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A systematic experimental and theoretical investigation was made of the exchange modes of a 
magnetic resonance in a four-sublattice orthorhombic antiferromagnetic CuC12*2H20. Measure- 
ments were made at a temperature of 1.8 K in the frequency range 6-10 cm-' using magnetic 
fields up to 10 T applied parallel to the easy magnetization axis. The intensity of the absorption of 
the exchange modes was directly proportional to the degree of noncollinearity of the magnetic 
structure, assumed to be collinear in the exchange approximation. A study was made of the region 
of interaction of the exchange and acoustic modes of identical symmetry and it was found that the 
parameter describing the coupling between these modes was the anisotropic exchange constant. 
The ferromagnetic and anisotropic exchange integrals were determined and the magnitude of the 
bending angle of the sublattices in zero field was found. 

I. INTRODUCTION 

Most real antiferromagnets have many sublattices. The 
number of magnetic-resonance modes in such crystals is 
equal to the number of magnetic sublattices. In the case of 
crystals in which the exchange interactions are much stron- 
ger than the anisotropic interactions the modes in question 
can be classified in a fairly arbitrary way. The modes with 
activation energies which vanish in the exchange approxi- 
mation in the absence of a magnetic field will be called the 
acoustic modes and the modes with activation energies 
which remain finite under these conditions will be described 
as the exchange modes. 

This classification reflects the specific features of the 
precession of the sublattice magnetization participating in 
the oscillations corresponding to these modes. In the acous- 
tic mode case the precession of the sublattice magnetizations 
results in small deviation of the "hedgehog of spins" in a unit 
cell as a whole from a certain special direction. Since this 
direction is governed by the anisotropic interactions, it fol- 
lows that the activation energy of the oscillations that corre- 
spond to the acoustic modes is governed by the anisotropy. 
In the case of the exchange mode oscillations the hedgehog 
of spins is not displaced as a whole, but small deviations of 
the sublattice magnetizations alter the hedgehog structure. 
The orientation of the sublattice magnetizations within the 
hedgehog governs the nature of the magnetic ordering and it 
is determined by the relationships betwen the sublattice ex- 
change integrals. Therefore, the activation energy of the ex- 
change modes is of the exchange origin. 

It is important to stress also that in crystals character- 
ized by a strong single-ion anisotropy of the ions with the 
spin S )  1 we can expect additional perturbations due to tran- 
sitions in which the spin projection is not conserved and the 
energies are of the order of the exchange energy. However, 
such excitations are not exchange modes because they are 
not linked to the multisublattice nature of a crystal. 

The acoustic modes of an antiferromagnetic resonance 
(AFMR), the number of which for an antiferromagnetic col- 
linear in the exchange approximation amounts to two, have 
been investigated both experimentally and theoretically in 
considerable detail for a large number of crystals with differ- 
ent symmetries. However, such a systematic investigation of 
the manifestations of the exchange modes in magnetic reson- 
ances have not yet been made. 

It was reported in Ref. 1 that exchange modes were 
observed in neutron scattering. Recently, we discovered the 
exchange modes of CuC12~2H20 and carried out a prelimi- 
nary investigation of the dependences of their frequencies on 
an external magnetic field.' Somewhat earlier the exchange 
modes were discovered in an (NH3)2(CH2)3MnCl, crystal3 
We also investigated experimentally the field dependences of 
the frequencies. A confirmation that the absorption lines re- 
ported in Ref. 2 were due to the exchange modes was pro- 
vided by the identity of the dependences of their frequencies 
and intensities on the magnetic field with those obtained 
theoretically4 for a four-sublattice orthorhombic antiferro- 
magnet. Moreover, the behavior of the field dependences of 
the frequencies and intensities of the exchange modes in the 
collinear phase reported in Ref. 3 were also in agreement 
with the predictions of Ref. 4. 

The absence of systematic investigations of the ex- 
change modes can be explained by the fact that, firstly, their 
detection meets with considerable experimental difficulties 
because the exchange mode frequencies usually lie in the 
long-wavelength infrared range and the intensities of their 
absorption lines are low and are governed, as shown below, 
by the degree of noncollinearity of the magnetic structure. 
We shall define this degree of noncollinearity as the ratio of 
the anisotropic exchange interaction (in the Dzyaloshinskii- 
Moriya sense, as explained in the theoretical part of the pres- 
ent paper) to the isotropic exchange. This ratio governs the 
angle of misorientation of the sublattice magnetizations 
within the hedgehog of spins. Secondly, theoretical calcula- 
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tions of the magnetic resonance spectra of multisublattice 
magnetic materials are very time-consuming5 and only the 
use of calculation methods utilizing symmetry consider- 
ations6 makes it possible to simplify the procedure. For ex- 
ample, the first calculation of the field dependences of the 
frequencies of the exchange modes in a four-sublattice or- 
thorhombic antiferromagnet was reported by J ~ e n k . ~  How- 
ever, Joenk studied only the range of fields not exceeding the 
spin flop transition field on the asumption that the exchange 
modes could not be observed in the spin-flop phase. 

Application of the symmetry approach in Ref. 6 to the 
study of the field dependences of the frequencies in the 
AFMR spectrum made it possible to identify those cases in 
which the exchange and acoustic modes had the same sym- 
metry. As shown below, a strong interaction between the 
exchange and acoustic modes of the same symmetry is possi- 
ble in the spin-flop phase if the field is sufficiently strong. An 
interesting feature of this interaction is that the parameter 
describing the mode coupling is the anisotropic exchange 
constant. An investigation of the region of interaction 
between the exchange and acoustic modes and also (as point- 
ed out above) of the intensities of the absorption lines of the 
exchange modes should make it possible to determine the 
anisotropic exchange constant. 

A detailed study of AFMR in a multisublattice magnet- 
ic material therefore provides an opportunity to obtain 
quantitative data on the magnetic structure of a crystal, for 
example, to determine the degree of noncollinearity of the 
magnetic structure which has hitherto been found only from 
elastic neutron scattering. 

Our aim was to determine in detail the absorption spec- 
trum of the exchange modes in CuCl2-2H2O crystals, to cal- 
culate the corresponding field dependences of the frequen- 
cies and characteristics of the absorption lines, and also to 
find the constants representing the magnetic structure of 
this crystal within the framework of the four-sublattice mod- 
el. 

THEORY 

Copper chloride dihydrate is a compound isomorphous 
with CuC12*2D20, which-according to the neutron diffrac- 
tion data7s8-is a four-sublattice orthorhombic antiferro- 
magnet. The symmetry group of the paramagnetic phase of 
these crystals is D i, . It is shown in Ref. 9, which provides a 
microscopic justification of the Dzyaloshinskii interaction, 
that the anisotropic exchange interaction in such antiferro- 
magnets and the associated bending of the magnetization 
vectors of the sublattices give rise to a weak ferromagnetic 
moment. However, this weak moment is zero in chloride 

C I  la/" FIG. 1 .  Unit cell of CuC1,.2H2O and the 
ground state in a magneticffieldparallel to 
the a axis: a) H = 0; bl H<H.<; c) 

dihydrate and in CuCl2*2D,O if there is no external magnet- 
ic field. The magnetic structure of CuC1,*2H2O in the Pbmn 
setting is shown in Fig. 1. The magnetic cell in these two 
compounds is equal to twice the crystallochemical cell. The 
doubling occurs along the c axis. 

Following the method of calculation of the magnetic 
resonance frequencies developed in Ref. 6, we shall intro- 
duce the following irreducible combinations of the sublattice 
spins: 

F=Sii-S2+S3+S4, L2=Si-S2+S3-S4, 

which transform in accordance with the irreducible repre- 
sentations of the symmetry group of the paramagnetic 
phase. A classification of the components of the vectors of 
Eq. (1) in accordance with irreducible representations of the 
group D z, is given in Table I. It should be pointed out that 
the representations r, - r8 in Table I are the irreducible 
representations with q # 0. 

We shall be interested only in the frequencies of a homo- 
geneous resonance for which the Hamiltonian of the system 
can be written in the form 

liaR i jv 

where i, j = x, y, z, a ;  p, v = 1, 2, 3, 4 label the sublattices; 
K iR are the constants of the intrasublattice and intersublat- 
tice interactions; Sp is the magnetization component of the 
a-th sublattice; H is the external magnetic field; g; is the 
tensor of theg factors of the v-th sublattice. Using the irredu- 
cible representations of Table I, we can rewrite the above 
Hamiltonian as follows: 

TABLE I. Classification of components of combinations of sublattice 
magnetizations in accordance with irreducible representations of D :, 
group. 

Group I vetoc r 
representation components 

Lzv 
F z  L2z 
F ,  
Fz L2z 

LQY 
Ll, Lsz 
LlV 
L 1 z  L3, 
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The quantities Jand D are defined in terms of K by means of 
Eq. (I), for example, 

J ZU- -I/ ,  (KWH-K,"+K,'"K,,'I) , 

D ~ = ~ / ~  (Kxr1f-Kzz'Z-K~zt3+KI114) . 
The parameters Dj ( j  = 1, 2, 3, 4) relating the off-diagonal 
(Cartesian indices) components of the irreducible combina- 
tions of Eq. (1) will be called the anisotropic exchange inter- 
action constants. These constants describe the Dzyalo- 
shinskii-Moriya interaction. It should be pointed out that 
the quantities D include a contribution from the symmetric 
and antisymmetric (in respect of the Cartesian indices) parts 
of the matrices K ip. As shown in Ref. 9, the symmetric part 
of the off-diagonal components K ip (i#j) is of the order of 
(Ag/gl2K :@ and the antisymmetric is of the order of (Ag/ 
g)K:p, where Ag is the deviation of the g factor from the 
value of a free electron9 and K ip is the intersublattice ex- 
change integral. If these K :p integrals are of the same order 
of magnitude or they differ only slightly, the greatest contri- 
bution to D is made by the antisymmetric parts of the matri- 
ces K iB. 

In our case the matrices K ;@for the ion pairs 11 and 13 
are symmetric, whereas for the pairs 12 and 14 are antisym- 
metric, so that we can assume that K i j, K i: (K E, K i:. We 
shall show later that in the investigation crystal the values of 
K ;: are only an order of magnitude greater than K a. An 
allowance for the inequalities just given shows that 
Dl=  - D2 and D 3 z  - D,. 

However, there are some crystals for which the rela- 
tionships between the intersublattice exchange integrals are 
such that the constants D are determined by the contribu- 
tions from the symmetric parts of the matrices K ipand this 
is true, for example, of antiferromagnetic (C2H,NH3),CuC1, 
(Ref. 10). 

Since the parameters J include the isotropic exchange 
interaction, the following relationships should be obeyed9 

The quantities Aaji govern the anisotropic interactions. 
In the absence of an external magnetic field we can ex- 

pect a magnetic configuration of copper chloride dihydrate 
to have finite values of the components L,, and L,, and L, 
should be the weak antiferromagnetic component. This 
magnetic configuration (Fig. la) transforms in accordance 
with the irreducible representation r, of Table I. We shall 
now classify the magnetically ordered phases in accordance 
with the corresponding irreducible representations in Table 
I, i.e., in the absence of an external magnetic field we shall 
assume that the magnetic structure of CuC1,-2H,O is the 
ordered l?, phase. 

The distribution of the magnetizations in a hedgehog of 
spins shown in Fig. l a  corresponds to the L,-type antiferro- 
magnetic ordering, i.e., in the exchange approximation the 
only nonzero quantity is the principal antiferromagnetic 
vector L,. The absence of the L,  ordering means that the 
quantities occurring in Eq. (2) satisfy the relationships 

It  is quite clear that, depending on the values of the param- 
eters Jand  D, and also on the magnitude and direction of the 
magnetic field in a given structure, we can encounter also 
other types of magnetic ordering listed in Table I. The set of 
ground states which may be assumed by copper chloride di- 
hydrate in an external magnetic field oriented along the a 
axis is shown in Fig. 1 [the coordinate system x ,  y, z selected 
in Eq. (2) coincides with the a, b, and c axes]. 

A magnetic field Hlla induces a finite value of F,, which 
gives rise to L,, . Consequently, a mixed r2, magnetic config- 
uration is established and it correspond to the following 
equilibrium values of the irreducible combinations of Eq. (1): 

The equilibrium values of the vectors in Eq. (1) can be found 
by the method described in Ref. 6 or using the Lagrange 
multipliers. 

Here and later we shall ignore the quantities g, and g, , 
which are usually small. Throughout the range of fields cor- 
responding to the r2, phase we have Fx (L,, . Bearing in 
mind the relationship I J,  - J, I a D (Ref. 9), we can estimate 
Fx from Fx a HJ -2. It should be pointed out that the con- 
stants D and J in Eq. (2) are dimensionless and the value of S 
has the dimensions of magnetization. 

The expressions for the equilibrium values of the irre- 
ducible combinations for the phase r, are obtained from Eq. 
(5) when H = 0. It readily follows from the expressions in 
Eq. (5) and from Fig. l a  that if H = 0, then the degree of 
noncollinearity of the magnetic structure is governed by the 
rate of the weak antiferromagnetic component to the princi- 
pal antiferromagnetic vector JL,,L , ' 1  = W,(J,, - JIX)-'. 
The lability field of the collinear phase is given by the expres- 
sion 

HIIZ=H~o,IIA,,, Hzpi=8S (1st-JiX), p=O, 2 ,  3; 
( 6 )  

H A ~ ~ = ~ S [ J I ~ - ~ ~ ~ + ~ / ~ D ~ ~  ( J S z - J i z )  I .  
When the fields exceed the spin-flop field of the magnet- 

ic moments of the sublattices, the principal antiferromagnet- 
ic vector is parallel to the b axis and the magnetically ordered 
phase is T2,, for which we have 

In the spin-flop phase the weak antiferromagnetic vector L, 
increases on increase in the magnetic field, but even in fields 
close to the exchange value H z  H, it remains a small quanti- 
ty (of the order of D J  -') compared with Fx = 4s. This spin- 
flop phase is stable in fields H, < H < Hf, where 

The spin flopping of the magnetic moments of the sub- 
lattices, i.e., the transition from the r2, to the l?,, phase, is a 
first-order phase transition in CuC12*2H20. 

In a magnetic field H = Hf the phase transition caused 
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TABLE 11. Classification of antiferromagnetic resonance frequencies of 
CuCI2.2H,O in accordance with symmetry (EM and AM are exchange 
and acoustic modes). 

collapse of the magnetic moments of the sublattices, which 
causes the principal antiferromagnetic vector L,, to vanish, 
in accordance with Eq. (7). However, the weak antiferro- 
magnetic vector L, remains, as already pointed out, differ- 
ent from zero. 

An interesting feature of this sublattice collapse transi- 
tion in CuC1,*2H20 is the simultaneous disappearance of the 
doubling of the magnetic unit cell. It readily follows from 
Fig. 1 and from the expressions in Eq. (7) that in the field 
H = Hf the directions of the spins of the ions 1, 3, and 2 , 4  
coincide and the magnetic structure of the crystal in the col- 
lapsed phase, i.e., in fields H > H,, should be described by the 
two-sublattice model. 

We shall now consider expressions for the exchange and 
acoustic modes of a magnetic resonance in a four-sublattice 
orthorhombic antiferromagnet. Following Ref. 6, the 
AFMR modes can be conveniently classified in accordance 
with the irreducible representations of the paramagnetic 
phase group. The essence of this classification is that we can 
identify the small deviations from the irreducible combina- 
tions of Eq. (1) that participate in oscillations representing a 
given magnetic mode. It is shown in Ref. 11 that a direct 
product of an irreducible representation of the paramagnetic 
phase group, which governs the transformations of small 
deviations of the irreducible combinations of Eq. (1) corre- 
sponding to one magnon mode, always includes the irreduci- 
ble representation of the appropriate magnetically ordered 
phase. Table I1 gives a classification of all the AFMR modes 
of CuCl2*2H2O in a magnetic field applied parallel to the a 
axis. 

The separation of the modes into exchange and acoustic 
is made in accordance with the following criterion. Since the 
acoustic modes correspond to a rotation of the hedgehog of 
spins as a whole, it follows that they are the modes to which 
the irreducible representations of small deviations of the 
principal antiferromagnetic vector apply. For example, in 
the case of the r6 phase these are the small deviations of the 
vector L,, i.e., L,, (irreducible representation r,) and L,, 
(irreducible representation r,). However, in the case of the 
r2, phase, the corresponding vectors are L,, and L,, with 
the irreducible representations r6 and r,, respectively. 

The condition for the excitation of a given AFMR mode 
is the presence in its oscillations of small deviations of the 
vector F. For example, in the T6 phase the Vl6 mode is not 
excited because no component of the vector F transforms in 
accordance with the representations r, and r6 and the vZ5 

mode may be excited only when the polarization of the high- 
frequency magnetic field is parallel to the x axis. 

It is clear from Table I1 that in the r2, phase the ex- 
change and acoustic modes have the same symmetry, i.e., 
oscillations corresponding to an exchange mode include a 
contribution from small deviations of the principal antifer- 
romagnetic vector. However, as shown in Ref. 11, in the 
exchange branches of the AFMR spectrum the largest am- 
plitude of the oscillations is exhibited by the weak antiferro- 
magnetic vector, whereas in the acoustic modes this is true of 
the principal antiferromagnetic vector. 

In the collinear phase (r,,) the AFMR frequencies are 
given by the expressions 

Number of 
resonance modes 

1 EM 
I EM 
I AM 
1 AM 
2 EM 
2 AM 

1 EM+ IAM 
1 EM + 1AM 

I ymmetry o 
Symmetry of Eomogeneo:s 

magnetic ordering oscillations 

where 
Re= {(H,lZ+H,,ZS2HZ) ' -4 (He?--Hz) (He&'-HZ) ) I A ,  

R,= { (HaiZ+H,2z+2HZ) '-4 (Ha3'-Hz) (HIIZ-HZ) ) Ih, 

Helz=HEszHEzy, Hez2=HEsyHEzi, HesZ=H~3rH~zz, HekZ=H~3yH~zy, 

H.12=H,o,HAiz, Haz2=HEozH,ig, HasZ=HEozH,tz, 

HAjr=8S(Jiz-Jir) 

r6 
(H=o)  

r26 { ( H < H , ~ )  
rz7 

( H . t c ~ < H t )  { 

The lower index for the frequencies in the system (9) corre- 
spond to the irreducible representation in Table I1 which 
governs the transformation of oscillations of this frequency. 
In the r2, collinear phase the oscillations corresponding to 
the exchange and acoustic modes have different symme- 
tries.4 Therefore, in this phase the existence of the exchange 
modes has no influence on the positions and behavior of the 
acoustic modes. However, in low fields 
H(He, - He, (HXH,,) the difference between the exchange 
mode frequencies varies with the magnetic field proportion- 
al to H z .  On the other hand, in the interval of fields 
He, -He, (HGH,, the frequencies of the exchange modes 
depend linearly on the field. 

In the spin-flop phase I?,, the oscillations correspond- 
ing to the exchange and acoustic modes have then pairwise- 
equal ~ymmetries.~ The dispersion equation governing the 
AFMR frequencies for this phase is governed by a twelfth- 
order determinant which splits into two blocks correspond- 
ing to pairs of modes of the same symmetry. If we now as- 
sume that the values of Di vanish, each of these blocks splits 
again into two. Therefore, the constants describing the an- 
isotropic exchange are the "parameters of the coupling" of 
the exchange and acoustic oscillation modes of the same fre- 
quency. The existence of this coupling results in a strong 
interaction of the oscillations in the part of the spectrum 
where the frequencies of the exchange and acoustic modes 
are similar. This interaction suppresses crossing of the field 
dependences of the exchange and acoustic mode frequencies 
even when the magnetic field was oriented exactly along the 
a axis. The minimum separation between the frequencies of 
the characteristic field H = H, (H,,, is deduced from the 
condition of coincidence of the exchange and acoustic mode 

pie 
rz5 
r 3 ~  
rr7 
r lzse  
r sr7~ 
r ~ 8  
rsrse 
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frequencies when D = 0) is proportional to the constant D. 
In fields H 2 H,, and H 5 Hf the dependences of the 

frequencies on the field are described by 

anisotropy field. 

where HA ,, = 8s [J,, - J,, - 4D :(A, - Jly)-'1. 
Solutions of the system (10) were obtained for the case 

when Y + )v - . For the Y,,,,( f ) modes this condition is 
satisfied throughout the investigated range of magnetic 
fields right up to the sublattice collapse field, whereas in the 
case of the v3,,,( + ) modes there is a range of fields where 
~ 3 4 5 6 (  + ) ~ 3 4 5 6 (  - 1. 

We shall consider this region of a strong interaction 
between the exchange and acoustic modes in greater detail. 
The results can be presented in a clear manner if we make a 
number of simplifying assumptions. We have mentioned 
above that the greatest contribution to the value of D comes 
from the antisymmetric parts of the intersublattice exchange 
integrals of the pairs of ions 12 and 14. The contribution 
made to the exchange integral by the pairs of ions 14 can be 
ignored because they are more distant than the pairs 12. We 
therefore obtain Dl = - D, = D, = - D, = D. We shall 
also ignore the exchange integral of the pairs 14 in the ex- 
pressions for the characteristic fields HA,, HA,, and HA,. 
Moreover, we shall neglect the anisotropy of these exchange 
fields so that HAi = H, and HA, = HAo + HA,. A solution 
of the dispersion equation for the frequencies v3,,,( + ) gives 
(we shall drop the identified index of the frequency) 

In Eq. (lo), the frequency vo- is described by an expression 
for the characteristic field HA ,, , with D = 0. Directly in a 
field H, for which we have yo+ = yo- = v(H,), we obtain 

The magnitude of the smallest separation between the fre- 
quencies of the interacting modes is 

It follows from the above expression that the constant D can 
be found by measuring the smallest separation between the 
frequencies. However, in the range of weak fields H 5 H,, in 
the case of the r2, phase and fields H 2 H,, in the case of r2, 
phase the anisotropic exchange does not affect in any way 
the behavior of the acoustic modes of AFMR. It is clear from 
Eqs. (9) and (10) that the constant D simply renormalizes the 

EXPERIMENTAL METHOD 

Measurements were made by the rf method in the fre- 
quency range 6-10 cm- ' using a sweep-type spectrometer.'* 
The sources of microwave radiation were backward-wave 
tubes and a crystal of n-type InSb cooled to 4.2 K served as a 
detector. The wavelength was measured by an interference 
wavemeter to within 0.2%. The wavelength stability was 
governed mainly by the stability of the voltage using a delay 
system of a backward-wave tube (0.01 %), which was moni- 
tored using a digital voltmeter. 

The conditions for the excitation of the exchange modes 
in the collinear phase and of the v,,,,( + ) mode in the spin- 
flop phase (with the magnetic vector of the microwave radi- 
ation oriented so that hllHlla) were satisfied employing a 
pulsed Helmholtz solenoid (Fig. 2a). Microwave radiation 
traveled along the b axis of the sample and the orientation of 
h could be varied in the ac plane. Measurements in the region 
of the interaction between the exchange and acoustic modes 
v3,,,( * ) were made with the microwave radiation polarized 
so that hllc and in this case a conventional pulsed solenoid 
was used (Fig. 2c). The radiation traveled along the a axis 
and the polarization h was established in the bc plane. 

A sample was placed in a solenoid channel between two 
Teflon quasioptic waveguides matched to a microwave 
channel by cone-lens junctions. The measuring cell of the 
spectrometer, described in detail in Ref. 12, ensured that the 
polarization was not affected and that the losses were low in 
a wide range of wavelengths. The intensity of the magnetic 
field created by the pulsed solenoids was deduced from the 
integrated signal produced by a detection coil wound on the 
measuring cell waveguide at the point of location of the sam- 
ple. The field signal was calibrated using the AFMR line of 
RbMnF,. A polyethylene pellet containing a small amount 
of this substance was placed alongside the sample. The zero 
level of the field signal was recorded automatically for every 
magnetic field pulse, so that the long-term instability of the 
parameters of the recording circuit did not affect the experi- 
mental error. Consequently, the error in the determination 
of the absolute value of the magnetic field did not exceed 
1 - 2%. 

In these experiments we used optically homogeneous 
CuC1,*2H20 single crystals grown from a saturated solution 
of pure copper chloride. The samples were in the form of a 
cube with an edge of 3 mm and with faceting along the crys- 
tallographic axes. In an investigation of the region of the 
interaction between the exchange and acoustic modes we 
ensured that an undistorted AFMR line was obtained (its 
intensity far from the interaction region was 500 times high- 
er than the intensity of the exchange mode line) by employ- 
ing a sample 0.35 mm thick and of 3 X 3 mm2 area with the a 
axis perpendicular to the plane of the plate. Orientation of a 
sample along two mutually perpendicular planes was set on 
the basis of the maximum value of the splitting of the ex- 
change mode frequencies in fields HzH,, [it was found that 
CuC12*2H20, like MnF, (Ref. 13), exhibited field depen- 
dences of the magnetic resonance frequency which at 
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FIG. 2. Experimental geometry and schematic representation of the cells 
used in the measurements: a) pulsed Helmholtz solenoid; b) pulsed con- 
ventional solenoid. The numbers have the following meaning: 1) solenoid 
winding; 2) quasioptic waveguide with a core-lens junction; 3) waveguide 
support; 4) detection coil for measuring the magnetic field; 5) investigated 
sample inside support 3; k, e, and hare the directions of the wave, electric, 
and magnetic vectors of microwave radiation. 

HzH, ,  depended strongly on the orientation of a sample in 
a magnetic field]. The orientation Hlla was set in the ab 
plane, where the sensitivity to the orientation was strongest, 
to within + 3'. 

In spite of the fact that we used fairly thick samples (3 
mm) the absorption of the exchange mode was only 
5 - 10%. Convenient spectrograms were obtained by in- 
creasing the gain of the absorption signal channel in a cali- 
brated manner, so that the precision of the absorption inten- 
sity measurements was retained. 

A working temperature of about 1.8 K was achieved by 
pumping out helium vapor from a cryostat where a pulsed 
solenoid with the investigated sample was located. The Niel 
temperature of CuC12*2H20 is known to be 4.33 K. 

DISCUSSION OF EXPERIMENTAL RESULTS 

Preliminary measurements of the field dependences of 
the exchange mode frequency in CuC12.2H20 crystals8 were 
carried out with the axis tilted at an angle of about 5" relative 
to the external magnetic field. This tilt was greater than the 
critical angle for the first-order phase transition, which 
amounted to 20' for CuC1,-2H20 (Ref. 14). Consequently, it 
was reported in Ref. 2 that in fields HzH,, the dependence 
of the exchange mode frequency on the magnetic field was 
continuous. In the present study these measurements were 
repeated but with H inclined to.the a axis by an angle not 
exceeding + 3'. When this precision of the orientation was 
achieved, the experimental field dependence of the exchange 
mode frequency (Fig. 3) exhibited discontinuities at H z  H,,. 
By way of example, we plotted in Fig. 4a an absorption spec- 
trogram at 8.6 cm- '. In a field HzH, ,  there was practically 
no absorption. The absorption lines observed in the same 
spectrogram corresponded to the v12,,( + ) oscillations (in 
lower fields) and to the v12,,( + ) oscillations (in higher 
fields). In zero field the frequencies v12,,( + ) were vl6 = 8.45 
cm- I, respectively. 

The continuous curves in Fig. 3 are the results of a theo- 

FIG. 3. Field dependences of the AFMR frequencies of CuCI,.2H20. 

retical calculation. This calculation was carried out employ- 
ing the approximation discussed above in the theoretical 
part of the paper. An allowance for a finite temperature was 
reduced to an allowance for the temperature dependence of 
the sublattice magnetizations by the molecular field method. 
When the anisotropy fields were ignored, the exchange mode 
frequency in zero field was vo = ~(H,H,)'". The fields H3 
and Hz were governed by the ferromagnetic exchange inte- 
grals JF a K l2 and by the sum of the ferromagnetic and anti- 
ferromagnetic exchange integrals JA a K 13, respectively. 
The antiferromagnetic exchange integral determined the 
field in which the sublattices collapsed and which, at T = 1.1 
K, was HA, = 15 T (Ref. 15). If we assumed that 
Hz = HA, + H3 and that the half-sum of the exchange mode 
frequencies in H = 0 was vo = 8.425 cm-', we found that 
H3 = 3.65 T. Moreover, we assumed that g =gopBh -I, 
where h is the Planck constant, pB is the Bohr magneton, 
and go = g, = 2.187. The ratio of the ferromagnetic and 
antiferromagnetic exchange integrals found allowing for the 
interaction only between the nearest neighbors is 

J,JA~-i=1/,H3H~,-i=0,121, 
in good agreement with the results of Refs. 15 and 16 ob- 
tained from experiments carried out in very high fields. 

The exchange modes of the collinear phase and also the 
exchange modes [v12,,( + )] in fields exceeding H,, were ex- 
cited when the microwave radiation polarization was h(la, 
whereas the v3,,,( + ) modes in the spin-flop phase were ex- 
cited in the hllc polarization. These conditions for the obser- 
vation of the exchange modes were in agreement with the 
results of a theoretical calculation of the dynamic suscepti- 
bility of a four-sublattice orthorhombic antiferrornagnet,, 
according to which the intensity of the exchange mode 
v3456( + ) in the spin-flop phase should be less for the hllb 
polarization than for hllc. By way of illustration, we shall 
give the expressions for x,(v) and xIZ(v) in the spin-flop 
phase: 
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entzian and Gaussian. Measurements of the intensities of the 
exchange mode lines in fields H < H,, demonstrated that for 
H = 0, the intensity at the maximum of the y12,,( - ) ex- 
change mode was 0.16 + 0.02 cm-', whereas in the case of 
the v,,,,( + ) mode it was 0.04 & 0.02 cm-'. The nonzero 
intensity of the v,,,,( + ) exchange mode in H = 0 [calcula- 
tions ofx, (Y) reported in Ref. 4 indicated that in H = 0 this 
mode should not be excited by an alternating field] could be 
explained by a nonlinear interaction of the exchange mode 
oscillations that appear because of the proximity of their 
frequencies in zero field. On increase in the external magnet- 
ic field to (0.1-0.2) T the intensities of the exchange modes 
become equal within the limits of the experimental error (in 
fact, this occurred within the limits of the absorption line 
width). In a field H = 0.3 T the intensities at the maxima 
were 0.1 + 0.02 cm-', the width at the half-maximum was 
0.07 + 0.015 cm-', and the integrated intensity was 
(5 + 2) x lop3 cm-'. The dependence of the exchange mode 
frequencies on the external field in the range H < H,, was 
linear. The nonlinearity of this dependence predicted by the 
calculations of Ref. 4 and the changes in the intensities of the - 

FIG. 4. Absorption spectrograms: a) frequency 8.6 cm-', H i s  the mag- exchange mode lines in weak fields were clearly significant 
netic field signal, H = 0 is the zero level, the arrow identifies the region of Only within the limits of the absorption line width and could 
Hsf, and the dashed line is the absorption level of 20%; b) frequency 6.75 
cm-'. The middle narrow absorption line is the AFMR line of RbMnF, be detected 
used for calibration. In fields H = 7 T we observed an interaction between 

It is quite clear from the above formulas that if hllb then the 
residue of xii(v) for the exchange mode contains the factor 
D2J-*,  whereas for hllc the residue contains the factor 
D '5-'. Our experiments, carried out in the hllb configura- 
tion, indicated that the mode in question was not observed. 

The explicit form of the components of the tensor ,yii (v) 
demonstrated that the low intensity of the exchange mode 
lines was due to the fact that the residues xii(v) correspond- 
ing to these modes always included the degree of noncollin- 
earity of the magnetic structure as a factor. This result is 
common to all the many-sublattice magnetic materials for 
which the exchange approximation is valid, irrespective of 
their symmetry. The absorption lines corresponding to the 
exchange modes have a profile intermediate between Lor- 

the y,,,,( * ) exchange and acoustic modes when they ap- 
proached each other. Since these modes had the same sym- 
metry, the interaction of the field dependences of the fre- 
quency was not observed even when the axis a of the sample 
was oriented exactly along the external magnetic field (Fig. 
3). When the lines approached each other, there was a char- 
acteristic transfer of the intensity from the stronger acoustic 
AFMR mode to the weaker exchange mode. In a field of 
H = 6.9 T there were two absorption lines with identical 
intensities equal to half the intensity of the acoustic mode 
line far from the interaction region. By way of example, de- 
monstrating the increase in the intensity of the exchange 
mode and the reduction in the influence of the degree of 
noncollinearity, we shall give the values of the residues f, of 
the components of the high-frequency susceptibility x,: 

from which it follows that if v,, = yo-, then 

ZI 

g2 f (+ '= - f ( - '  =- -H  F 2 

'' 8s " ' 
A further increase in the field causes the intensity of the 
exchange mode line of frequency given by the value v- in Eq. 
(1 1) to fall on reduction in L :, [see residues in Eq. (14)l. In 
fields H >  10 T this mode is practically unobservable. The 
behavior of the lines in the interaction region can be judged 
on the basis of Fig. 4b, which shows an absorption spectro- 
gram 6.75 cm-'. A strong line with a cutoff top (because of 
an increase in the gain of the signal channel) corresponds to 
the angular mode v,,,,( - ). The weak line on the right repre- 
sents absorption at the exchange mode frequency. The nar- 

G a k  in the right-hand wing of the acoustic mode line 
represents AFMR in RbMnF,. 

The anisotropic exchange interaction constant D, 
which is the "coupling parameter" of the exchange and 
acoustic modes, was found from the condition of matching 
of the experimental and theoretical values of the lowest fre- 
quency difference (13) between the interacting modes in the 
vicinity of the fields H ,  . As established experimentally, this 
difference varies weakly when temperature is increased to 3 
K and the field is inclined to the a axis within the limits of * lo; the difference amounts to Av,, = 0.4 + 0.1 cm-'. 
The value 4SD = 0.25 + 0.06 T makes it possible to calcu- 
late the ratio of the weak antiferromagnetic component to 
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the principal antiferromagnetic vector and, consequently, to 
find the tangent of the angle of bending of the sublattices 
inside the hedgehog of spins in zero field is 

This value is in good agreement with the results of neu- 
tron diffraction studies of CuCl,*2D20 (Ref. 8), which is iso- 
morphous with CuCl2-2H2O and for which the value 0.062 
has been obtained. 

CONCLUSIONS 

The compound CuC1,*2H20 was used as an example of 
a four-sublattice orthorhombic antiferromagnetic and an ex- 
perimental as well as a theoretical study was made of the 
exchange AFMR modes and the interaction between the ex- 
change and acoustic modes of the same symmetry. These 
experimental results confirmed well the predictions of the 
theory and can be used to obtain quantitative information on 
the magnetic structure of a crystal. 

In spite of the fact that the calculations and experiments 
described above were carried out for the four-sublattice anti- 
ferromagnet CuCl,*2H20, all the characteristic features of 
the manifestation of the exchange modes in the AFMR spec- 
trum are retained also in the case of the orthorhombic anti- 
ferromagnets of different types. For example, it follows from 
an analysis of the components of the tensorxV(v) that the low 
intensity of the absorption lines of the exchange modes is due 
to the weak noncollinearity of the magnetic structure of a 
crystal, because the residues xii(v) corresponding to these 
modes always contain it as a factor. In particular, if the anti- 
ferromagnetic exchange integral is larger than the ferromag- 
netic integral," then in the spin-flop phase there is always a 
range of magnetic fields in which the exchange and acoustic 
mode frequencies of the same symmetry become of the same 
order of magnitude and a strong interaction occurs between 
them. 

In those cases when the ferromagnetic exchange inte- 
gral is much less than the antiferromagnetic exchange inte- 
gral, the frequencies of the exchange modes may be of the 
order of the acoustic mode frequencies even in fairly low 
magnetic fields. Such a situation is reported in Ref. 3. An- 
other example of a crystal with the anomalous ratio of the 
antiferromagnetic and ferromagnetic exchange integrals is 
the four-sublattice compound (C2H,NH,)2*CuCl,, charac- 
terized by J,>J, (Ref. 10). Although in the spin-flop phase 
of this antiferromagnet all four AFMR modes have the same 
symmetry, the frequencies of the'exchange modes are con- 
siderably higher than the frequencies of the acoustic modes 
throughout the investigated range of fields right up to the 
value at which the sublattice collapse takes place and the 
interaction between the exchange and acoustic modes is no 
longer manifested. I' 

We shall now consider the conditions of validity of the 
two-sublattice model used to describe the high-frequency 
properties of multisublattice antiferromagnets, because this 
model is now generally accepted. It is clear from the above 
discussion that there is also a closely related problem of the 
interaction between the exchange and acoustic modes. For 

example, if the exchange interaction in any antiferromagnet- 
ic is unsuitable, i.e., if the relativistic interactions are of the 
same order of magnitude as the exchange interactions, then 
the division into the exchange and acoustic modes is no long- 
er meaningful. The energies of all these modes in a multisub- 
lattice antiferromagnet should be of the same order of mag- 
nitude and, therefore, oscillations of the same symmetry 
may be subject to a strong interaction. In this situation it is 
not possible to use the two-sublattice model. 

In the case of a multisublattice antiferromagnet in 
which for some reason or another the anisotropic exchange 
is weak or absent, we can use a two sublattice model to de- 
scribe correctly the behavior of the acoustic modes through- 
out the investigated range of magnetic fields. 

However, the situation considered by us above corre- 
sponds to intermediate values of the anisotropic exchange 
constant. There are intervals of magnetic fields in which the 
two-sublattice model describes well the behavior of the 
acoustic modes, for example, near the spin-flop transition 
field. This is due to the fact that if the order parameters of a 
spin-reorientation transition in a multisublattice magnetic 
material are the components of the antiferromagnetic vector 
(i.e., are a linear combination of the sublattice spins in 
strongest and zero fields, which determine the type of order- 
ing), whereas the Landau expansion in terms of the order 
parameter near the transition point in fact corresponds to a 
description of an antiferromagnet in the two-sublattice mod- 
el. Therefore, the behavior of the magnon mode which be- 
comes softer somewhere in the region of the transition in a 
multisublattice magnetic material should also be described 
correctly by this model. 

In this sense the separation (on the basis of symmetry 
considerations) of the order parameter and a gradual estab- 
lishment of the free energy of the material allowing for its 
symmetryis has made it possible to reduce strongly the num- 
ber of sublattices and to give a correct qualitative and some- 
times quantitative pattern of the behavior of the static prop- 
erties of a multisublattice magnetic material when, for 
example, temperature, magnetic field, and other thermody- 
namic parameters are varied. 
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