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We develop the theory of a continuous phase transition from a rotational band to a Maclaurin 
spheroid, in which the mechanical moment of inertia of a precessing nucleus serves as the order- 
ing parameter. A general expression for this moment in terms of the rotational band level energy 
allows us to self-consistently minimize the energy, making it single-valued. The complete solution 
determines the type of singularities of the band characteristics at its endpoint J = Jo. An estimate 
of the Maclaurin spheroid fluctuations is expressed via the corresponding classical moment of 
inertia. In the band J <  Jo the levels do not fluctuate. It is possible to estimate the spheroid 
quadrupole radiation resulting from quantum fluctuations in its shape. The intensity of this 
radiation is small compared to the band radiation, but much larger than that of the single-particle 
scale. 

1. INTRODUCTION. THE ROLE OF CENTRIFUGAL FORCE 

In principle, a thorough study of the rotational proper- 
ties of a cold quantum fluid would include a consideration of 
the sequence of levels 

minimizing the total energy of the entire system for different 
values of its conserved angular momentum J. Even as ap- 
plied to the nucleus only (a Fermi liquid) the properties of 
this sequence1' are well known to reveal considerable var- 
iety. It is by no means obvious that an arbitrary component 
corresponds to a real rotation in the strict sense (a rotation 
band). For quantum reasons, a purely mechanical rotation is 
impossible for a highly symmetric configuration. Even then, 
however, the levels (1) may exhibit a "pseudorotational" be- 
havior under certain circumstances. 

The singular points of the lines defined by (1) are of 
especial theoretical interest. The simplest cases-discontin- 
uities in the energy curve-seem to have been rather widely 
dis~ussed.~' We have already treated the experimentally 
most accessible of these, J, z k ,  R (where kj is the limiting 
momentum and R is the radius of the nucleus) as a singular- 
ity of the rotation band (Refs. 2-4). Good agreement with 
experiment was obtained, and the physical meaning of the 
singularity J = Jc is closely related to the spin alignment of 
the nucleons, leading, apparently, to a complete reordering 
of the angular momentum coupling scheme of the rotating 
nucleus. It is noteworthy that even at the endpoint J = Jo of 
the rotation band the derivative of the energy with respect to 
the spin also decreases in jumps; more will be said about this 
in the next section. 

The aim of this paper is to analyze the unavoidable dis- 
continuity in the band that arises from the increasing influ- 
ence of the centrifugal force on the shape of a highly non- 
spherical nucleus, and to shed light on the properties of that 
J>Jo part of the minimizing sequence (1) of the nuclear lev- 
els that lies in the band. For the purposes of preliminary 
orientation the small drop mode15s6 is best for the study of 

centrifugal effects. Its behavior for moderate values of the 
angular momentum has been well studied.'-'' 

The model is extremely primitive and, strictly speaking, 
pseudorotational (the ground state J = 0 is spherical). Since 
for small perturbations a(l it is known that the principal 
role belongs to the quadrupole component a2=a, in the usu- 
al expansion of the shape of the nucleus in spherical harmon- 
ics 

R(cos  6) =Ro{l+ao+azPa (cos 8) } (2) 

we immediately limit ourselves to the second Legendre po- 
lynomial. For simplicity, we also neglect the Coulomb ener- 
gy U,. It can always be taken into account by the substitu- 
tion 

Us- (1-x) UP, 

wherex = Uc/2Us is the well known divisibility parameter. 
This leaves only the surface energy Us,  and for the momen- 
tum J the equilibrium shape is defined by 

U8+ (hZ/21,,) J2=min. (3) 

Here Ill is the classical moment of inertia about an axis of 
symmetry parallel to the vector J. 

In our present approximation the dependence of Us 
and I  on the deformation is known, and our problem can be 
solved by equating to zero the derivative with respect to a of 
the left side of (3).  Besides the rotational velocity 

we introduce the equilibrium value of the deformation: 

Here I ,  = 2/5MR is the rigid body inertial moment of the 
spherical configuration of the nucleus, and the minus sign of 
the deformation indicates that the nucleus forms an oblate 
Maclaurin spheroid; see for instance Ref. 1 1. 
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How does this model correspond with reality? Because 
of the quantum structure of the ground state of a Fermi liq- 
uid a nucleus of strongly nonspherical shape undergoes a 
spontaneous deformation 

Because of its origin this is in no way coupled to the momen- 
tum vector J of the total system, and precesses freely about 
it. The deformation ( S ) ,  which is due to centrifugal forces, is 
strictly fixed with respect to J and displays sharp growth as a 
function of the spin J. Clearly the competition ends in its 
favor. On the next level of the rotation band the precession 
deformation will be finally suppressed by centrifugal forces. 
From / a  ( -a we can estimate the order of magnitude of its 
spin: 

Although purely formal estimates are sometimes quite inex- 
act in these problems, to study the dependence on the dimen- 
sions of the nucleus (or on the number of particles in it), we 
introduce the characteristic energy 

e=pjuf/2-50 MeV. (8) 

Herepf is the momentum of the bounding quasinucleon, in 
the usual units and vf is its velocity. Here we have 

Thus for J >  J, (a Maclaurin spheroid) the precessional 
deformation is absent and there is no purely mechanical mo- 
tion (precession). 

2. THE ENDPOINT OF THE ROTATION BAND 

We now focus our attention on the region J <  J,, where 
the levels (1) are embedded in the rotation band. For angular 
velocity 0 and moment of inertia I we have (Refs. 2, 4) 

Here E (J ) = E, . The mechanical properties of this region are 
determined by the presence in the system of the unit vector 
n(S,p ) which specifies the direction of the precessional com- 
ponent of the deformation. This characteristic spontaneous 
symmetry breakdown in the given case is equivalent in its 
implications to purely mechanical rotation. 

Landau13 emphasized the role of the moment of inertia 
I .  He related the loss of rotational capability-the transition 
to an unbroken symmetry-to the vanishing ofI. This repre- 
sents a deformation-dependent scalar (ill1 J in free space) in 
which the latter enter via their invariant combination. These 
considerations supports the convenient and natural choice 
of an ordering parameter that characterizes the breakdown 
of symmetry for J <  J,. Near the endpoint the actual values 
of I are much smaller than I, and must be energetically ad- 
vantageous. We expand the general expression for the ener- 
gy into a power series and retain the low order terms: 

The function E,(J) represents the energy of the disordered 
(symmetric) state, as a spheroid that actually exists for J >  J,. 
The indices b and r represent the respective regions J <  J, 
and J >  J,; the supplementary index 0 characterizes the val- 
ue assumed for J = J, f 0. In their customary forms we have 
for the coefficient 

and 6'E /dI = 0 yields 

Moreover, even the preferred value of I must be related 
to the energy of the mechanical relations (10). Introducing 
the convenient notation = E, - E,, we can simplify the 
second derivative of the energy variable in the limit that in- 
terests us so that we have 

Here we assume that 

d(AQ,) AQ, f i2  f i2 f i2  
-----=- --<<-. 

dJ J I , ,  I0 I 

By eliminating the mechanical moment of inertia I from the 
relations (12) and (13) we arrive at 

This equation determines all the essential characteristics of 
the phase transition to a Maclaurin spheroid. 

We easily transform equation (14) to the implicit form: 

Here y = $''' and C >  0 is a constant of integration; the 
other arbitrary constant is chosen so that i and $ vanish 
simultaneously. Near the transition point y(C. We retain 
the linear contribution from y on the right, and expand (15) 
through the third order terms: 

Inverting this relation with the required precision, we find 
for 27 and its derivatives 

As J+J0 - 0 the angular velocity has a singularity, but 
remains finite. It is clear from the second equation that at the 
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FIG. 1 

endpoint of the rotation band the angular velocity jumps to 
some finite value 

(see Fig. 1). The curves of phase energy intersect at an angle, 
as shown in Fig. 2. The mechanical moment of inertia van- 
ishes like (Jo - J)"': 

There is no direct and precise physical meaning for the pa- 
rameter J,. Nevertheless, the quantity J, - J, determines 
the order of magnitude of the distance to the endpoint of the 
rotstion band, at which the moment of inertia begins to fall 
away from our approximation of it. We may write 

as a criterion for the applicability of our theory. 
We estimate the parameters more precisely by propos- 

ing that even before going over to a Maclaurin spheroid the 
band has begun to approach the rigid body asymptote I d o .  
Near the transition point the difference in phase velocity is 
given by equation (17). (The coefficients are conveniently ex- 
pressed via A(fin) and Jo - J,.) In the opposite limiting case: 
J,, - J >  Jo -?,, this difference is estimated by Eq. (4) if we 
write - a -a - l/kj R. After making all the substitutions 
we have 

Given the moment of inertia (19) we easily find by a 
simple integration all the rotational characteristics of the b- 
phase: 

Jo J 

FIG. 2 

(since from now on we shall discuss only the rotation band, 
we shall omit the index b ). The quantity 0 = no is the limit- 
ing attainable velocity of a purely mechanical rotating nu- 
cleus. In accordance with the formulae (7)-(9), 

It is worthwhile to compare this with the velocities of the 
nuclear quasi-particles: 

The limiting velocity of the rotational precession of a non- 
spherical nucleus is still small compared to that of the nu- 
cleons in it. 

3. FLUCTUATIONS IN THE LEVELS OF A NUCLEAR 
ROTATION 

There have been practically no studies of the possible 
fluctuations in the levels arising from the rotation of atomic 
nuclei. The principal difficulty is that the widely accepted 
conflicting concepts of the "collective" and the "single parti- 
cle" properties of the nuclear system (or of its corresponding 
number of degrees of freedom) do little to help, and do not 
illuminate the problem. We have worked primarily from the 
uncertainty principle. 

We begin with the uncertainty equation 

(see, for example, Ref. 14). We begin by settingx = p, 4 = C! 
as the estimates of the required energy uncertainties. In the 
kinematic sense the azimuthal coordinates satisfy Apg 1 and 

As is customary, in the quasi-classical case the quantum un- 
certainties of the most essential quantities are estimated at 
their rninim~m.~'  

We write x = Jn and distinguish two cases: 
a) J <  Jo (the rotation band). Then the equation h = 0, 

arising from the dynamics of free rotation, correctly speci- 
fies the position of the body. In the band, where the tempera- 
ture is strictly zero [see Eq. (I)], the motion is purely me- 
chanical, namely a regular precession of the vector n, with 
respect to the azimuth p, the state of which is completely 
determined.334 For maximum polarization M = J along the 
z-axis the role of the HamiltonianH (M ) is played by the actu- 
al distribution of the levels E (J) within the band. The vari- 
ability (1 0) of the moment of inertia is not in conflict with this 
conclusion, and there are no fluctuations. 

b) J >  Jo (Maclaurin spheroid). For obvious reasons we 
cannot here have completely closed dynamics of a purely 

901 Sov. Phys. JETP 61 (5), May 1985 V. G. Nosov and A. M. Kamchatnov 901 



rotational character. For convenience in making the follow- 
ing estimates we introduce the fluctuating torque dM/dt, 
i.e., the angular momentum, with the usual dimensions of 
action, transmitted per unit time from degrees of freedom to 
its rotation. Then the angular velocity is estimated from the 
equation of motion. We have 

since the elementary quantum of momentum exchange is h 
and in the system of discrete levels the characteristic time is 
defined by the frequency of transitions among the levels. 

Thus 

AEAQ- ( h / I )  hQ, 

but AE-fiR (see above). Returning to the interpretation of 
the angular velocity as determining the separation 2fiR 
between levels we finally obtain the relation 

where SE is the desired fluctuation (of purely quantum ori- 
gin) among the actual energy levels of the spheroid. The fact 
is that a precise value of the energy of the levels cannot be 
prescribed: even in principle it cannot be derived from pure- 
ly rotational considerations. The approximate and not whol- 
ly consistent dynamics of the pseudorotation of a Maclaurin 
spheroid allows us to predict such a quantity only to within 
an approximate rotational energy quantum fi2/III. In parti- 
cular, if we average the angular velocities we obtain the sim- 
ple formlula 

Here M = Wis the classical momentum of the motion of the 
total system. 

The formulae (27) and (28) provide a quite specific rep- 
resentation of the nature of the transition to the classical 
limit in this delicate question. In quantum theory, strictly 
speaking, a body cannot mechanically rotate about an axis of 
total axial symmetry. However, in the classical limit such a 
rotation is possible. If we neglect Planck's constant, the 
pseudorotation we are contemplating here is not dynamical- 
ly different from a true rotation with similar properties. 

4. INTENSITY OF THE E2 TRANSITIONS 

Within the ensemble of levels (1) [see also the remarks in 
footnote I)] we find almost exclusively E 2-radiation. The 
most typical part of the probability of the process is given by 
the squared modulus of the matrix element of the quadru- 
pole moment tensor. We denote by g the transition intensi- 
ty. 

Let us look first at the region J <  Jo. Here the nonspheri- 
cal nucleus radiates because it precesses (rotational radi- 
ation). At a distance from the endpoint we have 

where Qo = 6 / 5  ZRo2 is the quadrupole moment of the 
shape of the spontaneously deformed nucleus. In the more 
difficult case Jo - J(Jo - J ,  we guice ourselves by a close 
analogy between the quantitiesrand Q '. The E 2-intensity is 
also invariant: the agreement is especially striking if we con- 
sider the hypothetical situation in which the shape of the 
nucleus approaches the spherical. Then the scalar quantities 
of interest vanish like a2 .  

We assume 

in view of (19). Then we find 

for the behavior of the precessional component of a, of the 
deformation at its vanishing point. For a rough preliminary 
estimate of the situation at the endpoint itself we set 
Jo - J- 1. The formulae (21) and (9) yield 

For this method of estimating, the rotational radiation turns 
out to be highly significant even in the last energy interval in 
the band. 

We now consider the region J >  Jo. Since in quantum 
theory a body cannot rotate about a true symmetry axis, and 
since there is no change in the quadrupole moment in the 
classical scheme, we have reason to doubt whether a signifi- 
cant quadrupole radiation intensity exists. It turns out, how- 
ever, that in our problem concerning the properties of Ma- 
claurin spheroids we cannot obtain sufficient accuracy if we 
consider only the mean values of the characteristics. 

The growth of the spin strongly affects the shape of the 
nucleus, inducing centrifugal flattening in it. However, this 
strong interaction has another aspect: the curve (1) is dis- 
crete rather than continuous. Together with the centrifugal- 
ly generated mean deformation a, the spin sequence (1) in- 
troduces its own frequency o = 2fl, imposing its quadrupole 
deformation on the shape. Then for a finite rigidity C, quan- 
tum fluctuations in the deformation necessarily occur. 

The frequency spectrum of the fluctuations Sa is pre- 
scribed by the standard selection rules for quadrupole radi- 
ation, but under the observational conditions a detailed geo- 
metrical specification is not important for 
order-of-magnitude estimates. In the narrow band where ra- 
diative transitions occur, we may interpret the quasiclassical 
essential uncertainty hE-fin as the order of magnitude of 
the uncertainty in the energy of the fluctuating deforma- 
tions: 

C (Ga) ' - f iQ. (32) 

In the present case we have C -  Us, fin - fiR, [formula (23)]. 
Thus 
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Since la1 -a - l/kj R the relation 

allows us not only to estimate the relative magnitude of the 
fluctuations but also to compare the intensity of the radi- 
ation in both phases 2Jo. 

After the disruption of the band the radiation falls off 
because the precession stops. However, the remaining inten- 
sity, the same scale as the vibratiogal, still far exceeds the 
characteristic single particle value : -R 4. In the chain of 
strong inequalities 

each corresponds, roughly speaking, to a ratio of the order of 
(k, R )'. As of now there is no obvious reason why any levels of 
a Maclaurin spheroid should exhibit isomeric properties. 

5. DISCUSSION 

The problem of the free rotation of a fluid quantum 
system is neither straightforward nor easy. We have at- 
tempted to give a cursory account of the situation with re- 
spect to nuclear rotation in the broad general physics sense. 

Intuitively, we would expect that random deviations 
from formulae of rotational type should depend on the total 
number of particles and should decrease as the number in- 
creases. The following quantum effect is less trivial: in a 
macroscopic Fermi system (spontaneously deformed, a - 1/ 
k, R ) of finite dimension the sequence (1) of minimizing levels 
is stratified into two regions JSJ,. Paradoxically, in the low- 
er region J <  J, the energy levels do not fluctuate, and the 
exchange of the inertial moment fi2(d 2E /dJ ')- and the sin- 
gularities are problems of a somewhat different kind. As for 
the upper region J >  Jo, we have 

h V 2  h2 
F Z Q = ~ J - ~  Jo  -,A, 6 (AB) /fin- 11A 

in agreement with general physical considerations. 
The experimental situation is less favorable, though 

some hopeful signs have appeared. In a recent paper15 the 
sequence (1) for high spin states of 8440Zr44 was investigated 
up through the level J, = 34, and a Maclaurin spheroid was 
observed for the first time. This nucleus is close to being 
magic with Z,  N = 50, so that the smallness of the deforma- 
tion possibly helped to display the effect in a relatively acces- 
sible region. A case of this kind, however, is not favorable for 
an investigation of the phase transition from a rotation band 
to a Maclaurin spheroid. As usually happens in a nucleus of 
doubtful type, the path of the mechanical moment of inertia 
here is unpredictable and narrow; the region (20) does not 
exist because J,, - J, < 1. However, qualitatively in favor of 
the basic idea is the fact that the amount of inertia I reached 
its minimum at the endpoint J = 20 of the band rather than 
at the beginning. 

In the region J >  22 of the spheroid the proportionality 
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of the angular velocity and rotational moment was observed 
to within a small fluctuation. The mean square fluctuation 
S(fin)z9.3 keV evidently exceeds the experimental error. 
The theoretical estimate (27) yields S(fiS1)-fi2/11, -,440 keV. 
For ro = 1.1 fm (the choice of the radius of the nucleus was 
made by "backbending" according to the method described 
in Ref. 3) this corresponds to a mean deformation of the 
spheroid a =. - 0.3. The estimate (33) of the fluctuations in 
the deformation yields Sa -,4 0.07. 

Among the clearly nonspherical nuclei special interest 
attaches to 248,,Cm1,2, JF = 30 (Ref. 16). In experimental 
observations on the lower portion J < J, of the basic rotation 
band the variable moment of inertia proved to be monotoni- 
cally increasing. There was an exception, however: it went 
through a maximum at J z 2 3  and then decreased. Among 
the nuclei at this nucleid that were investigated, Z2/ 
A = 37.2 is the largest, and because of the Coulomb forces 
the onset of the transition to a Maclaurin spheroid may have 
occurred unusually early [see the Introduction and the text 
following equation (2)]. 

If our hypothesis is valid, this is close to the endpoint of 
the band; the predicted value is J0-33. The difference 
J, - J ,  =: 2.4 is not large. However, the theory may turn out 
to be applicable. In the present somewhat exotic instance, 
the falling off of the inertial moment began at a value almost 
twice as large as that for a rigid body. The predicted moment 
of inertia is comparable to the rigid body value only for 
J = 30. 

The two examples we have cited are representative. Pri- 
mary interest attaches to either the relatively light nucleids 
typified by 78,6Kr42. JC = 9.2, JF = 16 or to the heavy actin- 
ides, in which the resistance to centrifugal flattening is over- 
come by Coulomb energy. We suggest that basic experimen- 
tal study of the breakdown of the rotation band should begin 
at these two ends of the periodic table. 

We thank M. Ya. Amus', G.  A. Pik-Pichak, and Ya. A. 
Smolensky for advice and criticism. 

I'The change in a two-valued spatial quantum number or in the signature 
( - 1)' correlates poorly with the thermodynamic considerations that we 
are limiting ourselves to. The necessary correspondence can be estab- 
lished if we fix on a suitable quantum number; we will discuss this later. 
In such a sequence the spins of the levels follow one another with an 
interval hJ = 2. 

2'Judging by the literature, it was Ya. B. Zel'dovich who first called atten- 
tion to the possibility of a break in the energy curve with respect to spin. 
In Ref. 1 he employed a different set of assumptions on the structure of 
the nucleus, taking it as a Bose-fluid. 

3'For the ideal Fermi-gas thiswas shown in Ref. 12; see also Ref. 4. The 
essentially equivalent form a - A  - ' I 3  of this estimate has been widely 
used in the literature. 

4'Although the coordinate q does not exist for J >  J,,, it is clear from the 
physical nature of the results that the smallest possible energy uncertain- 
ty in similar circumstances (quasiclassical) has the same order of magni- 
tude for the flattened spheroid. 

'Ya. B. Zel'dovich, Pis'ma Zh. Eks. Teor. Fiz. 4,78 (1966) [JETP Lett. 4, 
53 (1966)l. 

2V. G. NOSOV and A. M. Kamchatnov, Zh. Eks. Teor. Fiz. 73,785 (1977) 

V. G.  Nosov and A. M. Kamchatnov 903 



[Sov. Phys. JETP 46,411 (1979)l; 76, 1056 (1979) [Sov. Phys. JETP 49, 
765 (1979)l. 

3V. G. NOSOV and A. M. Kamchatnov, Zh. Eks. Teor. Fiz. 80,433 (1981) 
[Sov. Phys. JETP 53, 852 (1981)l. 

4V. G. NOSOV Makroscopicheskie kvantovye effeckty v atomonykh ya- 
drakh. M.: Atomizdat, 1980. (Macroscopic quantum effects in atomic 
nuclei). 

5N. Bohr and J. Wheeler, Phys. Rev. 56, 426 (1939) (Russian tr. N. Bor. 
Izbrannye nauchnye trudy. M.: Nauka, 1971, t. 2). 

6Ya. Frenkel', Zh. Eks. Teor. Fiz. 9,641 (1939). 
'G. A. Pik-Pichak, Zh. Eks. Teor. Fiz. 34,341 (1958) [Sov. Phys. JETP 7, 
238 (1958)l. 

'G. A. Pik-Pichak, Zh. Eks. Teor. Fiz. 42, 1294 (1962); [Sov. Phys. JETP 
15, 897 (1962)l; 43, 1701 (1962) [Sov. Phys. JETP 16, 1201 (1963)l. 
9G. A. Pik-Pichak, Yad. Fiz. 31, 98 (1980) [Sov. J. Nucl. Phys. 31, 52 
(1980)l. 

''0. Bor and B. Mottel'son, Struktura atomnogo yadra, Mir, Moscow 
(1977) t. 2. [Nuclear Structure, Vol. 2, Benjamin, New York (1969)l. 

904 Sov. Phys. JETP 61 (5), May 1985 

"S. Chandrasekhar, Ellipsoidal'nye figury ravnovesiya. M.: Mir, 1973. 
(Ellipsoidal figures of equilibrium, Yale Univ. Press, New Haven). 

12V. G. NOSOV, Zh. Ek5. Teor. Fiz. 31,335 (1957) [Sov. Phys. JETP 4,263 
(1957)l. 

I3L. Landau and Ya. Smorodinskii, Lektsii po teorii atomnogo yadra. M.: 
Gostekhizdat, 1955. (Lectures on Nuclear theory, Consultants Bureau, 
New York). 

14 L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika, Nauka, Mos- 
cow, 1974. [Quantum mechanics: Non-Relativistic Theory, 3rd ed., Per- 
gamon, Oxford (1977)l. 

15H. G. Price, C. J. Lister, B. J. Varley et al. Phys. Rev. Lett. 51, 1842 
(1983). 

16R. B. Piercey, J. H. Hamilton, A. V. Ramayyaet al. Phys. Rev. Lett. 46, 
415 (1981). 

Translated by A. Brown 

V. G. Nosov and A. M. Kamchatnov 904 


