 
berg constant, while E is the dimensionless unperturbed en- 
ergy. 

We introduce the dimensionless action J for the Hamil- 
tonian H,: 

From (2.2) and (2.4) we obtain 

whereK (k )and E (k ) arecompleteellipticintegralsofthe first 
and second kind, with the modulus k of the integrals and the 
quantity a given by 

The parameter a is connected with the turning point go by 
the relation go = a ~ : ' ~ .  In terms of the action (J ) and angle (0 ) 
variables the dimensionless Hamiltonian (2.2) takes the form 

The explicit E (J) dependence in (2.7) is determined from 
(2.5), and the dimensionless coordinate q of the electron is 
assumed to be expressed in terms of J and 6: 

m 

q-q (J, 0 1  = C y, (1) ex". 
i=-co 

The Fourier harmonic q, (J) in (2.7) is given by 
'2 

2 n l0  (!I) ol ( J )  = - -- L E ~ ~ / ~  n j sin [ ----I 0 (a) dy. 

An external alternating field produces nonlinear reson- 
ances in the vicinities of the points J, defined by the equation 

Each nonlinear resonance is characterized by the following 
parameters: the action width 6J1 = 2(J - J,),,, and the 
phase-oscillation frequency R, . The effective Hamiltonian 
corresponding to the resonance numbered I is of the form22 

(2.10) 
y l =  ( d 2 ~  ( J )  /dJL) ,=,,, $l=LO-vr. 

From (2.10) we have 

The isolated-resonance approximation is justified if the 
width SJ, of an individual resonance is less than the spacing 
between the resonances 

The system (2.7) in the absence of a clamping field 
(co = 0) was considered in Ref. 15. In that case, as follows 
from (2.5), E (J ) takes the form E (J ) = - 1/2J2. From (2.9) 
and (2.1) we have then J, = J,1 'I3, AJ, zJ , /31  213, where 
J, = v1I3 is the value of the action for the fundamental reso- 
nance. At E~ = 0 the maximum width at which the resonance 
can be regarded as isolated is of the order of 

Note that for our chosen dimensionless variables the quasi- 
classical quantization rule corresponds to choosing integer 
values J = n. In the quantum-mechanical treatment of the 
system (2.2), the maximum number of levels Sn, included in 
the isolated resonance numbered 1 is specified in the quasi- 
classical region by Eq. (2.14). Substitution of the numerical 
values shows that when the system is excited by an alternat- 
ing field with w = 10-2-102 GHz the fundamental reso- 
nance corresponds to values n, from 20 to 1. Consequently 
the number of levels included in the resonance in this case is 
at most 7, i.e., Sn, <7. As shown in Refs. 22 and 23, the 
interaction of quantum nonlinear resonances when a small 
number of levels are included (Sn 5 20) is essentially quan- 
tum-mechanical, and the residual correlation level is quite 
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high in this case. We note in this connection that essentially 
quantum effects were observed in a computer experimentI3 
near a quasiclassical initial population with n, = 50. Further 
increase of n in the case of surface-electron system (in con- 
trast to the hydrogen atom) is physically untenable, since the 
ionization energies become 5 3.10-' eV, much lower than 
the thermal-fluctuation energy. 

The situation changes substantially in the presence of 
an external clamping field. In this case Eq. (2.5) can have two 
asymptotic forms, depending on the value of a .  The first 
(a(1) corresponds to a weak clamping field 8, and E < 0: 

In the other limiting case (a, 1) we get from (2.5) 

The boundary between the asymptotic form (2.15) and (2.16) 
corresponds to the value a = 1 (E = 0), which yields for J 

Typical clamping fields 8, used in experiments with 
surface electrons lie in the range (1-2). lo3 V/cm, equivalent 
to the dimensionless E, = 0.5.10-3go (go is measured in V/ 
cm). Substituting the numerical value of E, in (2.17) we ob- 
tain J * 6 4  i.e., at 8, > 1 V/cm the boundary between the 
asymptotics (2.15) and (2.16) lies in the vicinity of the first 
four levels. The quasiclassical-approximation condition 
(n) 1) necessitates the use of the asymptotic form (2.16) for 
an external clamping field 27, > 1 V/cm. 

In this case the expressions for the Fourier harmonic 
q, ( J ) ,  for the nonlinearity y,, and for the resonant values of 
the actions J, (2.9) take the form 

Substituting (2.18) and (2.19) in (2.11) and (2.12) we obtain 
the characteristic parameters of the I th nonlinear resonance 
for a, 1 : 

Since the distance between resonances is AJ, = 3J112, ac- 
cording to (2.13) and (2.19), the isolated-resonance approxi- 
mation is valid subject to satisfaction of the inequality 

A J ,  ..I 

Consequently, if the alternating field is much weaker than 
the clamping field, the resonances are isolated. Recall that 
J, a&: according to (2.19). Thus, if the ratio E/E, and v are 
fixed, 6J, can be smoothly varied in a wide range by varying 
the clamping field. It becomes possible then to study the 

nonlinear resonance under conditions when it is localized, 
when the frequency R, of the phase-oscillation frequency is 
fixed, and when different values of the number SJ, of the 
levels were made resonant. 

By way of example, we present numerical estimates for 
the fundamental resonance (I = 1) at an alternating-field fre- 
quency w / 2 ~  = 1 GHz(v = 3.10-7. At 8, = 1 V/cm 
(E,  = 0.56-10-3) we have from (2.9) J l z 4 0 .  In this case 
R E  (J,) = 2.3.10-4 eV. Raising theclamping field strength to 
8 V/cm increases J, by a factor of 64, i.e., J, ~ 2 5 6 0 .  Let the 
oscillating field strength be weaker by a factor lo3 than that 
of the clamping field ( E / E ,  = lop3); we find then for the lat- 
ter case from (2.20) that the number of levels trapped by the 
resonance is Sn, zz 300. 

It follows from the foregoing estimates that the number 
of trapped levels can be made large enough to permit analy- 
sis of quantum nonlinear resonance under conditions close 
to the classical approximation. In the next section we present 
a quantum-mechanical analysis of the system (2.2). An ab- 
breviated Schrodinger equation is obtained for the isolated 
quantum nonlinear resonance, the parameters of the reso- 
nance are obtained, and the resonance is compared with the 
classical limit described by the Hamiltonian (2.10). 

3. QUANTUM-MECHANICAL DESCRIPTION 

We shall find it convenient to use the quantum-mechan- 
ical "action angle" representation introduced in Ref. 8. Ac- 
cording to this reference, the Schrodinger equation for the 
system (2.2) takes in the "action angle" representation the 
form 

@ (0+2n, a) =@ (8, t), 

where the dimensionless Hamiltonian is [cf. (2.7)] 
m 

a(;, 0, T) =I?(;) +e cos v a E  [ql ( n )  r-'"+c.c 1, 

The wave function @(@,T) is connected with the wave func- 
tion $(q,.r) of the initial q-representation by the relation8 

and the operator functions E (n) andq, (n) in (3.2) are obtained 
by substituting n-+ii in the following complex-valued func- 
tions: 

cc 

0 

q1 ( n )  =0, O<n<l. 

In (3.3) and (3.4) p, (q) is the wave eigenfunction of the unper- 
turbed Hamiltonian 
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We consider the electron-energy region with large value 
of a in (2.6): a)  1. In this case the system is in the quasiclassi- 
cal region and the matrix elements (3.4) can be estimated in 
the quasiclassical approximation. As shown in Ref. 8, the 
functional dependence of the complex-valued functions in 
(3.4) on the parameter n coincides in this case with the classi- 
cal expressions (2.16) and (2.18). Thus, in the energy region 
considered (a) 1) the Hamiltonian (3.2) takes the form 

co 

where A is defined in (2.16). 
We consider now an isolated quantum nonlinear reso- 

nance. Let the system with Hamiltonian (3.2) be populated at 
the initial instant of time in the vicinity of a level n, deter- 
mined from the condition of the I th resonance: 

E (n,+l) -E (n)) =l (dE (n) ldn) .=,,=v. (3.7) 

We represent the wave function in (3.1) in the form 

@ (0,  t)  =exp [-iE (ni) T+ in!0]~(0, t ) .  (3.8) 

Substituting (3.8) in (3.1) we obtain the equation 

where the Hamiltonian 9 is defined by (3.2). We expand 
this Hamiltonian about the point n,, confining ourselves in 
the perturbation to the first term of the expansion, and ex- 
pand the unperturbed Hamiltonian up to the terms in n2. 
This approximation is tantamount to the classical condition 
of moderate nonlinearity2' and means in the quantum case 
that the number Sn, of levels actually participating in the 
dynamics is much less than the number of levels n,, i.e., Sn, / 
n, 4 1 (Refs. 8 and 30). Using (3.2), we obtain from (3.9) in 
this approximation an equation for the function ~ ( 8 , r )  in the 
form 

co 

where by virtue of the foregoing discussion a,, y, , and q, (n) 
coincide with the classical expressions (2.9) and (2.10). We 
replace the variable 8 in (3.10) by a new one, $, = 18 - vr. 
Discarding the nonresonant terms we obtain ultimately 
from (3.10) 

Equation (3.11) describes the isolated quantum nonlin- 
ear resonance whose dynamics was investigated analytically 
and numerically in Refs. 19-21. The solution of (3.11) can be 
represented as an expression in periodic Mathieu functions: 

where the coefficients ajf;") are determined from the initial 
conditions, and the superscripts c and s denote the even and 
odd Mathieu functions: 

x:' ($1 =cezm($/2, p) ,  

In (3.13), cs and se are periodic Mathieu function and a( p) is 
the spectrum of the Mathieu equation.23 

It is easy to estimate the number of levels Sn, that par- 
ticipates in the dynamics of the I th resonance. Since it fol- 
lows from (3.7) that an external resonant field causes transi- 
tions to 1 levels, we have Sn, -ISm,, where Sm, is the 
characteristic number of levels in the potential well 
&ql (n, )cos$, in (3.1 l) ,  i.e., 

Thus, we obtain Sn, -6JI, where SJ, determines the width 
of the classical resonance in terms of the dimensionless ac- 
tion J [see (2.1 I)]. A more accurate estimate of the number of 
trapped levels Sn, confirms the functional relation (3.14): 

In (3.15), c is of order unity and depends little on J, (e.g., in 
the region Sn, z 50 we have c z  1.4 (Refs. 20, 23). 

We estimate now the frequencies of the phase oscilla- 
tions in the vicinity of the I th resonance. To this end we 
represent the asymptotic form of the A jf;"' spectrum at 
m< pli2 in ' the form 

A:' =-eq[ (n,) +Q1 (2rnf1l2), m=O, 1,. . . , 

A:' =-&ql (nl) +Ql (2m-1/2), m=l,  2, . . . , (3.16) 
Q , = l [ ~ q ~  (n , )  ~ ~ 1 % .  

The quantity a, is the frequency of the small oscilla- 
tions of the system near the bottom of a potential well, and 
coincides with the frequency of the phase oscillations (2.12) 
of a classical system. Thus it follows from (3.12) and (3.16) 
that arbitrary quantum-mechanical mean values will oscil- 
late in the vicinity of the I th resonance with frequencies 
-ma , .  

4. CONCLUSION 

It follows from the above estimates of the nonlinear- 
resonance parameters that application of an additional 
clamping field permits a study of the dynamics of a reso- 
nance in a quantum system close enough to the classical lim- 
it. By varying the strength of the clamping field one can trap 
a large number of levels (say, Sn- lo3) into the quantum 
resonance. This capability is in our opinion important for 
experimental attempts to study stochasticity in the quantum 
case. Indeed, since classical stochasticity is directly related 
to overlap of nonlinear resonances, it is reasonable in the 
quantum approach to bring the isolated quantum nonlinear 
resonance as close as possible to its classical limit. This sys- 
tem of surface electrons in a clamping field, which is experi- 
mentally accessible, makes it indeed possible to realize an 
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isolated resonance under the condition n, ) 1. 
Quantum stochasticity can be studied in such a system 

by letting the resonances overlap. This can be accomplished 
by using additional external alternating-field sources that 
permit the production of mutually overlapping resonance 
systems. In addition, resonance overlap can be achieved also 
by varying the parameter K [Eq. (2.22)] all the way to K- 1. 
We note, however, that in this case we must put $7 - go, and 
analysis of the system stochastization conditions on the basis 
of the resonance-overlap conditions may turn out to be in- 
valid. Further research, including computer simulations, is 
necessary to ascertain the character of the system motion in 
this case. 

Quantum stochasticity should manifest itself in the sys- 
tem investigated by a diffusive change of the electron energy, 
and close enough to the classical limit (an, ) 1) one can ex- 
pect quantum dynamics and the law of diffusion in a classi- 
cal system to be close. 

It should also be noted that the system considered per- 
mits a study of the transition from pure quantum dynamics 
of resonance interaction (small Sn,, K- 1) to the classical 
limit. 
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