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The dynamics of a system consisting of a ground state and a band of levels in a resonant external 
field is analyzed over the entire range of intensities and rise times of this field. The spectrum of 
quasienergy states of the system is analyzed in detail. All of these states, except those with the 
highest and lowest quasienergies, are determined primarily by no more than two levels of the 
band, so that the number of levels which are populated is essentially equal to the number of 
quasienergy states involved in the resonance. The number of such states is determined as a func- 
tion of the rise time and intensity of the field. Conditions are derived for the two cases of adiabatic 
imposition and instantaneous imposition of the field. At a resonance at the band edge, the condi- 
tion for an adiabatic imposition becomes more stringent. The behavior of the intensities of all the 
levels of the system over the entire time interval is studied. In particular, when the field is imposed 
instantaneously the recursive behavior of the populations is eventually replaced by a quasiran- 
dom behavior for the ground state and by quasiperiodic behavior for the levels in the band. 
Consequences of the dynamic Stark effect at the band edges are analyzed. Even in a weak field the 
system can be completely excited into the band, while in a strong field levels can be excited 
immediately in several localized regions of the band. A differential-difference equation is con- 
structed for the population amplitude of the ground state in an arbitrary field for the case of a 
band of equidistant levels. The range of applicability of this equation is discussed. A weak anhar- 
monicity in the spectrum of band levels may intensify the recursive effects for the population of 
the ground state. 

1. INTRODUCTION 

Theoretical interest in the behavior of many-level sys- 
tems in intense resonant fields has increased sharply in re- 
cent years, primarily because of experimental results on 
many-photon dissociation of polyatomic molecules. Since a 
quasicontinuum of states is excited in this process, interest 
has been attracted to the problem of a transition which is 
induced by resonant radiation from a ground state to a band 
of levels. Transitions between levels within the band have 
not been considered. Various aspects of the excitation of 
such a system were studied in Refs. 1-8. 

The general dynamics of the filling of a band of levels 
during the instantaneous imposition of a field was analyzed 
in Refs. 1 and 2 without consideration of the band structure. 
Numerical calculations were carried out in Refs. 1-3, and 
analytic calculations in Ref. 4, on the dynamics of the popu- 
lation of the ground level during the instantaneous imposi- 
tion of a field which excites the system into a band of equidis- 
tant levels with equal transition dipole moments (for brevity 
we will say simply an "equidistant band"). The analysis was 
carried out over the time interval O<t<2To, where To = 2a/ 
Av, and Av is the distance between the levels in the band. The 
effect of the adiabatic (infinitely slow) imposition of a field on 
the emptying of the ground levels in an ultrastrong field 
j f j )AVN:'~ was studied in Refs. 5 and 6; here f is the field- 
induced broadening of one level of the band, and No is the 
effective number of levels. The behavior of the population of 
the ground level over a long time after the instantaneous 
imposition of a field, for a band with a random distribution 
of dipole moments, was studied in Ref. 7. Finally, analytic 

results were derived in Ref. 8 to describe the population of 
the ground level during the instantaneous imposition of a 
monochromatic field in the case of an infinitely wide equidis- 
tant band. 

In all these studies attention has been focused on the 
dynamics of the population of the ground level, rather than 
on the details of the filling of the band itself. Furthermore, 
where the structure of the band has been taken into account 
the analysis has been restricted by rather stringent limita- 
tions. As a result, we do not yet have an overall picture of the 
excitation process. 

In the present paper we analyze the dynamics of a sys- 
tem consisting of a ground level and a band over the entire 
time interval. We impose no restrictions on the field intensi- 
ty or rise time. Our approach will be to analyze the spectrum 
of quasienergy states of the system" (93). We show that even 
in a strong field Av < / f / (AVN:'~  nearly all of these states 
are determined primarily by only one or two levels of the 
band. Consequently, the width of the "excitation region" of 
the band, i.e., the number of levels in the band which are 
filled as the ground level is emptied, depends primarily on 
how many quasienergy states are involved in the process. 
This number in turn depends directly on the way in which 
the field is imposed. We will therefore examine the two limit- 
ing cases of an instantaneous imposition of a field (95) and an 
adiabatic imposition (56) as well as the intermediate case in 
which the field is imposed over a finite time to (97). 

We will also examine some specific consequences of the 
dynamic Stark effect which stem from the important 
changes in the indices of the band levels which are in reso- 
nance near the band edge. 
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In $4 we derive a compact differential-difference equa- 
tion describing the dynamics of the population of the ground 
level in an arbitrary field for a system with an equidistant 
band. This is a generalization of an equation derived in Refs. 
8. We determine the range of applicability of this equation. 
We show that a weak anharmonicity in the spectrum of the 
band may, under certain conditions, intensify the recursive 
effects which are characteristics of an equidistant band when 
a field is imposed instantaneously. 

We will ignore relaxation effects, since in the collision- 
less regime they should have little influence on the excitation 
of the system. 

2. DYNAMIC EQUATIONS 

We assume that the band consists of N levels with ener- 
gies &on (n = 1, . . . ,N).  The levels of the band are coupled 
to the ground level by a resonant external field 

B=E, ( t )  e-'wt+~.c., 

where Eo(t) is the slowly varying field amplitude, and the 
condition /w, - w I (w holds for all n. In the absence of re- 
laxation, and in the resonant approximation, the following 
equations1 then hold for this system: 

id= f.* ( t )  b., ib.= (An-A)  b.+jn (t) a,  (1) 

wherea(t ) and b, (t ) are the amplitudes the populations of the 
ground level and of level n ,  A = w - w, is the deviation of 
the carrier frequency of the field from the center of band,2' 
A, = w, - a,, f ,  (t ) = god, /ti is the field-induced broad- 
ening of level n, and d, is the dipole moment of the transition 
to level n. 

We are referring to the lower singlet level as the 
"ground level," although, strictly speaking, this may not be 
the case. We will simply assume that the complete system is 
initially in this level: 

From system (1) we find 

If the external field is monochromatic, i.e., ifEo(t ) = const, 
then we can analyze system (1) by a quasienergy ap- 
p r o a ~ h . ~ . ' ~ . ' . ~  The solution of ( I )  can then we written in the 
form 

where the term A ,  exp( - iE, t ] respresents a quasienergy 
state with a quasienergy E, . Here we have 

Let us assume that at T >O the external field is mono- 
chromatic and that the initial conditions are a(t = 0) = a(O), 
b (t = 0) = b, (0). Using the orthogonality relations 

k= I k = 1  k = i  

we then find 
N 

ch=aia (0) + bn;bn (0).  
n= 1 

3. QUASIENERGY STATES OF THE SYSTEM 

Equations (3)  have been written down in several places 
(e.g., Refs. 1, 2, 5, and 6), but there has been no detailed 
analysis of the quasienergy spectrum, even though it is ob- 
vious that it is the structure of this spectrum which deter- 
mines all the particular features of the behavior of the sys- 
tem. We intend to repair this omission. 

The system is described by N + 1 quasienergy states. Of 
these, N - 1 are "interior" states (Fig. I), by which we mean 
that their quasienergies are restricted to definite intervals: 

Two of the states are "edge" states, whose quasienergies are 
not limited to a definite interval: 

FIG. 1. Determination of the quasienergy spectrum for an arbitrary band 
of N levels. .-Interior quasienergies; 0--edge quasienergies. 
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It follows from (3) that in the absence of a field we would 
have 

(by definition, A, = - CO, AN+, = + a ) ;  i.e., under these 
conditions the quasienergies are identical to the ordinary 
level energies of the system (shifted by fiw for the case of the 
band). As the field is strengthened, the quasienergies shift 
monotonically to the right if A, - , - A > 0 or to the left if 
A, - A < 0. For the interior states, condition (5) of course 
holds at all times, and the limiting value for 
E, (k = 2, . . . ,N)  is the corresponding root of the equation 

for which condition (5) also holds. The quasienergies of the 
edge states increase in modulus without bound as the field is 
strengthened: E,+ - , EN+ , + + a .  

Let us examine the interior states. We assume that the 
band has no distinct levels, i.e., that Id, 1' and (A, - A, - , ) 
are comparable in magnitude for all n. We write E, in the 
form 

where 

Let us transform the sum on the right side of Eq. (3)  for E,. 
In this sum, we leave unmodified only the two terms with 
n = k and k - 1, which are the most important terms. Since 
for n#k, k - 1 we have 

where we are using (6), we use the approximation 

for the other terms in this sum. We then find from (3) an 
equation for i.,, which gives us quite accurate values of E, 
for the interior states for an arbitrary external field strength: 

where 

The quantity S (k )is an increasing function ofk, withS (1) < 0 
and S (N)  > 0. Within the band there is accordingly a certain 

kc for which the condition SO(kc ) z O  holds. We call this 
point in the band the "center of the band," and we will refer 
to S  below as the "S shift." Equation (7) is cubic in 2,. We 
wish to emphasize that we are interested in only one of the 
roots of Eq. (7), namely, that which satisfies condition (6). 
We will not use Cardan's formula to solve for this root; in- 
stead we proceed immediately to the most important cases. 

A. Weak field: / f , ((A, - A, - ,)/2 

In this case, with A , - , -A-S>O or 
A, - A - S <  0, noting that we have Z(1 in a weak field, 
and retaining on the right side of (7) only the term with the 
smaller denominator, we find 

Here j; = k - 1 when the first inequality holds, and = k 
when the second holds. For A, > A + S >  A, - , if 
IA+S-  Ai;I)I f i ; I  f o r j ; = k , k -  l,wehave,inafirstap- 
~roximation 

When I A + s -  A ~ ; / ( I  f i ; / , f o r j ; = k o r k -  1,ontheother 
hand, we have, by analogy with (8), 

Ek=i/2  (S3-Ar-A) +sign (k--k+'lZ) ['I, (A+S-Ax) '+ lbI '1 "', 

(9) 

In a weak field, one of two situations is possible: (1) The 
quasienergy state nearly coincides with some stationary 
state; (2) the approximation of a two-level system is valid [see 
(9) ] .  The effect of the band is manifested globally in the exis- 
tence of an S  shift of the resonant level of the band due to the 
dynamic Stark effect. This shift may be quite large even in a 
weak field, since at the band edge, k - 1, N for N> 1, we have 

In other words, in the case of a wide band, S may become 
greater than the distance between adjacent levels in the 
band. 

B. Strong and ultrastrong fields: ( f , l%i(A, - A,- ,  

then 

where 
Y 
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FIG. 2. Regions in the band in which condition (10) holds at a relatively 
low field strength (a) and at a relatively high field strength (b), for various 
frequency deviations of the field. In the case of an instantaneous field 
imposition, these are the regions in the band in which the levels are excited 
most efficiently the black rectangles along the abscissa show the central 
excitation region, while the open rectangles show the edge excitation re- 
gion. 

Then 
N 

(k) -"'<l, bnkX 7 I"." I-'" (11) 

In a strong, (A, - A,)> 1 fk 1 >(Ak - Ak - , )/2, condition 
(10) may hold in several regions in the band because of the 
large S shift at the band edges. Let us consider, for example, 
an equidistant band. In this case (10) take the form 

whereB= I f  I2T:/2. Fo rp  < 2$N/In N, there may be one 
or two regions in the band in which condition (10) holds (Fig. 
2a). For 2.rrN>P> 2?N/ln N, there may be two or three 
such regions (Fig. 2b). In the central region the number of 
levels is on the order ofp, while in the edge regions there are 
1 + N exp( - 2?N/ln N )  levels, i.e., significantly fewer. 
Further, estimates show that several clearly localized re- 
gions-defined by inequality (10)-can exist only in a very 
broad band, with N >  lo4. When 

/A - . -A-3 ' Ia -  I f,: i 2  -- I fL-l l 2  
22 Ah. - 4 - 1  ' 

- 
where k = k - 19 (Ai; - A - S )  [B  (x) is the unit step func- 
tion], we have 

E~ =AB + (I f, I" I If,-, I" I dz l2 ' 

(A, - A - S) (1 d, IZ  +- 1 dk-1 12) ' 

The contributions of the main level to these states are much 
smaller than those in (1 1). 

SinceZ /(Z, - Z ) -- 1/4, a good approximation of 8, in 
a strong field, for any value of the parameter 

This expression is found from (7) by ignoring 8, on the left 
side. The sign is chosen to satisfy the equalities (5). 

In strong and ultrastrong fields, the contributions bnk 
to essentially all of the interior states are independent of the 
field intensity. In region (lo), where the levels of the band are 
mixed to the greatest extent, just two levels with n = k and 
n = k - 1 dominate in the quasienergy state, while in re- 
gions (1 3) a single level dominates. Consequently, if the inte- 
rior states play a leading role in filling a band, the width of 
the excitation region will be essentially equal to the number 
of states involved the process. In turn, this number depends 
strongly on the way in which the field is imposed, as we will 
see in the subsequent sections of this paper. 

The structure of the edge states in a strong field differs 
substantially from the structure of the interior states. As the 
field is intensified, progressively more levels at the corre- 
sponding band edge become involved in these edge states. 
When the field becomes ultrastrong, 

X 

on the other hand, the entire band becomes involved in the 
edge state: 

N 

The edge states describe a generalized two-level system, and 
the band acts as an upper level with a substructure. 

4. BAND OF EQUIDISTANT LEVELS 

We now consider a band of equidistant levels 
(A, + , - A, = AY, n = 0, 1 ,...) in an arbitrary field; the 
levels are counted from the center of the band. We assume 
that the number of levels is infinite and that the n depen- 
dence of Id, 1 is smooth; we are thereby ignoring effects due 
to sharp edges on the band. We transform to the dimension- 
less quantities 

We assume that the number of band levels which are actively 
involved in the resonant excitation in N,,, and that these 
levels lie in a single, well-localized, excitation region. We 
assume that this region is displaced by an amount e, / 2 ~  from 
the resonance, where Iq, / 4 IS]. 

The kernel of integral equation (2), 

is periodic in .r - T ,  with a period of 1. If the band is suffi- 
is the expression ciently wide, 
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where No is the effective number of levels in the band, the 
kernel @(r - 7,) will be nonzero only in small neighbor- 
hoods Ar = l/No around the times r - r, = m. We use the 
replacement 

We assume that ii(t ) and also the intensity and frequency 
of the external field vary slowly over a time Ar and that the 
dipole moments vary quite smoothly: 

where 

f = ~ j ~ e x p { i  ! tj1 d n } .  
-a 

By virtue of condition (15), we can limit the integration in 
Eq. (2) for the amplitude a to small intervals ri, near the 
times r, = r - m. In other words, we can restrict the inte- 
gration to I T  - m - r ,  I 5: r,, , where 

The results of the integration are essentially independent of 
rin,  and in establishing the integration limits we can set 
rin = a, everywhere we find ri, . The equation for the ampli- 
tude a then becomes 

- x n t  j - a -  a ( - L F ) = I ,  

where 
n,= [6+q ( t - m )  -61 ( T - m )  ] /2n, 

rr +a 

s. mo ( T )  = 2  S dr ,  %sin[ (6+q ( T )  - 6 1  ( T )  

0 -m !dnmI 

This equation can be transformed into a differential-differ- 
ence equation of the neutral type: 

go* ( T - I )  [dald~+P,,  ( T )  (l+is,: (a) ) a  ( t )  ] =BO* ( t )  e''" 

x [ a  ( I )  d -  ( - 1 )  1 - i s 0  ( I )  a ( - I ) ]  , (16) 

whereon = I T ;  I f n  (7)12. Equation (16), combined with the 
equations 

gives a complete description of the dynamics of the system 
under restrictions (15). Galbraith et al.' have derived a parti- 
cular case of Eq. (16) for an infinitely wide equidistant band 
(so = 0, q, = 0) and for a monochromatic field Eo = const. 
For this band, Eq. (16) is exact. 

It can be seen from (16) that the dynamics ofthe popula- 
tion of the ground level is determined primarily by the local 
characteristics of the band in excitation region. The quantity 
/3,,s:, is the sum as the S shift introduced in the preceding 
section. The shift q, of this region with respect to the reso- 
nance stems from the dynamic Stark effect, but the value ofq, 
is determined not only by psO but also by the way in which 
the field is imposed. It can be shown that we have 

In particular, we haveq, = 0 when the field is applied adiaba- 
tically or q, = psO when it is applied instantaneously. For an 
unbounded equidistant band, q, is always zero, since any 
point of the band is the center of the band, and we have sO=O. 

If Eq. (16) is to be correct, the excitation region must be 
unique. For an adiabatic field imposition this condition 
holds in any case at arbitrary intensities, under the sole re- 
striction A, > A > A,.  For instantaneous field imposition, 
for bands characterized by a unique width parameter No, Eq. 
(16) holds if 

$ e ~ n L N o / 2 ,  for 16 1 <nNo,  

161BPc for 161>nN0, 

where the subscript c means the center of the band. If, how- 
ever, the band edge is characterized by a width N, (No, then 
at PC < r N 1  no additional restrictions on (19) arise. If 
p, > rN, ,  on the other hand, a truncated wedge is cut out of 
region (19). The shape of this wedge varies slightly with the 
particular form of the band, but it can be estimated from 
(Fig. 3). 

which, as it turns out, corresponds to the existence of a 
unique region in the band in which condition (10) holds. 

As we mentioned in $3, the width of the edge excitation 
regions is significantly smaller than that of the central re- 
gion. For this reason, Eq. (16) always gives a good descrip- 
tion of the latter in a strong field or when the central region 

FIG. 3. Region of applicability of Eq. (16) for instantaneous imposition of 
a field. Hatched region-Band with smooth edges; double-hatched re- 
gion-band with sharp edges. 
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in narrower than No. In this case the second inequality in (19) 
can be replaced by the less stringent inequality IS1>8 P,No 
at 161 > aNo. Equation (16) is thus applicable in all cases ex- 
cept that in which there is a resonance with the entire band as 
a whole; i.e., the limiting case of an ultrastrong field goes 
beyond the applicability of Eq. (16). Although the S shift 
may be significant, it is always less than the deviation from 
the center of the band, 1s) 4 IS/, in the range of applicability of 
Eq. (16). Consequently, using inequality (18), we can ignore 
the dependence of the S shift on the shift p, which we can 
determine by solving Eq. (17), at an accuracy to within the 
half-width of the excitation region, of course. 

Let us examine the quasienergy states of Eq. (16). In 
terms of dimensionless variables we have 

bnh= (2P) 'l2ak (ek-2nnf6)  -I, 
(20) 

In a weak field, the equidistant nature of the band gives rise 
to no effects beyond those in (8) and (9). In a strong field, 
P >  a2/2, we find from (20) 

e=z (2kS 1) -6-2 arctg Y, 

Y ( k )  = (2nk+n-G,)/p, 6"=fi+Ps0. (21) 

It is not difficult to see that the approximate general expres- 
sion derived for the quasienergies in the preceding section 
agrees very accurately with (21) in the case of an equidistant 
band. It follows from (21) that the ground level enters about 
P quasienergy states with an identical weight. In these states 
we have Y 5 1 [cf. condition (lo)], and 80% of the contribu- 
tion comes from the n = k and n = k - 1 levels. Because of 
the last term in Eq. (21) for the quasienergy, their spectrum is 
nonlinear, but at Y '4 1 this nonlinearity is weak. This cir- 
cumstance is a distinctive feature of the system consisting of 
a ground level and an equidistant band. 

5. INSTANTANEOUS IMPOSITION OF A FIELD 

For the instantaneous imposition of a monochromatic 
field we find from (4) 

In a weak field, if A + S = A,, the system behaves as if it 
were a two-level system. At a resonance at the band edge, 
because of the large S shift the level which is captured in the 
resonance may be entirely different from the level "which 
was aimed at" (A = A, ), and be shifted a distances from this 
target level toward the edge. The time average of the popula- 

tion, la(t )I2, is no less than 0.5. 
In a strong field, expression (22) is dominated by states 

which satisfy condition (10). Their number is, in order of 
magnitude, 

where the average is over the excitation region. If the band is 
not equidistant, the different quasienergies are essentially 
random numbers with respect to each other from the very 
outset. Accordingly, the quasienergy states completely lose 
their phase coherence in a time of only 2a[Pav Ava,]-' after 
the field is imposed, and the population amplitude a(t  ) be- 
haves as if it were a complex, "nearly Gaussian" noise: 

where the angle brackets mean an average over a time on the 
order of 2a/Avav. 

If, on the other hand, the band is symmetric 
(A, = - A, -, + , ), the noise will be not complex but real 
exactly at a resonance at the center of the band, because of 
the relation E, = - EN - , + , . 

During the emptying of the ground level in a band in 
which condition (10) holds, regions appear in which the 
time-average populations are also of the same order of mag- 
nitude as (24). In contrast with the ground level, however, 
these populations are more reminsicent of periodic functions 
of the time. As was shown in $3, two levels of the band domi- 
nate the resonant quasienergy state. Corresponding, in (23) 
two states, k = n and k = n + 1, play a leading role for levels 
from the excitation region. We can therefore write 

x exp {-i (E,AE,+~) t )  4- C.C. -I- 0, ( t )  , 

where @,(t ) is a small increment, a; and b are given by 
(1 I), and E = n,n + 1. 

Outside the excitation region, expression (23) is domi- 
nated by a single state, and / b, 1' remains constant over time, 
much lower than the population of the resonant levels. Be- 
cause of the large S shifts, the excitation regions may be 
shifted toward the band edges by a distance greater than 
their width by a factor of AvavSO. 

In an extremely strong field, two edge states become 
dominant, and we arrive at the approximation of a general- 
ized two-level system, which has been discussed in many 
papers (see, e.g., Refs. 1, 2, and 5). 

If the excitation occurs into an equidistant band, recur- 
sive phenomena will arise during the instantaneous imposi- 
tion of a strong monochromatic field.'*4,8 In this case Eq. (16) 
becomes 

Its solution is 
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FIG. 4. Time evolution of the population of the ground level in the case of 
equidistant band (numerical calculations). N = 60, b = 20,6 = 0. a-Re- 
cursive phenomena ("bursts") at T<P; b-quasirandom behavior at 
r > B .  

a ( t )  = exp {-P ( l+ iso)  .t) 
w 

where L ; '(x) are Laguerre polynomials. Solution (26) was 
derived in Ref. 8 with so = 0 and without a discusssion of its 
range of appli~ability.~' 

A characteristic feature of (26) in a strong field is the 
recursive behavior of the population a at T <P. In the in- 
tervaln(r(n + 1 the function j a ( ~ ) / ~  is a series ofn "bursts" 
of increasing amplitude; the amplitude does not depend on 
the field intensity (the maximum amplitude is on the order of 

-213, where n = 2,3, . . . ; see Fig. 4a). The recursive behav- 
ior of this population is a manifestation of the linearity of 
spectrum (21) at Y241. Over a time of order 8 ,  however, 
there is a complete loss of phase coherence, and at T > P  the 
population la / starts to behave in complete accordance with 
the general rules as a random function which is, because of 
the equidistant nature of the band, quasiperiodic with a peri- 
od of l + P -  ' (Fig. 4b). 

In addition to (15), we have some other restrictions on 
the applicability of solution (26): 

dza ( n )  
< 1, 

where a(n)  is a nonlinear increment in the spectrum of the 
band, and A, = Av(n + a). If the first of these conditions 
does not hold, a transition will take place from an exponen- 
tial emptying of the ground level to a power-law emptying14 
at the ends of the intervals (n,n + I), P>n: 

The reason for this result is that the contribution of la, 12, as 
a function of the continuous parameter k, has discontinuities 

A la(k ) 1 -P /N at k = 0 and N + 2. Since PgN, however, 
the changes in (26) can be regarded as unimportant to the 
present analysis. If there is a pronounced anharmonicity in 
the spectrum of the band, i.e., if the second of the conditions 
is violated, recurrence phenomena will not be observed be- 
cause of the important nonlinearity of the quasienergy spec- 
trum. If, on the other hand, the anharmonicity in the band is 
slight, coherent effects may in fact be amplified in a certain 
intensity range. The explanation is as follows: The quasien- 
ergy spectrum of an equidistant band is nonlinear. For the 
most important states this nonlinearity is on the order of k 3/ 

P 3, where k SP.  When the band is anharmonic, the nonlin- 
earity ofthespectrumison theorder ofk 3/P + a ( k  ). Ifa(k ) 
and k 3/P differ in sign, the spectrum becomes linearized in 
the region important for coherent effects under the condi- 
tion la( P ) I  - 1. For a (k  ) = a,k with aok < 0, for example, 
the spectrum becomes linearized, but if aok > 0 it does not. 
The linearization of the spectrum, however, even for half of 
the quasienergies can contribute an amplifying effect, as is 
seen in the results of the numerical calculations (Fig. 5). This 
compensatory effect is seen most vividly in the case of a sym- 
metric band with a negative anharmonicity, with an exact 
resonance at the center of band. In this case the entire spec- 
trum becomes linearized, and the condition for maximum 
amplification of the bursts is a, P =: 1. With a further in- 
crease in the field intensity, of course, the nonlinearity of the 
band spectrum by itself begins to disrupt the quasienergy 
spectrum, and the coherent effects gradually disapear. 

We now consider the population of the levels in the 
band. From (21) we find 

exp {-i (n ( 2 k + l )  - 2 arctg Y )  t )  

( 1 + Y 2 )  [ 1 + 2 ( k - n )  - (2 /n )arc tg  Y ]  ' 

(27) 

Knowing a(r) ,  we find b, (7) for any time from (17). We will 
not write out these solutions in their general form; instead we 
consider the most important cases. 

For the resonant levels in the band, i.e., for 
( 2 m  - So/ @, and in a strong field, we have 

2 
b. = (%) ' exp {-iEkt) 

k =  -a 
n ( I t 2  ( k - n )  ) 

If T <P, the change in the population lb, 1' is also recursive. 
For example, for resonant levels with 0 ~ 7 ~ 3  we have 

L 
I bn12=- P 11-2(l+P(7-1) )e-""-')12 for 1 ~ ~ ~ 2 ,  

for 2 G t G 3 .  

To the extent that the phase coherence is lost at r>B, a be- 
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For nonresonant levels ( 1  277n - Sol ,p ) we can distinguish in 
(27) two ensemble of states which play a leading role in the 
dynamics of the populations: k = n and 12rk - Sol <p /2. 
We thus have 

(2P)  "$ = -[ exp (-8,~) - a ( T )  1 
2xn-6, 

The population of a nonresonant level also initially changes 
in a recursive manner, and later, as a(?) converts into noise, 
the second ensemble becomes unimportant, and / b, (r) l 2  ap- 
proaches aconstant value / b, (r)1 = 2 P (2an - In the 
general case, over a long time, the time average of the popu- 
lation is 

FIG. 5. Effect of weak anharmonicity on the height of the coherent 
"bursts" 6 = 14, N = 160. a: Solid Line--a, = - 0.005, 6 = 0; dashed 
line--ao = 0.005,6 = 20; dotted l ine-a ,  = 0,6  = 0. b: Nonlinear part of 
the quasienergies and of the Ic, 1' contribution versus the index of the 
quasienergy state. A weak anharmonicity has an obvious linearizing ef- 
fect. The curves are drawn for common values of k for clarity. 

< 1 b,, ( T )  I2)=2P/[P2+ ( 2 ~ n - 6 , ) ~ ] ,  

in agreement with the result derived in Refs. 1 and 2 for a 
band with a continuum of levels. Over a long time the popu- 
lations in the band thus change in a quite regular way: The 
populations of the resonant levels vary periodically, and 
those of the nonresonant levels remain constant. The quasir- 
andom nature of the change in the population of the ground 
level, in contrast, results from a drift of the phase of the 
population amplitudes of the resonant levels of the band 
with respect to each other. 

6. ADIABATIC IMPOSITION OF A FIELD 

In the case of an infinitely slow imposition of the field, 
the system will of course be in a definite quasienergy state 
with a quasienergy which satisfies the condition 
Ek ( - co ) = 0, Ak > A > Ak - ,in this case. This quasien- 
ergy and all the other characterstics of this state must vary 
continuously with a change in the field. 

The condition for adiabatic behavior can be found by 
the general procedure for finding the probability for a transi- 
tion induced by an adiabatic perturbation (553 in Ref. 15). 

havior independent of the particular form of the band be- 
comes dominant, and the population of the resonant level 
becomes reminiscent of a periodic function (Fig. 6). From 
(27) we find 

2 2  
/ b . ( ~ )  1 2 ~ - [ 0 . 2 + 1 , 6 s i n 2 n ( 1 - p )  fi r ] .  

FIG. 6 .  Time evolution of the population of a level in an equidis- 
tant band (numerical calculations). a-Recursive behavior at 
T <a; b--periodic behavior of the population for resonant levels 
and a constant value with superimposed noise for nonresonant 
levels at r > 6. P= 20,6 = 0, N = 60. Solid curve) n = 10 (non- 
resonant levels); dash curve) n = 30 (resonant levels). The level 
index is measured from the lower edge of the band. 
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For the probability a,, *, for a transition from the initial 
state to a neighboring state 

t. 

a, = exp {-2 1 1m S (Bk,,-Ek)dt I }  . 
f t  

where Ek (t , ) = E,, , (t , ), the time t, has a positive 
imaginary part, and t, is any point on the real axis. For defi- 
niteness we consider the upper edge of the band (So > 0). We 
assume that a field Eo(t ) = R0(0)exp(t /to) at t < 0 and a field 
Eo(t ) = E0(0) at t)O. For 1S0A + (1 we find 

cI)kk*i=eXP {-~tOAf}<l, 

where A+ = A, - A and A- = A - A, _ , . This is the well- 
known criterion for the adiabatic imposition of a field. For 
(1/2)S0A, )I, i.e., at the band edge, we again find a prob- 
ability u,, - , = exp( - rtoA- ] for a transition to the state 
(k - 1). For a transition to the (k + 1) state, however, we 
now have ukk + = exp( - 2rtJS0]. This is an analog of 
the Landau-Zenner effect, which occurs because the dis- 
tance between neighboring quasienergy terms initially de- 
creases and then increases. For the general case the condi- 
tion for adiabatic behavior is 

The usual condition for adiabatic behavior thus becomes 
more stringent at the band edge.4' In a strong field the system 
is nearly entirely excited into the band, and the "superselec- 
tivity" studied in Ref. 5 for the case of an extremely strong 
field occurs. At the center of the band, condition (10) holds, 
and the level populations are determined by (1 1). Essentially 
two levels, with n = k and k - 1, are populated in the band. 
At a resonance at the band edge, expressions (13) apply. Only 
a single level is populated, and we have 

where la 1: is the residual population of the ground level for 
the case of a resonance at the center of the band. When there 
is a resonance at the band edge, the ground level is thus 
emptied to an even greater extent than it would be in the case 
of a resonance at the center of the band, as was pointed out 
previously by Petersone6 It can be seen from these results 
that the rate at which the field is imposed is not as important 
for the total population of the band as in the case of an ex- 
tremely strong field (in which case the integrated popula- 
tions of the band differ by a factor of two). In a strong field, 
on the other hand, regardless of the rate at which the field is 
applied, the system goes nearly entirely into the band. In this 
case, however, there are important differences in the distri- 
bution of the system among levels. While in the case of an 
instantaneous field imposition there are equal probabilities 
for the filling of something on the order ofp) 1 levels, in the 
case of an adiabatic imposition only one or two levels are 
filled. 

Because of the large S shift at the band edge even in a 
weak field, there can be an essentially complete excitation of 
the system. IfBsO(r, i.e., at the center of the band, the time 
average of the population of the ground level cannot be less 

than 0.5. For this population to decrease even to 0.5, we 
would need a very accurate resonance with some level in the 
band. For a resonance at the band edge, on the other hand, a 
situation withpso)r, butp < a2/2 would be completely pos- 
sible. It follows from (8) that we have la l 2  = 4(1 f IS0)-2g 1 in 
this case, and the system is excited almost entirely into a 
definite level. In order to achieve this efficient excitation it is 
sufficient to simply "aim" in the vicinity of the band edge; it 
is not necessary to seek any narrow resonances. 

If condition (28) does not hold, but the condition 
to(Ak - A, - , )) 1 nevertheless does, the dynamics of the 
system is described by a combination of two states. For clar- 
ity we consider an equidistant band with an exact resonance 
at the center (6 = 0). We then have 

z 

4nn 2 i ~  
C O S  j E dTi + 

X [  4n2n2-e2 -m  

sin J" 8 dr,] . 
4nZn2-6' -_ 

In a strong field, at r > 0, we have 

Expressions (29) and (30) generalize the result derived in Ref. 
5 for a three-level system to the ground level. Specifically, in 
the case of a resonance with a slow imposition of the field the 
amplitude of the Rabi oscillations of the population of this 
level decreases to a small value as the field intensity in- 
creases. In a sense, the Rabi oscillations are carried into the 
band, and their frequency is nearly equal to the distance 
between the levels in the band in the case of a strong field. 
The time averages of the populations in the band in this case 
are slightly different from those in the adiabatic case, but we 
see from (30) that, as in the adiabatic case, the populations in 
the band do not depend on the field intensity. With a prob- 
ability of 0.85 the system populates one of the three levels 
n = 0 ,  _ + I .  

7. INTERMEDIATE CASE OF FIELD IMPOSITION 

We now consider the real case in which the field is ap- 
plied over a finite time. For clarity we assume an equidistant 
band. This assumption does not restrict the generality of the 
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analysis, since the specific features of such a band are seen 
only in the recursive phenomena resulting for instantaneous 
field imposition, and we will not be focusing on those phe- 
nomena in this section of the paper. Furthermore, we assume 
mod2,6-r, since the subtle effects which arise in a weak 
field in the case Ir - mod2,S/ z?r were discussed at the end 
of the preceding section. We assume P (7) = P e x p ( 2 ~ / ~ ~ )  at 
TGO and p (7) = fl at 7>0. We first consider a resonance at 
the center of the band, with /so I 4 1. At 7, > 1, we have adia- 
batic behavior. At P < 1, regardless of the way in which the 
field is imposed, no more than one state will be at resonance, 
and there is no essential difference between the cases in 
which the field is imposed in different way. We therefore 
assume T ~ <  1 and 8% 1. At .r < 0, even in the case of equidis- 
tant levels, the phase memory of the band plays no role [the 
right side of (16) is exponentially small]. Working directly 
from (2), assuming 

for clarity, we find 

A solution of Eq. (3 1) can be expressed in terms of a Bessel 
function: 

Hence 

then la(O)I24 1, and we can set x(0) = cc in (33). We then find 

It is not difficult to see that the edge states are of minor 
importance in this case, and we have Ick / =: I bk (0) 1 2. Under 
condition (34), the dynamics of the system is thus dominated 
by something on the order of T; ' states. The width of the 
excitation region is also of order T; ', and the average popu- 
lation in it is of order 7,. We then find 

The time average of the population, la 12, is the same as in the 
adiabatic case, while the recursive effects are less pro- 
nounced. We will call the situation discussed above, in which 

the parameters of the excitation region depend strongly on 
the rate of the field imposition, the "intermediate case" of 
field imposition. If, on the other hand, 

then a ( 0 )  = cos[ ( P T ~  min(2Noro, 1 )  )'"I 
and we are essentially dealing with the instantaneous field 
imposition approximation. 

We turn now to the case of a resonance at the band edge. 
For definiteness, we consider the upper edge: sO>l 1. If 
P < r/sO, we have the same situation as in the case f l<  1 at 
the center of the band. If /3 (7) > r/sO, but P (T) 5 1 and 
2m,,<s0, we can apply the Landau-Zenner analysis to a 
transition between quasienergy states, by a procedure analo- 
gous to that of the preceding section. It is not difficult to see 
that as the field is increased these states are populated with a 
probability 

where ( k + k , )  is the index of the state, and 
2 rk  > S > 2r(k - 1). The states are filled up to the state of 
index 

here 

I f s O < ~ O ( r N O  - S ) a n d ~ ~ B ( ~ ) % l  (i.e.,if,B< l , ~ ~ > P - ' o r i f  
> 1, T~ > l), the distribution of the system among states can 

be assumed already formed, and expression (35) gives us the 
contributions of states which the description of the dynam- 
ics of the system. Something on the order ofs0/2r7,) 1 levels 
in the band are filled, and we have I b, l 2  =: Ic, 12. The popula- 
tion of the ground level is the same as in the adiabatic case: 
laI2 = 1/P If, on the other hand, 

then we have Ick+ ko / z: 1, we can use the instantaneous field 
imposition approximation. The population la l 2  is approxi- 
mately unity, and the system is not excited into the band. 

If 1 <p < (rNO - S)/sO at r0 < 1, then we find the fol- 
lowing result from (16) for r < O :  

From (17) we then have 

where y(x, y) is the incomplete gamma function. For P T ~  
241 we have la(O)lz 1, corresponding to instantaneous field 
imposition. For P7,/2) 1 we find from (36) 
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nT, exp((2nn-6) TO arctg so) 
l a ( O ) 1 ~ 1 ,  Ibn(0)I2=-  

(1 + (so) ') ch[ ' I2  n (2nn-6) eo]  ' 

This is the intermediate case of field imposition. The contri- 
butions of the quasienergy states are given by (4) and (37), 
and we have lck 1 1 bk (0) I = ( I bk 1 '). The width of the ex- 
citation region, s0/2n-r,, can become greater than the width 
( 0) in the case of instantaneous field imposition. When the 
resonance occurs too close to the band edge, and the condi- 
tionsp, l/rO)(n-NO - S)/sO hold, the system is basically in an 
edge state. If 0 <No, we have the nonresonant case of an 
instantaneous field imposition, and the population (a12 is 
close to unity. As the field is strengthened, first the edge of 
the band and then the entire band begin to be captured into 
this state. At P)No, the population la12 reaches 0.5, and the 
band becomes uniformly populated: (6 ,  I Z  = (2N0)- ' [see 
(14) for an arbitrary band]. This picture is analogous to the 
adiabatic imposition of an ultrastrong field with A > A,. 

8. CONCLUSION 

From this study of the dynamics of a system consisting 
of a ground level and a band, carried out for various rates of 
the field imposition and for various field strengths, we can 
draw several conclusions: 

1) In a strong field the contributions of the levels of the 
band to the quasienergy states are essentially independent of 
the field strength, and one or two levels are dominant in the 
interior states. The number of states participating in the ex- 
citation is determined by both the field imposition rate and 
the frequency deviation from the center of the band. The 
width of the excitation region in the band is equal to the 
number of such states. 

2) For a resonance at the band edge, the customary con- 
dition for adiabatic field imposition becomes more stringent 
(2n-rdsO> I), and even in a weak field ( P($/2, Ps0 > n-) 
there can be an essentially complete excitation of the system 
into the band. 

3) During the instantaneous imposition of the field, 
something on the order of p levels are excited in the band, 
and the populations of these levels are nearly periodic func- 
tions of time. 

4) For instantaneous field imposition in a very broad 
band (No> lo4), several excitation regions may arise: In addi- 
tion to the central region, levels at the band edges may be 
drawn into a resonance because of the large S shift. 

5) For a band of equidistant levels, with smoothly vary- 
ing dipole moments, we have derived a differential-differ- 
ence equation for the population amplitude of the ground 
level for a field which varies arbitrarily with time. It has been 
shown that this equation is applicable except in the approxi- 
mation of a generalized two-level system. 

6) Recursive effects for the population of the ground 
level may be enhanced by a slight anharmonicity in the spec- 

trum of the band. 
7) In a strong field, the time average of the population of 

the ground level is nearly independent of the field imposition 
rate and is on the order ofB -'. For the cases of instantan- 
eous and intermediate field imposition, this population be- 
haves like a random function of the time. 

8) For the intermediate case of the field imposition, the 
width of the excitation region is on the order of (1 + ( s ~ ) ~ ) " ~ /  
2n-rO, and the width at the band edge may be greater than 
that in the case of instantaneous field imposition. 

The results of this study show that an analysis of actual 
experiments on the excitation of many-level systems absolu- 
tely must incorporate the effects of all the parameters of the 
external field (the intensity, the imposition rate, and the fre- 
quency deviation) on the nature of the excitation of the sys- 
tem. These effects may be varied and quite complicated. 

I wish to thank M. V. Kuz'min, A. A. Makarov, V. A. 
Namiot, V. N. Sazonov, and M. V. Fedorov for useful and 
stimulating discussions. 

"For brevity below, we will call the quasienergy states simply "states," 
while the stationary states of the system in the absence of a field are 
"levels." 

"The center of the band is defined in $3. 
3iMathematically, solution (26) is analogous to the solution derived in 

Refs. 11 and 12 in an analysis of intramolecular transitions and in Ref. 13 
for the density matrix of a two-level system in a multifrequency field with 
an equidistant mode spectrum in the splitting approximation. 

4iThis point was not mentioned in Ref. 6, where the case of an adiabatic 
field imposition with a large S shift was analyzed. 
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