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A mathematical method for constructing the superconducting classes for nontrivial supercon- 
ductors is described, and all the phases that can be produced directly in a transition from the 
normal state are enumerated for the cubic, hexagonal and tetragonal symmetries. It is shown that 
in the triplet case the type of zeros in the energy gap always corresponds to points on the Fermi 
surface, whereas whole lines of zeros are possible in singlet pairing. For phases having zeros on 
lines or at points, the low-temperature heat capacity is proportional to T 2  and T3, respectively. 
Superconducting phases that stem from non-one-dimensional representations can have a magnet- 
ic moment that generates currents on the surface of a single-domain sample even in the absence of 
an external magnetic field. A specific example of a domain wall is considered and it is shown that 
large magnetic currents flow in it. 

1. INTRODUCTION 

The development of the BCS microscopic theory of su- 
perconductivity raised immediately the question of feasibil- 
ity of a nontrivial superconductivity corresponding (in iso- 
tropic Fermi-liquid terms) to Cooper pairing with nonzero 
angular momentum (Ref. I).'' In Ref. 2 it was shown for the 
first time that a state with spontaneous breaking of rota- 
tional symmetry is possible in such a system. The system in 
which nontrivial pairing was achieved turned out to be 3He, 
for which this fact was theoretically predicted3 as a conse- 
quence of the role of Van der Waals attraction forces. The 
main properties of 3He superfluidity are reported in recent 
 review^.^" We mention only that in 3He was observed the so- 
called A-phase (the Anderson-Brinkman-Morel state), the 
occurrence of which is difficult to explain without invoking 
an additional interaction mechanism via spin fluctuations of 
"paramagnon~,"~ Special attention was therefore paid in 
searches for nontrivial superconductivity (see Ref. 7) to com- 
pounds with so-called heavy fermions that have paramag- 
netic behavior (the Curie law) in a wide temperature range. 
Without listing for now these specific compounds, we indi- 
cate only that their properties are somehow connected with 
strongly localized 4 f shells of Ce or 5 f of U. This is evident 
from the anomalously large values of the density of states, as 
deduced from data on the electronic heat capacity and on the 
Pauli susceptibility at low temperatures. The narrowness of 
the effective band is conveniently characterized by an effec- 
tive mass m* that reaches in these materials values 
m*-(102-10-3)me. 

The paramagnetic mechanism favors for 3He, in a sim- 
ple model, triplet pairing into an A phase. Owing to the non- 
trivial breaking of the gauge ~ymmetry,~ the latter has, in 
particular, the remarkable property that the energy gap in its 
spectrum vanishes at two points on the Fermi surface. Were 
there no phase transition in 3He into the isotropic B phase 
with decreasing temperature, the heat capacity of the A 
phase would have a T 3  dependence at the lowest tempera- 

tures. Calorimetric measurements8 indeed yielded for UBe,, 
a relation Ce - y(T (T/T, )2 that differs from the BCS-theory 
activation dependence. This result, however, is as yet not 
unambiguous. For many heavy-fermion superconductors 
(CeCu2Si2, Ref. 9; U6Fe, Ref. 10; UPt,, Ref. 1 I), the results 
available for the ultrasound-absorption coefficient (UPt,, 
Ref. 12) and the reciprocal spin-relaxation time (CeCu2Si2 
Ref. 13; Ube,,, Ref. 14) offer evidence in favor of a tempera- 
ture dependence that would correspond to solid lines of ze- 
ros in the energy gap on the Fermi surface. Similar proper- 
ties would be possessed in 3He by the polar phase, but the 
latter does not correspond at all to the free-energy minimum 
and appears in 3He-A only in vertex cores.15 

The microscopic mechanism of the superconductivity 
in these compounds, the competition between superconduc- 
tivity and magnetism, and the mutual role of 5 f electrons of 
U and sp electrons of Be (e.g., in UBe,,) are all questions that 
remain far from understood. Yet the answers to many phys- 
ical questions depend only on the symmetry properties of the 
superconducting order parameter AaB(k) = (akaa - LB). 
One such question is: are we dealing with triplet or singlet 
pairing? (It would be more correct to speak of parity, as 
shown below.) 

In an earlier paper16 we have already indicated some of 
the most symmetric superconducting classes, and have 
shown that S = 1 always corresponded to zeros only at 
points (not on lines) on the Fermi surface. Our present pur- 
pose is a complete analysis of the possible superconducting 
classes, not only for the cubic group but also for some other 
symmetries (hexagonal, tetragonal, rhombohedral). Antici- 
pating somewhat, we indicate that the foregoing result re- 
mains in force in the general case. In Sec. 2 we describe brief- 
ly a method of enumerating all the superconducting classes, 
with the cubic groups as the example. This classification 
does not depend at all on the microscopic model. In the sec- 
tions that follow we show that it is more convenient in prac- 
tice to employ a certain generalization of the methods of 
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phase-transition theory." The region near T, is experimen- = - AD, ( - k). We can therefore immediately distinguish 
tally of great interest, and a symmetry-theory analysis will between the parities of the two ansatzes 
enable us to identify in Secs. 3-5 those superconducting L (k) =$ (k) i6"(S=O), 
states into which a system can go over directly from the nor- ( 1 )  

\ - I  

ma1 phase by a continuous transition (of second order). We L(k)=(d(k))i6' ( S = l ) ,  
find the types of zeros, the magnetic properties, and the de- 
gree of degeneracy for each of these states. It is shown in Sec. 

where $(k) is a scalar even function and d(k) = - d( - k) is 

6 that in some superconducting phases a magnetic moment is 
an odd vector function. Following the already established 

induced by the superconducting transition, and the current- 
terminology, we shall call these two possibilities, as before, 

carrying domain walls that separate domains with different 
singlet and triplet states, respectively. In the broad sense in 
which the nontrivial cases were defined above, the triplet 

magnetic-moment orientations are described. pairing is always of the nontrivial type: the vector d(k) is 

2. CONSTRUCTION OF SUPERCONDUCTING CLASSES 

The order parameter in *e superconducting state is the 
already mentioned quantity AaB(k), which has the meaning 
of the Cooper-pair wave function in the condensate. It is 
precisely its transformation properties under the influence 
of various symmetry transformations which determine the 
singularities of the superconducting phase. Since, in accord 
with the definition of the Bose condensate, there is only one 
such function, it should be transformed into itself under 
symmetry transformations that do not alter the supercon- 
ducting state. The symmetric states of the system can there- 
fore be enumerated by indicating all those possible sub- 
groups, from among the total group, with respect to which 
the order parameter remains invariant. In the considered 
crystal-symmetry case, the total group consists of the crystal 
point group G, of the time-reversal operation R, and the 
gauge-transformation group U (1). Superconductors are sub- 
divided into superconductivity classes in a manner that is 
somewhat similar to the construction of magnetic classes 
(see, e.g., Ref. 18), i.e., by enumerating the subgroups of the 
expanded group G X R X U(1) with account taken, of course, 
of the fact that the operation R (complex conjugation) does 
not commute with the transformation from U(1). 

The classes of the first type are characterized by the 
subgroups H X R from G X R. These are ordinary supercon- 

/ ductors or else superconductors whose transition from the 
normal phase is accompanied by breaking of spatial symme- 
try (we know of no example of transitions of the latter type). 

The second, no longer trivial, type includes classes 
whose symmetry groups contain combined elements made 
up of elements of the G X R group and the U(1) group. The 
geometric locus of the zeros (if they exist) in the energy gap 
on the Fermi surface should be determined by the symmetry 
relations, just as the linkage of the gauge and spatial groups 
leads in ,He to zeros in the gap for the A phase and for the 
polar phase. Thus, the main difference from ordinary super- 
conductivity lies in the internal symmetry of the state, and 
this question can be investigated independently of the micro- 
scopic pairing mechanism. It can apparently now be stated 
that UBe,,, UPt,, and possible CeCu2Si2 belong to one of the 
nontrivial superconductivity types. 

It has already been noted in Refs. 16 and 19 that al- 
though the spin-orbit interactions in the compounds consid- 
ered are large, their point groups contain inversion. By de- 
finition, the order parameter is antisymmetric relagve to 
simultaneous permutation of all the variables: A,(k) 

invariant not to the subgroup Ci (inversion) but to the group 
Ci exp(ai). We shall find it more convenient, however, to 
consider the two cases (1) separately. Then the remaining 
complete groupis G ' x R x U (I), where G 'is the point group 
of all the rotations. Since the spins, as mentioned, are "fro- 
zen" in the lattice, each r5tation element A from G ' acts in 
the triplet case as follows: A d d  d(A k). We shall see later on 
that the properties of triplet and singlet nontrivial classes are 
very similar. The differences lie in the types of the zeros and 
are caused precisely by the different behaviors of the scalar 
and vector functions on the symmetry-allowed geometric lo- 
cus of the points under the action of the transformations A 
from G '. 

We shall describe here briefly the general method of 
listing all the expanded groups. The number of supercon- 
ducting classes is very large, and we confine ourselves to the 
cubic system as an example. In accordance with the state- 
ments made above concerning parity, the group G ' is in this 
case the group 0 of all the rotation axes of the cube. The 
group 0 contains the subgroups T, D,, D,, D,, C4, C,, C2 (we 
use throughout the notation of Ref. 20). The meaning of the 
required procedure is quite clear-the order parameter for 
nontrivial superconductors is not invariant to certain trans- 
formations from 0 ,  but is multiplied by phase factors or is 
transformed into its complex conjugate. These factors must 
be compensated for by combining the operations of group 0 
with elements of subgroups from U(1), namely (1, e * '"", 
ei" ), (I,&,&') and (1, ei" ), which are isomorphic to the rotation 
subgroups of fourth, third (E = e2"i'3 ) and second order, re- 
spectively, and of time reversal (complex conjugation). The 
implementation of this procedure is facilitated by the fact 
that the representations of an arbitrary group contain repre- 
sentation of factor groups made up of all its invariant sub- 
groups.16 For group 0 ,  the invariant subgroups are the tetra- 
hedron group T and the group of rotations D2 about three 
mutually perpendicular twofold axes that are perpendicular 
to the faces of the cube. The factor group 0 /T  has the index 
2, is isomorphic to the subgroup (1, ei") from U(l),  and its 
representations are one-dimensional. Therefore the com- 
bined group O ( T )  has the elements (E, 8C3, 3C2, 6U2ei", 
6C4ei" ) . 

The factor-group 0 /D, has the index 6 and is isomor- 
phic to D,. It corresponds to the two-dimensional represen- 
tation E of group 0. Since the operation R does not commute 
with operations from U(1), it is possible to construct from 
their combinations a group isomorphic to O/D,. The ele- 
ments of the combined 0 (D,) group are 
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From the elements of U(1) and R we can construct a 
group that has representations with dimensionality higher 
than two. It is therefore impossible to split the representa- 
tions of 0 further without lowering the crystal symmetry. 
The tetrahedron subgroup admits of the combined group 
T (D,) = (E,3C2, ~C,E,  4 C :E,). This group, however, is a 
subgroup of 0 (D,) and, as will be shown below, cannot stem 
directly from the cubic normal phase (T-subgroups of lower 
symmetry (threefold axis) are included in the system D,). 

The next subgroup of 0 is D,. There exists a maximal 
combined group 

Ds ( E )  

= ( E ,  Czem, C4ei"/2 , Cb3e-'"/', U,,el"R, U,,R, 2U,'e*'"/'R). 

The invariant subgroups in the group D, are C4 and D, (the 
factor-groups D4/C4 and D,/D, have the index 2). Three oth- 
er combined groups are also possible: 

D , ( C , ) X R = ( E ,  C,, 2C,, 2e1"U2, 2 e ' " U Z f ) X R ,  

D:" ( D , ) X R =  ( E ,  C,, 2U,, 2C,ei", 2U,'e'") X R ,  

D,'~' ( D Z )  XR= ( E ,  C,, 2Uz1, 2C,e7", 2UZet") X R .  

For C,, all the possibilities correspond to subgroups of the 
just-considered groups from D,. 

The same procedure is used to construct 

D,(E)  = (E ,  C3&, C 3 2 ~ 2 r  U Z I R ,  U / e Z R ,  u:' ER)  , 

D3 ( C 3 )  XR= ( E ,  2C3, 3U2ein) X R .  

In analogy with the case of C4, the subgroups of these 
groups exhaust all the possibilities for C,. 

In the subgroup D,, finally, there are three possibilities: 
Dq (C,,) X R  

= ( E ,  C,,, C,,e'", C,,e'")XR, Dz(Cz,) X R ,  D,(C2,) X R .  

Their subgroups also exhaust all the possibilities of the sub- 
group C,. 

We did not mention above the subgroups T, D,, C4, D,, 
C,, D,, and C2 themselves. For the singlet case they would 
correspond to the aforementioned usual superconducting 
classes. The triplet case, as already mentioned, would corre- 
spond to linkage of the gauge group for the inversion trans- 
formation Ci eiff . 

The combined groups listed above for D,, D,, and D, 
indicate also all the possibilities for the tetragonal, rhombo- 
hedral, rhombic, and monoclinic systems (for those classes 
that have an inversion center). The hexagonal system will be 
considered by us later. We have likewise not written out the 
basis functions. Some are contained in Ref. 16, where the 
most symmetric classes were considered, and some are given 
in the next sections. 

A subordination scheme in the Landau theory, for all 
the possible second-order phase transitions without change 
of the number of atoms per unit cell, was constructed in Ref. 
21. For the superconducting classes this analysis must be 
carried out anew. Thus, for example, the restrictions that 

follow from the requirement that the expansion for the ener- 
gy functional contain no terms of third order in the order 
parameter are entirely lifted for the complex order param- 
eter of a superconducting phase by gauge invariance. (The 
terms linear in the gradient-the Lifshitz criterion-do not 
appear in the systems investigated by us, which have inver- 
sion centers.) We consider below only those states to which 
can be reached directly from the normal metal; this require- 
ment limits the number of classes listed. 

The last requirement allows us to confine ou r se lv~  to 
the vicinity of Tc . Of importance to the order parameter A(k) 
near Tc is only one of the representations of the group G. On 
a specified representation there can be realized not any arbi- 
trary symmetry group (the superconducting class in this 
case), but only a definite set of classes, from among which we 
choose only those that can effect an absolute minimum of the 
Ginzburg-Landau functional in a certain region of the pa- 
rameters of the latter. Examining all the representations of a 
given group and finding, in the manner indicated, for each of 
them the possible symmetry subgroups, we obtain all the 
symmetry classes that can be realized also at low tempera- 
tures, provided, of course, that no additional phase transi- 
tion takes place when the temperature is lowered, since the 
symmetry cannot vary continuously. 

It was noted in Ref. 22 that, owing to the strong spin- 
orbit coupling in these systems, the Ginzburg-Landau func- 
tional takes the same form for triplet and singlet pairing, 
inasmuch as all the possibilities are exhausted, at any choice 
of the order parameter from (1) , by enumerating the repre- 
sentations of the rotation group G'. However, as indicated 
above, the types of zeros on the Fermi surface (as well as the 
basis functions) are generally speaking different for the two 
types of pairing. 

3. SUPERCONDUCTIVITY IN THE CUBIC GROUP 

The symmetry 0, is possessed by UBe,,. Separating in 
the 0, group the rotation subgroup Oh = 0 X Ci, we have 
for 0 five representations: two one-dimensional A, and A,, 
one two-dimensional E, and two three-dimensional Fl and 
F, (see, e.g., Ref. 20). 

a) One-dimensional representations. A ,  is the only repre- 
sentation of the 0 group. At S = 0 it describes the state A ,, , 
which has the symmetry of the complete cubic group Oh X R 
and corresponds to ordinary superconductivity. Parity is 
violated forS = 1, therefore the state is of the nontrivial type 
and coincides with the odd representation A ,, of the 0, 
group (total group 0 x R x Cleiff ). Whereas in the former 
case (S = 0) the wave function +(k) can be chosen to be a real 
function of f  (k) and invariant to all cube-symmetry trans- 
formations, for S = 1 the basis function is of the form 

d(k)  (xk,+yk,+;kje,) f ( k )  , (2) 

where i E , f ,  f a r e  the unit vectors of the principal cubic axes. 
The properties of this phase are similar to the B phase of ,He, 
with the natural exception that the state (2) is not degenerate 
on account of crystal symmetry. The question of the zeros of 
the gap in the excitation spectrum of the triplet phase is equi- 
valent to the possibility of vanishing of the scalar d2(k) 
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= k f '(k) on the Fermi surface. There are no symmetry- 
based grounds for the appyans of zeros for either S = 0 or 
S = 1, and the heat capacity decreases exponentially at low 
temperatures. The state (2) is not magnetic, since time rever- 
sal was not violated. 

The representation A, is not unique and corresponds, as 
can be easily verified from the table of characters, to the 
nontrivial class 0 (T )  XR.  The basis functions are 

$(k )w(k ," -k ,2 )  ( k t - - k Z 2 )  (kz2-k ,2)  f ( k ) ,  (3) 
d ( k ) w { ~ k ~ ( k z 2 - k y 2 ) + ~ k y  (kx2-1cZ2) +;kz(ky2-kx"))f ( k )  (4) 

for S = 0 and S = 1, respectively. Wave-function zeros exist 
in (3) on the lines of intersection of the Fermi surface (FS) 
with all the diagonal planes of the cube, whereas in the triplet 
state the zeros appear on the intersection of the FS with 
threefold and fourfold axes (the last fact was not noted in 
Ref. 16). 

d(k,)llk, (C2 transformation). Applying the transformation 
C4eiff, we have 

d  ( k , )  = e ; e ' " d ( k , )  = - d ( k , )  =u. 

The gap thus vanishes in such a triplet superconducting state 
at 14 points on the FS, so that at T(T, we have for the heat 
capacity C, a T 3. 

The properties of superconducting phases on one-di- 
mensional representations are gathered in Table I. Since the 
representations are one-dimensional, there is no discrete de- 
generacy (a domain structure is impossible) and the phases 
are not magnetic (the time reversal R  is not violated). 

6. Two-dimensional representation. The order parameter 
for S = 0 and S = 1 can be written in like form as a sum over 
the basis functions: 

( k )  =TI,@(') ( k )  + q 2 @ ( 2 )  ( k ) ,  (6) 
We show that the appearance of these is 'On- where the basis functions for S = 0 can be represented in the 

nected with nontrivial elements of the 0 (T )  X R  group. For form 
S = 0 we have C2$ = $, Ci lC, = $ and U2ei" lC, = +. We take 
an arbitrary point k, = (a, a, k, ) (i.e., k, = k, = a)  on a di- (D'" ( k )  m k , 2 + ~ k , 2 + ~ ' k , ~ ,  m(') ( k )  m k , " + ~ ~ k , ' + ~ k ~ ~ ,  (7) 
agonal plane of the cube and use the equations - 

$ (ko) =-4 ( u z k 0 )  =-CiC,'$ (a, 6, -/c,) 

=-I$ ( a ,  a, k , )  =-I$ ( k , )  =O. (5) 
Thus, in the singlet phase the zeros appear in the gap on a 
whole line and the heat capacity at low temperature varies 
like T 2. 

In the triplet phase 0 (T )  x R  the form of the basis func- 
tion (4) indicates that a similar analysis need be carried out 
only for points lying on threefold and fourfold axes. Let k, lie 
on a threefold axis. Since rotation of C, around this axis is an 
invariant operation, it follows th2t d($) is parallel to 16. On 
the other hand, we should have U2eiffd(&) = d(k,) (the rota- 
tion axis U2 perpendicular to the chosen threefold axis). We 
have then 

when account is taken of the fact that the representation is 
odd. Let now the point k, lie on a fourfold axis. Again 

0'" ( k )  ;xk,+eyk,+Gzk,, 0'21 ( k )  & k , + ~ ? y k , + ~ ~ k ,  (8) 

[here E = exp(2?ri/3)], and the remaining k-dependences cor- 
responding to cubic symmetry have been left out. As usual, it 
is convenient to refer the transformation properties of the 
order parameter under symmetry transformations to two 
complex components (7~7~,77~). 

The Ginzburg-Landau functional takes the form 

TABLE I. Superconductivity classes for one-dimensional representations of the 
cubic group. 

Representation Heat capacity c, (T) 

We have added here a sixth-order term which will be needed 
later. If we neglect this term initially, the minimum of the 
functional corresponds at D2 >Dl to a state with lvl l 2  = a/ 
2D1, q2 = 0, and atB2 <Dl to a state with 17, l 2  = 177,12 = a/ 
2( Dl + D2). In the latter case there is additional degeneracy 

For the type of the basis functions see expressions (2), (3),  and (4) in the text. The 
superconductingphases with symmetry 0 X R  haveno zerosin the gap ofthe Fermi- 
excitation spectrum. The heat capacity decreases therefore in the usual exponential 
manner with decreasing temperature. The triplet phase from the class O ( T ) X R  
must contain zeros at the points where the FS intersects the three- and fourfold axes, 
whereas the zeros of the singlet phase with the same symmetry 0 ( T )  X R  lie on the 
lines of intersection of the FS with the diagonal planes of the cube. As a result, the 1 

heat capacities of the triplet and singlet phases behave differently at low tempera- 
tures, like T3 and T Z ,  respectively. 
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with respect to the phase difference pl - p2 between the 
components 7, = 17, 1 exp ipl, q2  = 17721 exp ip,. The addi- 
tional symmetry of functional that contains only fourth-or- 
der terms is lifted by the sixth-order terms which take the 
form 

As a result it follows from (10) that pl - 9, = (T + 2an)/3, 
at y>Oandp,  -p2 = 2 ~ n / 3  at y<0 .  

The two-dimensional representation offers therefore 
three possibilities. AtP2 >Dl, as can be seen from (6)-(8), the 
state corresponds to the superconducting class 0 (D,), in 
which the symmetry calls for the vanishing of the gap in the 
intersections of all the threefold axes with the Fermi surface, 
for both singlet and triplet pairing.16 In fact, applying a com- 
bined-symmetry element, say to +(ko) (k, on a threefold axis), 
we obtain 

$ ( k O )  =C3eZnil3$ ( k O )  =E$ (C ,k , )  =E$ ( k , )  = O .  (11) 

By analogous reasoning we verify that in the case of triplet 
pairing d2(k,) vanishes at the point ko. The types of the zeros 
in the gap likewise coincides for this class in both cases of (1). 
The heat capacity always varies asymptotically like T3. 

The eight points where the FS intersects the threefold 
axes constitute the so-called boojums on the Fermi surface, 
viz., topologically stable point vortices in k space, and when 
these are bypassed the phase of the function +(k) or d2(k) 
changes by ~ T N . ' ~  In this case N on the values f 1. The 
boojum arrangement is shown in Fig. 1, where the points and 
crosses mark boojums with N = 1 and N = - 1, respective- 
ly. It is easily seen that both superconducting states are dou- 
bly degenerate, so that domain walls are possible. We defer 
the discussion of the domain wall and of the magnetic nature 
of the superconducting state (which is ferromagnetic) to Sec. 
6. 

To establish the symmetry of the states produced at 
P, <PI  and y > 0, we write one of the solutions: 

$ ( k )  m2k,Z-kZ2-k,2 (S=O) , - - -  
d ( k )  m2xk,-zk,-yk, ( S = l )  

Obviously the symmetry is D4XR, i.e., in the singlet state we 
have a transition to a trivial type of superconductivity (with 
tetragonal symmetry of the real order parameter). The tran- 
sition to the triplet state is essentially of the same type, if we 
disregard the linking of gauge-invariance element exp(i?r) 
with the inversion Ci exp(i?r). In (12), $(k) has lines of zeros. 

FIG. 1. Arrangement of zeros in class 0 (D,). The points and crosses show 
boojums with N = 1 and N = - 1, respectively. 

FIG. 2. Phase diagram of superconducting states near T, for two-dimen- 
sional representation of the cubic group. 

There are no combined symmetry elements in the D,X R 
group, and the zeros in (12) have a random character (a prop- 
erty of the functions of the representation E itself). In the 
nonlinear problem, i.e., with decrease of temperature, these 
zeros are smeared out because of the mixing of several repre- 
sentations of like symmetry. From the viewpoint of symme- 
try theory, the heat capacity should decrease exponentially 
at the very lowest temperatures. Within the framework of a 
theory of the BCS type, the admixture of solutions corre- 
sponding to other eigenvalues in the integral equation for the 
gap is small to the extent that the dimensionless interaction 
constant is small. 

Finally, the states corresponding top, <Dl, y > 0, have 
basis functions of the type 

The symmetry of these solutions corresponds to the com- 
bined group D ?'(D2) X R. The or the zeros in this group stem 
from nontrivial combined C4 exp(i?.r) and U2 exp(i?r) symme- 
try elements. In the singlet state the zeros lie on the lines 
where the FS intersects the diagonal planes of the cube (heat 
capacity a T2), and in the triplet states the zeros correspond 
to the points of intersection of the FS with one of the fourfold 
axes. The results for the two-dimensional representation E 
are gathered in Table 11. Figure 2 shows the phase diagram 
for the functional (9). 

c. Three-dimensional representations. The rotation 
group 0 has two irreducible three-dimensional representa- 
tions: the vector representation F, and a representation F2 
that corresponds to transformations of a symmetric tensor of 
the form (xy, yz, xz). In the expansion of the order parameter 

1 

h ( k )  = q i 8 ( i )  (k) 

the three basis functions @('' (k) can be chosen such that the 
Ginzburg-Landau functional takes the form 

F = - ~ ( l l l l * ) + p , ( l l l l ' ) ~ f  p 2 1 ~ 1 2 1 Z + P 3 ( l r Z I ~ + I r ~ 1 4 + I r z l ~ ? ,  

(17) 

which is the same for the representations F, and F2 (and, of 
course, for S = 0 and 1). The three coefficients 7i are regard- 
ed hereafter as a complex three-dimensional vector. This 
choice for F, can be: 
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TABLE 11. Superconductivity classes from two-dimensional representations E of 
the cubic group. 

For the types of basis function see expressions (7), (8), and (12H15) in the text; A- 
"antiferromagnetism." The triplet and singlet phases from the class 0 (D,) have 
zeros at the points where the FS intersects the threefold axes, the phase 
D y1(D2) XR (S = 1) has zeros at the intersectionof the F F  with the fourfold axis, and 
the phase D f)(D,) XR (s = 1) on the lines of intersection of the FS with two mutually 
perpendicular vertical symmetry planes. 

("I, q2) 

F,,(S=O) : k,k* (kt-kZ2), k,k,(kz2-k,z), k"k, (k2-kt) ,  - 

- - - - - -  (18) 
F , , ( S = l ) :  yk,-zk,, zk,-xk,, xk,-yk,, (19) 

and for F,, 

ce Deges- Magn. ( eracy I properties 

(the subscript g or u indicates that the representation is con- 
structed on an even or odd representation of the 0, group, 
depending on the choice of S in (1). 

The cubic anisotropy is represented in (17) only by the 
term withfl,. Omitting this term for a while, we see that the 
first term is invariant in the SO(6) group, and the second 
introduces a linkage between the real and imaginary compo- 
nents of the three-dimensional complex vector 

leaving the SO(3) symmetry. Elementary calculations show 
that in the isotropic case the minimum of (17) ata, < 0 corre- 
sponds to the choice of one real vector (q = q'), whereas at 

f12 > 0 the vector is substantially complex, lq'1 = lql' 1, 1 

ql lq" ,  (i.e., q2  = 0) and the state is characterized by a triad 
of vectors q'lq" and 1, where 1 = qlXq" .  The continuous 
degeneracy is lifted by the cubic anisotropy. 

The case of a real vector ( fl, < 0) is simpler. The expect- 
ed symmetric solutions for q correspond to fourfold, three- 
fold, and twofold anisotropy axes q = (1,0,0), (1,1,1), and 
(1,1,0), respectively. The third solution does not correspond 
to a minimum of the functional (17) at arbitrary a, and is 
therefore discarded. The symmetry group of the remaining 
solutions can be easily determined from the form of the basis 
functions. These groups are, of course, different for the re- 
presentations Fl and F2. The solution ( 1,1,1) corresponds to 
D3(C3) XR in Fl and to D, XR in F,. The solution (1,0,0), 
similarly, corresponds to D4(C4)xR for F, and to 
D f'(D2) X R for F,. 

If a complex vector is chosen ( f12 > 0) the symmetry is 
lowered primarily via the choice of the direction of the vec- 
tor 1, whose physical meaning is the direction of the magnetic 
moment (see below). The remaining degeneracy is connected 
with the choice of q '  and q". The crystal anisotropy can, in 
particular, lift the condition that the vectors be equal. This 

A 
A 
- 
- 
- 
- 

S=O, Ee 
($70)  { S = l ,  E ,  

S=O, Eg 
( I * - ! )  { s = l ,  Eu 

S=O, Eg 
i ,  { , EU 

TABLE 111 a. Superconductivity classes from three-dimensional representation F, of the cubic 
group. 

Class 

o ( D ~ )  

T Z  
DL( ' )  (D2)  XR T 3  

exp (-AIT) 
DkXR 1 exp (-AD? 

2 
2 

3 
3 
3 
3 

them D,(E) S = 0) has in addition a line of zeros on the intersection of the FS with the horizontal 
symmetry plane. The singlet phases D,[C,)XR and D,(C,) XR havelines ofzeros on theintersec- 

S=O, F 
( 1  I )  { s=g, Ft: 
( 1 , i . o )  { :zT, :t: 

S=O F ( t o .  0) { P:: 

tion of th; FS with the-diagonal pl&&'of the cubk' and with the vertical symmetry planes, 
respectively. 
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See expressions (1 8) and (19) of the text for the type of basis functions; Fstands for "ferromagne- 
tism." The phases D,(E) (S = 0,l) and (D,(C,) XR (S = 1) have zeros at the points of intersection 
ofthe FS with spontaneous-anisotropy axis (threefold axis). The phases D4(C4) XR (S = I), D4(E ) 
(S = 1,O) have zeros at the points of intersection of the FS with a fourfold axis, and the last of 

D3 ( E )  

D, (C3) X R  

D4 ( E )  

D4 (C,) XR 
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T 3  
T3  
T 
T3 
TZ 
T 3  
T 2  
T 3  

8 
8 

4 
4 

6 
6 

3 
3 

F 
F 
- 
- 
F 
F 
- 
- 



TABLE IIIb. Superconductivity classes from three-dimensional representations F, of cubic 
group. 

See Eqs. (20) and (21) of the text for the type of basis functions. The zeros phases are at the points 
ofintersection of the FS with a threefold axis in both D3(E ) phases and at the points of intersection 
of the FS with a fourfold axis in the phases D fJ(D2) X R (S = I), D4(E) (S  = 0, l ) .  In addition, the 
phase D4(E) (S = 0 )  has a line of zeros on the intersection of the FS with the horizontal symmetry 
plane. The singlet Df'(D 2 ) ~ R  phase has zeros on the lines of intersection of the FS with two 
mutually perpendicular vertical symmetry planes. 

' e  (T) Degeneracy properties 

takes place, for example, if the vector 1 is directed along a 
twofold axis.2' This choice can again be rejected, since it does 
not minimize the functional (17) in any range of values of the 
parameter /3,. 

A vector 1 directed along a threefold axis corresponds to 
the solutions The superconductivity class is in this 
case D,(E ) for both representations Fl and F2. 

A direction of 1 along a fourfold axis corresponds to the 
solution (l,i,O). The superconductivity class for both repre- 
sentations Fl and F, is D4(E ). 

Figure 3 shows the regions of existence of the different 
phases for three-dimensional representations (we did not de- 
termine the boundary where the degeneracy just discussed is 
lifted). The properties of all four solutions and of the phases 
corresponding to them are listed in Tables IIIa and IIIb. All 
the complex solutions should be magnetic, since time rever- 
sal is violated in them. The magnetism (spontaneous mo- 
ment) is caused by the boojums that stem from the nontrivial 

S=O F 

combined symmetry C3e2"'/3 or C4ei"/2. We see that the dis- 
position of the boojums in these superconducting classes is 
"ferromagnetic." The magnetism due to boojums will be dis- 
cussed in Sec. 6. Table I11 illustrates also the low-tempera- 
ture behavior of the heat capacity. We note again that in the 
triplet case the energy gap can have zeros only at points on 
the FS. In evaluating the procedural aspect of our subject, we 
see that the use of basis functions is advantageous because it 
frequently yields the symmetry of the state. The disposition 
of the zeros in the nonlinear problem, however, is governed 
just by symmetry and generally speaking does not coincide 
with that of the basis-function zeros. 

4. SUPERCONDUCTING PHASES IN CRYSTALS OF THE 
Dm XR GROUP 

The superconductivity classes in hexagonal crystals 
(such as UPt,) are obtained similarly. Since D ,, = D, X Ci , 
we shall need hereafter representations of only the rotation 

I 1 Magnn 

F T 3  

TABLE IV. Superconductivity classes from one-dimensional representations of group D,. 

( 4 9  e, E') { s=i: F:: 

S=O F 
(1, i3 4)  { s=l: F:t 

S=O Fzg 
(1, i, 0)  { s=l: F~~ 

8 

Representation I Type of basis functions 1 class 1 'e ") 

I I I 

S=O, A i g  Symm. function exp ( - N U  
DaXR 

S=l ,  A i ,  agkic,+b(;k,+ykU) exp ( - A / T )  

S=O, Azg (kz3-3k,ku2) (ky3-3kukz2)  T 2  - D ,  (C,) XR 
S=l ,  A, ,  ~ k , ( k , ~ - 3 k , k , ~ )  (ku3-3kUkz2) T 3  

Elements of combined groups D6(C6) = (E,C,,2C,,2C6,3 U,ei", 3 U;e"); D6(D,) = (E,2C3,3 U2, 
C,e",2C6e",3U;ei7; D6(D ;)+D6(D3)(U2+U;). The triplet phases from classes D6(C6)XR, 
D6(D3)x R, D6(D ; ) X R  have zeros at the points of intersection of the FS with the sixfold axis. 
The relative positions of the zero lines in the singlet phases are on the intersections of the FS with 
all vertical symmetry planes in the D6(C6)XR phase, on the intersection of the FS with the 
horizontal plane and with three vertical ones in the D6(D,) X R phase, and on the intersections 
with the horizontal and with three other vertical planes in the D6(D ;) X R phase. 

F 
- 
- 
F 
F 
- 
- 
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8 

4 
4 

6 
6 

3 
3 

D3 ( E )  

D3XR 

D4 ( E )  

D&(" ( 0 2 )  XR 
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T 3  

exp ( - A / T )  
exp (-Ah") 
T Z 

T S  
T Z  
~3 



FIG. 3. Regions of existence of various solutions for three-dimensional 
representations of the cubic group. FIG. 4. Regions of existence of solutions for the two-dimensional repre- 

sentation E, of the hexagonal group. 

group D, which contains four one-dimensional and two two- 
dimensional representations. 

a. One-dimensional representations. The superconduct- 
ing phases in these representations are not degenerate (there 
are no domain walls) and have no spontaneous ferro- or anti- 
ferromagnetism. The order parameter is always a complex 
scalar, and the corresponding Ginzburg-Landau functional 
is of standard form. The superconducting classes (nontrivial 
subgroups of the D,XR x U(1) group) can be constructed 
either directly from the characteristics of the representa- 
tions, as explained in Sec. 2, or from the form of the basis 
functions of these representations. All these data (including 
the location of the zeros, which generally speaking does not 
coincide with that of the zeros of the simplest basis func- 
tions) are gathered in Table IV. 

b. The two-dimensional representation E2. The order pa- 
rameter contains, in analogy with (6) two complex compo- 
nents (q,,q2). The basis functions can be chosen in the form 

y > 0 and (1.1) at P, <PI, y < 0. The corresponding function 
symmetries, gap zeros, heat capacity, and magnetic proper- 
ties are indicated in Table V. 

c. Two-dimensional representation El .  In contrast to the 
representation E2, the two-component order parameter 
(77,,q2) is transformed in the E, representation as a two-di- 
mensional vector located in a plane perpendicular to the 
axis: 

d (k) ~q,zkr+qv;k, ( S = l )  . (26) 

The Ginzburg-Landau functional, naturally, takes the same 
form as for the vector order parameter in the cubic group 
(17): 

S=1: (;+is  (kz+iku) ,  (G- i3  (kx- ikv) .  The solutions are obtained in the same way. There are (24) 
three of them: (1,0), (1,1), and (1,i). (The statements made 

The functional invariant to the total group D, X R X U (1) is, above concerning the hidden symmetry of the functional (17) 
as usual, the same for the triplet and singlet pairings in the are valid also for (27) in the last case of the solution with 
case of strong spin-orbit coupling and coincides with the q'lq"). For each of the phases there is on the (P2,P3) plane a 
already investigated expression (9) for the two-dimensional region where this phase has a lower energy that the others 
representation of the cubic group. For (q1,q2) we have again (see Fig. 4). The properties of the singlet and triplet phases 
the following solutions: (1,O) at /3, >Dl; (1, - 1) at P2 <PI, are gathered in Table VI. 

TABLE V. Superconductivity classes from representations E2 of group D,. 

See Eqs. (23) and (24) for the basis functions. The elements of the combined groups are 
D6(C2) = (E,C,$C3, EC: ,  cC6, E ~ C ~ ,  U2R, U;ER,  ...); D2(C2) = (E,C2,U2ei*,U;e'7. Both phases 
from Class D6(C2) and the triplet phase from D2(C2) X R have zeros at the point of intersection of 
the FS with a sixfold axis. The singlet phase from D2(C2) X R has a line of zeros on the intersection 
of the FS with two mutually perpendicular vertical symmetry planes. 

(ill, ~ 2 )  Class 1 
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( S=O ED# 
(11 O) S=I:  Elu 

S=O E 
( i t  { s=i: ,lj't: 
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0 6  (C2) 

Dz(Cz)XR 

D Z X R  

T 3  
T3  
T 2  
~3 

exp ( -A /T)  
exp ( -A /T )  

2 
2 

3 
3 
3 
3 

F 
F 
- 
- 
- 
- 



-- - 

TABLE VI. Superconductivity classes from two-dimensional representations E, of group D,. 

The triplet phases D4(C4) x R, D $lJ(D2) x R, D fJ(D2) x R have zeros at the points of intersection of 
the FS with a fourfold axis. The singlet phases have zeros on the following lines of intersection of 
the FS: for D,(C,)X R-with all the-vertical symmetry planes, for D!+"(D~)x R-with two mutu- 
ally perpendicular planes, and for D fJ(D,) x R -with the two remaining vertical symmetry 
planes. 

Magn. 
properties 

P 
P 
- 
- 
- 
- 

I 01, f12) 'e CT) Degeneracy 

5. SUPERCONDUCTIVITY CLASSES IN TETRAGONAL 
SYMMETRY 

S=O E t g  
i, { s = ~ :  E~~ 

S=O E3# 
('.') { s=( Et,, 

S=O E ( s=+: E:: 

This symmetry is possessed, e.g., by CeCu,Si, and 
U6Fe. The rotation subgroup D in the group D ,, = D4 X Ci 
four one-dimensional and one two-dimensional representa- 
tion. The properties of the nondegenerate nonmagnetic su- 
perconducting phases that are possible on the basis of the 
one-dimensional representations are given in Table VII. In a 
two-dimensional representation the order parameter trans- 
forms again as a planar vector (qx ,qy). The functional is of 
the same form (27) and has the same solutions. The expan- 
sion in the basis functions coincides with (25) and (26). The 
properties of the corresponding phases obtained from the 
two-dimensional representations are shown in Table VIII. 

Since no rhombohedral-system compounds with heavy 
fermion are known so far, we shall not discuss this system in 
detail (see Sec. 2). 

6. SUPERCONDUCTING STATES WITH SPONTANEOUS 
MAGNETISM 

D6 (E l  

D z ( C z ) x R  

C 2 ( E )  xR 

It was shown above that, on going to certain supercon- 
ducting states belonging to a nontrivial class, invariance to 

time reversal is violated and consequently one should expect 
the appearance of magnetic properties in these states. These 
are the classes D3(E ), D4(E ), D,(E ), D6(C2) as well as the class 
0 (D,), which are realized both in singlet and in triplet pair- 
ing. Moreover, a property of these classes is that they contain 
vectors whose transformation properties are analogous to 
the magnetic moment. These are vectors that emerge from 
boojums with negative "charge" N = - 1 on the Fermi sur- 
face and enter the point of the boojum with N = 1 (crosses 
and dots in Fig. 1). Time reversal (complex conjugation) re- 
verses the signs of the charges, the points become crosses, 
and the system goes into another degenerate state. 

The structures of these states are similar in many re- 
spects to the A phase of 3He, where the Cooper pair is in a 
state with orbital angular momentum L = 1 and with projec- 
tion L, = 1 on the axis ll(z, and has consequently an angular 
momentum fil. It is intuitively clear that, say at T = 0, when 
the system is totally in a coherent state, its orbital angular 
momentum should be WV1/2, where N is the total number of 
particles in the volume. Yet calculations show that the local 
angular momentum in 3He-A is small and finite only to the 
extent that the asymmetry of the particles and hole on the FS 
is small. The angular momentum is only of the order of fi(T, / 

T 2  
T 3  

T 2  
773 

T 2  
e x p  ( - A / T )  

TABLE VII. Superconductivity classes from one-dimensional representations of group D,. 

2 
2 
3 
3 

3 
3 

Representation I Type of basis function I Ce (T) 

The triplet phases D,(C,) x R, D yJ(D2) x R, D f'(D2) X R have zeros at the points of intersection 
of the FS with a fourfold axis. The singlet phases have zeros on the following lines of intersection 
of the FS: for D4(C4) x R-with all the vertical symmetry planes, for D yl(D,) X R -with two 
mutually perpendicular planes, and for D fl(D,) x R -with the two remaining vertical symmetry 
planes. 

/ S=O, A,, 
1 S=l. Ai, 
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TABLE VIII. Superconductivity classes from two-dimensional representations of 
group D,. 

(?I! ~ 2 )  Ce (T) Degen Magn. 1 ( / eracy / properties 
I I I I 

See Eqs. (25) and (26) of the text for the type of basis functions. The phases fror the 
class D,(E) have zeros at the points of intersection of the FS with a fourfold a.i:, 
while the singlet phase has furthermore a line of zeros on the intersection of the FS 
with the horizontal symmetry plane. The triplet phases D2(C,)X R and D2(C; )x  R 
have zeros at the points of intersection of the FS with the corresponding twofold 
axis, and the singlet phases from these classes have zeros on the lines of intersection 
of the FS with the horizontal plane and one of the vertical symmetry planes. 

TF)2 per atom of the liquid. According to an explanation 
proposed for this paradox in Refs. 23 and 24, the angular 
momentum should be defined not in an infinite system, but 
with account taken of the geometry of the vessel holding the 
liquid. The internal angular momentum of the pair produces 
a superfluid flow along the boundary of the A-phase with the 
vessel, and this flow imparts to the fluid a total angular mo- 
mentum that is no longer small and is of the order of f i  per 
3He atom (to our knowledge, there is no proof that this angu- 
lar momentum is identically equal to N 2  per 3He atom, since 
at first glance the flows in the texture could depend on the 
boundary conditions. 

The question of the value of the angular momentum in a 
superconductor is even more important from the viewpoint 
of its physical manifestions, since the carriers are charged 
and a finite angular momentum would mean existence of an 
orbital (and spin) magnetic moment. At the same time, the 
local moment in the interior of the superconductor must be 
exactly zero because of the Meissner effect. Owing to the 
crystal-lattice field, the states of a Cooper pair cannot be 
classified at all in accordance with the value of the orbital 
angular momentum (as well of the spin, in view of the spin- 
orbit coupling). Nonetheless, the indicated close analogy 
between the aforementioned nontrivial superconductivity 
classes and 3He-A suggests that here, too, circulating super- 
conducting currents can flow over the surface of a single- 
domain superconductor even in the absence of an external 
magnetic field. The analysis of the structure of such a surface 
current is quite complicated, since the entire question is clo- 
sely connected with the problem of choosing the boundary 
conditions. As for the latter, there are as yet none in general 
form. Obviously, the boundary conditions are very sensitive 
to the quality of the surface. 

To answer the fundamental question of the existence of 
surface magnetic current, we shall circumvent the complica- 
tions with the boundary conditions by studying the'current 
distribution on the interface between two degenerate super- 
conducting states (domains) with different orientations of 
the angular momentum (more accurately, of the boojums). 
In contrast to the usual domain wall in a magnet, the bound- 
ary between two superconducting domains that appear only 

during a transition into the superconducting state is de- 
scribed (near T, ) in terms of the very same Ginzburg-Landau 
functional as for the superconductivity itself, without invok- 
ing additional terms for the anisotropy. By way of a very 
simple example, we choose the class D,(E) (for either the 
singlet or triplet case) from the two-dimensional representa- 
tion of the group D,. Other examples are more difficult to 
calculate, but should lead to the same conclusions. 

To find the structure of the wall separating domains 
with different order-parameter orientations, we must add to 
the corresponding Ginzburg-Landau functional of the last 
section, which describes a two-dimensional representation 
in the D, group, the gradient terms 

Here d, is the covariant derivative 

&q=Vkq- (2 ie lc )  Akq. 

The answer given in Ref. 22 contains mcl=(m;)- '  
+ (my)-', while mj = m;. In the enumeration of all the 

possible invariants in the real functional (28), m j and m; are 
independent. Their equality (accurate to terms of order 
T;/T$) is due to the approximate electron-hole symmetry 
on the FS. We assume also that the penetration depth S of the 
magnetic field exceeds substantially the coherence length {. 
The condition S>{ is apparently well satisfied in supercon- 
ductors with heavy fermions. The vector potential can then 
be left out of the Ginzburg-Landau equations. 

We consider the following geometry. The domain wall 
lies in the y z plane, so that the order parameter q depends 
only on the x coordinate, and the "magnetic moment" is 
directed along the z axis as x+ CQ and is oppositely directed 
as x+ - co . In this geometry the current should flow along 
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the y axis. Varying (28) with respect to SA and taking (29) 
into account, we get 

We consider for simplicity the case of strong anisotro- 
py, f13>f11, f12. In the initial approximation q, and q,, have 
equal moduli but different phases: 

The small term 

determines the phase difference outside the domain wall, 
with f12 > 0 to ensure just the D,(E ) phase far from the wall. 
Different orientations of the angular momentum on the right 
and left correspond to the conditions 

The equations for q,, and q,, follow from variations of (28): 

1 2pza 2x 'PI" + - sin 2 (cpi-cp,) =0, 
B s  

The condition that the current component perpendicular to 
the wall be zero yields 

With the aid of this condition we can rewrite the system (33) 
in the form of the standard sine-Gordon equation for the 
difference u = p2 - pl: 

where A = P3/4B2a(m; + my). 
A solution of (35) satisfying the boundary conditions 

(32) is 

sin u (z) =th (fZxlh). (36) 

Returning to Eq. (30) for the current density j, and using 
(31) and (34), we obtain 

a e  mi"-m,' 
' v ( x ) =  m/+ml 

, COS u uf .  

Integration of this expression with respect to x with the aid 
of (36) yields directly the total current in the wall: 

which differs from zero, since there are no special conditions 
whatever on the relation between m', and my. This current is 
small only to the extent that Tc - T is small (at 8, -f12), and 
this proves the validity of the arguments advanced at the 
beginning of this section. 

According to (38), the magnetic moment is Mn -i/2c. 
Comparing this with the estimate for the thermodynamic 
critical field Hf /8~-a2//3, we get 

The moment produced at the domain wall in the region 6 is 
screened at a distance 6 by the superconducting currents. 
Unlike for a ferromagnet, for a superconductor there are 
thus no large magnetic-energy terms that prevent the exis- 
tence of large single-domain samples. The exact relation in 
(39) contains a complicated combination of parameters of 
the Ginzburg-Landau functional. In principle, Mn could ex- 
ceed the lower critical field H,, at which vortex formation 
becomes favored. The situation wherein a magnetic-moment 
field screened in the interior of a superconductor exists on its 
very surface could turn out by the same token to be unstable 
to vortex formation in the screening region. 

7. CONCLUSION 

We have considered above all the possible supercon- 
ducting states into which a system can go directly from the 
normal metallic state in the case of nontrivial pairing. These 
states are determined for the most part by that symmetry- 
group representation which is responsible for the onset of 
superconducting instability at Tc in a given specific sub- 
stance. This representation can be determined, as indicated 
in Ref. 22, by measuring the anisotropy of the upper critical 
field Hc2 near Tc. The properties of the corresponding 
phases below Tc are described in practically the same way in 
both the singlet and the triplet cases, except for important 
differences in the types of the zeros. In triplet pairing zeros 
appear in the energy gap only at points on the FS, whereas in 
singlet pairing the geometric loci of the zeros can be whole 
lines on the FS. This is so far the only method that permits 
identification of the pairing with some degree of assurance. 
If, say, the heat capacity depends on temperature like T ~ ,  
triplet pairing is excluded, but a T 3  dependence is possible 
for both types of pairing. The experimental situation is in 
this respect not yet clear. According to Ref. 8, in UBe,, this 
law corresponds to a T 3  dependence, whereas the data on 
UPt, (Ref. 12) and CeCu2Si2 (Ref. 13) favor more readily 
singlet superconductivity, as already mentioned in Sec. 1. 

An interesting distinguishing feature of the new super- 
conductors is that they have magnetic properties. The pres- 
ence of a magnetic moment, meaning hence of a magnetic 
field near the sample surface even in the absence of an exter- 
nal field, can undoubtedly be investigated by nuclear-mag- 
netic-resonance methods. 

"In $20 of Ref. 1 the discussion of pairing with nonzero angular momen- 
tum is based on unpublished results obtained in 1958 by A. A. Abriko- 
sov, L. P. Gor'kov, L. D. Landau, and I. M. Khalatnikov. 

"This was pointed out to us by N. Konyshev. 
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