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We consider a metallic easy-axis ferromagnet containing easy-plane impurities and show rare 
earth metals as the example that at low concentrations the impurities give local levels below the 
bottom of the spin-wave band in the spectrum of magnetic excitations. These levels can be 
brought together by a magnetic field, leading at low temperatures to an anomalous "Kondo" 
scattering of conduction electrons. We evaluate the amplitude for impurity scattering of electrons 
in the weak coupling region and the contribution of this mechanism to the resistance of the metal 
and calculate the size of the level splitting due to the magnetostriction mechanism. Estimates of 
the critical fields at which the effect is expected for heavy rare earth metals give (0.3-0.5) lo6 Oe. 
Landau quantization not only fails to suppress this effect but under certain conditions can actual- 
ly enhance it. 

1. INTRODUCTION 

Degeneracy of the magnetic states of a paramagnetic 
impurity in a normal metal gives rise to anomalies in the 
magnetic susceptibility, specific heat, and resistivity. In par- 
ticular, the Kondo effect properly refers to a minimum in the 
temperature dependence of the resistivity of the normal met- 
al (see, e.g., Refs. 1 and 2). Lifting the degeneracy usually 
lowers the energy of the system. In the present case the de- 
generacy can be lifted by spin-lattice interactions and the 
exchange interaction of the localized spin of the impurity 
with conduction electrons. The first are usually small be- 
cause the spin-orbit interaction is small. It is therefore in the 
electronic properties that anomalies are observed. At zero 
temperature and in the absence of magnetic field the differ- 
ence in the excitation energies of an electron with spin up 
(<, ') and an electron with spin down pulse a change in the 
projection of the impurity spin ((6, ' + AE, AE = 0) is zero. 
Therefore, to calculate the spectrum one must use a pertur- 
bation theory for degenerate levels. However, there is degen- 
eracy for a large number of electrons-the phase volume of 
such excitations is of the order of the volume of the Fermi 
surface; the problem has an essentially many-particle char- 
acter, and it becomes difficult to write out the secular equa- 
tion and find its solutions. The problem was recently solved 
with the aid of the Bethe ansatz.lv2 If, however, a magnetic 
field H is applied to the system, the degeneracy is lifted. The 
spin-flip scattering of electrons is hindered and in a suffi- 
ciently large magnetic field the Kondo effect is suppressed. 
In this field region the interaction between conduction elec- 
trons and impurities is weak, and one can use ordinary per- 
turbation theory; the leading corrections to the spin-electron 
scatteringamplitudebehaveas crA (Ago In (D /H))" .3HereA 
is the s-d exchange constant, go is the density of states at the 
Fermi surface, and D is a cutoff parameter ( - E ~ ) .  In the case 
of ordered impurities the magnetic field is replaced in ln(D / 
H)  and in the higher orders of perturbation theory by the 
considerably larger Weiss field -cA 'go J,4 where J is the 
magnitude of the impurity spin and c is the impurity concen- 
tration. Further examination shows that, as in the pure fer- 

romagnet, the electrons are no longer scattered by the spins 
of individual atoms but by spin waves, and the correction to 
the amplitude goes as ln(m,,/m),5 where m,, is the spin- 
wave mass and m is the electron mass. Impurities only alter 
the shape of the spin-wave band without qualitatively chang- 
ing the answer. Therefore, in an ordinary ferromagnet and 
especially in a ferromagnet in an external magnetic field the 
Kondo effect does not exist. 

Another situation can complicate the picture in aniso- 
tropic ferromagnets. In a ferromagnet with one-ion magnet- 
ic anisotropy of the easy-axis type the spin-wave excitations 
are separated from the ground state by a gap which widens 
with increasing magnetic field. If in such a ferromagnet one 
of the atoms is replaced by an impurity with one-ion aniso- 
tropy of the easy-plane type, then, as was shown in Ref. 6 for 
the particular case of a Heisenberg magnet, local levels can 
appear in the gap of the spin-wave spectrum for a certain 
relationship between the one-ion anisotropy constants of the 
impurity and host atoms. It is clear that at low temperatures 
the main contribution to the thermodynamics and the resis- 
tivity of the ferromagnetic metal is due to the scattering of 
conduction electrons not by spin waves but by just these 
local levels. It is easy to see from the following rough argu- 
ments that it is possible for local levels to appear below the 
bottom of the spin-wave band. The simplest Hamiltonian 
that models this situation is 

Here both anisotropy constants D are positive, h is the mag- 
netic field, J and S are the angular momenta of the impurity 
and host ions, respectively, and g is the Lande factor. Then 
the spectrum ofthe lower spin-wave branch in the absence of 
the impurity is given by the expression 
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while the energy of the (J - 1, J ) transition of the impurity is 

A E = - D , m p  (21-1) +hgimppB+Z(0)S7 (1) 

where I(0)S is the mean field of the host matrix. If AE < 0 (as 
is entirely possible for rare earth metals), then the ground 
state of the system has a moment that is smaller than the 
maximum possible. A case exists, however, in which hE is 
negative in small magnetic fields but positive in large fields. 
In this case it can happen that 

Then, by lowering the magnetic field one can reach the point 
at which A E  goes to zero. Actually, of course, the criterion 
for the onset of quasidegeneracy is not so strict, since in a 
more accurate calculation (see Ref. 6) the contribution of the 

asverse interactions is subtracted from (1). 
There is thus a region of fields in which the situation is 

similar to that in which the Kondo effect occurs. The differ- 
ence is that in the ordinary Kondo effect the entire spin of the 
impurity "precesses freely," whereas here there is only one 
or several degenerate transitions, with the energy of two 
transitions not going to zero at the same value of the magnet- 
ic field. 

In the present study we consider the situation described 
above in an s-f metal. Our main purpose is to call attention 
to the possibility of using a magnetic field to induce quaside- 
generacy of the magnetic levels of an anisotropic impurity, 
with all the features typical of the Kondo effect. 

2. THE MODEL. LOCAL LEVELS IN THE GAP OF THE SPIN- 
WAVE SPECTRUM 

The arguments given in the Introduction imply that in 
order to realize the effect one needs materials having a suffi- 
cient large one-ion anisotropy to compete with the effective 
exchange interaction between magnetic ions. Further, it is 
necessary that the impurity taken from an easy-plane mag- 
net retains its easy-plane properties upon substitution into 
an easy-axis magnet. These requirements can evidently be 
satisfied by embedding one rare earth element in the metallic 
matrix of another. As a matter of fact, the crystalline field in 
rare earth metals is - 10' cm-', and the magnetic ordering 
temperature is of the same order of magnitude. They have a 
one-ion magnetic anisotropy,' i.e., the level splitting of the 
magnetic ions is due mainly to the Coulomb interaction with 
neighboring ions. The impurity and host ions differ only in 
the number of f electrons, and both have charge + 3. The 
lattice parameters of heavy rare earth metals differ only 
slightly; the dimension of the f shell is 0.5-1 A, and the 
parameters of the hexagonal lattice in Er, for example, are 
a -- 3.56 A, c=. 5.59 A. The wave functions of the f electrons 
of neighboring ions have almost no overlap; nevertheless, 
one rare earth metal exhibits easy-axis anisotropy, the others 
easy-plane (see Sec. 6 for details). It is therefore understanda- 
ble that the mechanism responsible for one-ion anisotropy of 
one type or the other is mainly of an intra-atomic nature: of 
the same Coulomb field 

created by the ions of neighboring sites R , , the f electrons 
of ions of different rare earth metals "feel" only the part 
which is projected onto the basis of their own many-electron 
functions with a specified total angular momentum J: 

Owing to the large value of the spin-orbit interaction 
(- lo4 cm-'), the different J multiplets are well-separated 
from one another. The angular momentum J is determined 
by the number off electrons. Thus, if the hexagonal symme- 
try ofthe latticeis preserved, thenumbers ( J, M I V (r)I J ,  M ') 
for f ions of different rare earth metals can differ in sign. 
For this reason it can be hoped that the rare earth impurity 
will retain "its own" anisotropy upon substitution into an- 
other rare earth metal. 

The Hamiltonian describing this model of the rare earth 
metals, with the hexagonal symmetry taken into account, is 
of the form 

Here 

D :, and d :, are the one-ion anisotropy constants of the 
impurity and host ion, respectively, in a hexagonal field (the 
quantization axis is chosen along the c axis of the  crystal);^, 
is the projection operator (p: = p,), which is equal to one at a 
site occupied by an impurity atom and to zero at a site occu- 
pied by a host atom; J i s  the total angular-momentum opera- 
tor of the impurity, S is that of the host, u are the Pauli 
matrices, c& is the creation operator for a conduction elec- 
tron with quasimomentum k and spin projection a. The g 
factors are assumed to be included in the s- f exchange con- 
stants: A = A, (g,,, - I), B = B, (g, - 1). We will be inter- 
ested in the region of low concentration c. The s- f coupling 
constants are assumed small: Ago, Bgo( 1; go is the density of 
states at the Fermi surface. In addition, we will consider the 
region of magnetic fields in which the impurity and the ma- 
trix of the heavy rare earth metal are already in a ferromag- 
netic state, i.e., the helical structures characteristic of heavy 
rare earth metals have been "squeezed out" by the magnetic 
field (see estimates below) and the x and y components of the 
mean angular momentum (J, p, ) of the impurity are equal 
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to zero. To evaluate the correlation functions of interest we ferromagnetic state, the conduction electrons are magneti- 
use the cross technique,' averaging each term of the diagram cally biased, and we include the mean field created by these 
series with the distribution function electrons in (2): 

V 
E,+E,=B,-AR,M, em+~,=om-BRCm,  

@(p,,p,, . . . , p  ,)=TI ( c ~ ( I - P ~ ) + ( I - c ) ~ ( P ~ ) ) ~  (3) ~ k o + ~ k o = ~ - [  (1-C) ( S z ) B + c < P ) A ] q  ( a ) .  
f-1  

i.e., the impurities are assumed to be uncorrelated and uni- Let us now consider the perturbation series for the correla- 
formly distributed. tion-function matrix of the transverse components of the an- 

We note first of all that since we are considering the gular momenta 

<TpfJt+ ( T )  pt,Jrr- ( T ' )  > <TpfJt+ ( t)  ( I -pr , )Sr , - ( t f )  ) F,,. (-14) = [ 
T ( - ~ ) S + ( ) I ~ - ( ' )  ( T ( I - p f ) S f +  ( t )  ( l - p t ~ ) S ~ ~ - ( ~ ' ) )  1 

with the goal in mind of finding the spectrum of magnetic Z A Z ~  [In m a x { ~ ~ ~ + l , ~ .  E ? .  T )  + in sign E , }  excitations. In the presence of anisotropy it is convenient to 
M D 

use the diagram technique for the Hubbard operators. We 
cannot immediately write down the Larkin equations for F X'I J M : ~ , M  1 'AN.w+i,M ( J )  

(see Ref. 5) before carrying out the average procedure. Aver- 
aging tern-by-term, we see that the zeroth approximation and analogously for 6; D is the cutoff parameter (--&*). At 
here is the random phase approximation: sufficiently low temperatures only the lowest transition sur- 

vives: 

for the smallness of the concentration and coupling con- and at small UJ - I , J = ~  the logarithm is compensated ~ J Y  

stants is compensated by large denominators near the transi- the smallness of the coupling constant Ago- The corrections 

tion energies - mM+ ,,, , A&, + ,,, . Here an oval enclos- to the mass operator in the leading logarithmic approxima- 

ing an arrow and the dashed loop denote, respectively, tion are shown below; for simplicity, the ovals are not 
shown--each solid line refers to one impurity: 

Here N is the number of cells in the crystal. The spectrum of 
a pure anisotropic ferromagnet is analyzed in Ref. 9. Here 
the electron scattering by the impurities gives rise to addi- 
tional terms in the vertex and in the mass operator of the 
electron Green function (the notation used below is analo- 
gous to that of Ref. 9). For example, the corrections to the 
mass operator from the transverse part of the interaction 

The vertex function contain analogous contributions 

-) A >  --$-- ,- -b A --+- -$- The leading corrections are eliminated through the familiar 
a b (see, e.g., Ref. 4) parquet principle. We shall return to them 

in the next section; here we shall first cmsider the region of 
contain large logarithms of the form a: magnetic fields that are so large that the logarithmic correc- 
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tions are unimportant. Then there remains only the averaged 
series (4). Summing this series and performing an analytical 
continuation to the upper half of the w plane, we get 

(1-P(i-c) BZx)  Kc KcP (1-c) ABx 
P(1-c)KcBAx (1-KcAZx) P(1-c) 1 

A (q ,  a) =I-KcA2x-P(1-c) B2x. (7) 

Here the functionx(q,w), K (w), and P (w) are given by expres- 
sions (5) and (6)  with the replacement iv-m + is. The zeros 
of function (7) determine the magnetic-excitation spectrum 
of the system. At low temperatures ( T 4 )  

The mean-field separation of the electron spin subbands gk ' 
- 6, = AC is much larger than the energy w, of the low- 

lying spin-wave branches, and we therefore replacex(q,w) by 
x(q,O). We thereupon obtain the spectrum of the lower 
branches: 

where wo(q) is the spectrum of the lower spin-wave branch in 
the ferromagnet without the impurities, 

and for brevity we have dropped the transitions subscripts of 
AE and AE. It follows from (8) that in the region of fields and 
concentrations where 

the purely ferromagnetic state is unstable. Here the s- f ex- 
change constants have (for purposes of estimation) been tak- 
en equal (A = B ), and A,, = w,(q = 0) is the gap in the spin- 
wave spectrum. This instability is analogous to that found in 
a Heisenberg magneL6 Usually, however, oo(q))AE (see es- 
timates below). Therefore, in the region of low concentra- 
tions, and specifically for 

the spectrum is of the form 

a1 ( q )  = o ~  ( q ) f  c.2BZx(q, O)S[1+2A2goJyql: 

a, ( q )  =AE-c.2A2x (q ,  0 )  J[1+2B2g,Sy,], 

Y ~ = x ( Q ,  0 ) / [  (00 ( 4 )  -AE)gnl. (10) 

The excitation spectrum is this region thus consists of the 
nearly unchanged spin waves of the ferromagnetic matrix 
plus quasilocal excitations of the impurity. At fields and con- 
centrations where 

AEB2cA2goJ, (11) 

the dispersion in (10) can be neglected. It is clear that at low 
concentrations there is an interval of magnetic fields in 
which 

O<AE<A,,, 

i.e., quasilocal impurity levels can exist below the bottom of 
the spin-wave band. Thus, the region of system parameters 
in which the concept of quasilocal levels and our treatment 
of the problem remain valid is given by inequalities (9) and 
(11). 

Let us now discuss the role of these levels in the region 
of weaker magnetic fields, where the logarithmic corrections 
become important. 

3. AMPLITUDE FOR THE SCATTERING OF ELECTRONS BY 
LOCAL LEVELS 

The temperature region of interest in this section is 
T <  A,, . In this region the spin waves give a small contribu- 
tion to the scattering processes. In particular, the contribu- 
tion to the resistance is proportional to T2 exp { - A,,/ 
T 1.'' We can therefore simplify the model further and con- 
sider the scattering of electrons by only the two lowest local 
levels. The Hamiltonian of this subsystem is 

Let us now introduce the pseudospin-1/2 operators, requir- 
ing that 

We now write the s pseudospin operators in terms of the 
fermion operators d, : 

The Hamiltonian (12) is then 
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where 

and we have used the relation 

pt exp {ifq) = c b  (q) . 
1v , 

In this paper we shall consider only the weak coupling re- 
gion. Then by writing the Hamiltonian in the form (13) we 
can use the calculations of Abrikosov3 for our case. The only 
differences is that Abrikosov considered an iostropic ex- 
change interaction, whereas our effective Hamiltonian (1 3) is 
anisotropic. The anisotropic case with A II > A ,  is solved in 
Ref. 11. For our case, A <A,, the exact solution unfortu- 
nately remains As we have said, the evaluation 
of the spin-electron scattering amplitude I? in the leading 
logarithmic approximation coincides almost completely 
with the calculation of Ref. 3 and leads to the following par- 
quet equations: 

(ojkB'- rao -- { A , , ~ ~ , . ( ~ Z ) ~ ? ' + ~ / ~ A ~ [ ~ L ~  ( S - ) ~ ~ ' + O ~ ~ ~  ( s + ) ~ "  I) .  
N 

It is easy to see that the substitution 

reduces the system to 

with boundary conditions 

x=ln {Dlmax { A E ,  a)) 

From ( 14) we find 

r,,=A,g0yi ctg {arcsin y,+A~y~gox),  

T,=A,g,y, sin-' {arcsin yif A~'flgox), 

~ l ~ [ I ~ A l 1 2 / A ~ z ] " ' .  (15) 

In the formal limit A,+A one has yl+O, and Eqs. (15) go 
over to Abrikosov's s ~ l u t i o n . ~  The value of max ( T, AE ) is 
conveniently written as (T2  + AE)'" (this is admissible in 

the logarithmic approximation). Then from solution (15) we 
have the following lucid expression for the temperature TK 
at which the amplitudes (15) have a Kondo singularity: 

In the case under discussion we have yl = (1 - 1/W)1'2. If 
the angular momentum of the impurity is large, then 

Equations (14) for the amplitudes can also be obtained from 
renormalization-group arguments,14 by analogy with Refs. 
15 and 16. These equations have the integral of motion 

forA: > A i  a n d y = I ? i  - I?: forA: <A{.  Thebehavior 
of the invariant charges according to (14), i.e., as obtained 
from the first-order RG corrections, is shown in Fig. 1. 
From the form of the trajectories [and from Eqs. (1 5)] we find 
that the result of this approximation can be used only in the 
region where the temperatures and fields are so high that the 
amplitudes are far from the poles. We could attempt to im- 
prove the calculation by evaluating the Gell-Mann-Low 
function in the next order of perturbation theory. The equa- 
tions are of the form" 

It is easy to see that the integral of motion (17) has been 
conserved; therefore, allowance for the next order has not 
fundamentally changed anything-the amplitudes as before 
grow with decreasing magnetic field or temperature. The 
invariant charges in powers of which the physical quantities 
are expanded in the weak-coupling region are given in this 
approximation by the equations: 

( i+ r /~ )~  4 r 
F ( r )  = ln + - arctg --- . 

y2+rz I Y I I Y I  

FIG. 1. TI 
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In Ref. 17 the solution of Eqs. (18) is given in somewhat 
different form-in terms of the isotropic (at A l l  = A , )  
charge. 

4. CONTRIBUTION OF KONDO SCATTERING TO THE 
RESISTIVITY 

To evaluate the physical characteristics of the system 
we must know the electron Green function. The procedure 
for finding this function reduces to evaluating the contribu- 
tion 

to the mass operator. This contribution was evaluated for the 
isotropic case in Ref. 3, and so the answer in our case can be 
immediately given as 

C 
Z ( o )  =-i sign o -- [ r I l 2  ( 0 )  +2rL2 ( 0 )  1 .  

8go 
(20) 

If we use the "parquet" solution (15), which is less accurate 
than (19), the answer can be written in analytical form: 

A2g,c 
Z ( o )  =-i sign o - 

8 

D 
max{o, T, AE) 

Let us now consider the static part of the resistance. 
Because the one-impurity scattering potential is indepen- 
dent of the momentum there are no corrections to the cur- 
rent vertex, and the transport relaxation time is equal to the 
electron lifetime 

In this case we have the well-known formulas3 for the cur- 
rent j and conductivity u: 

iovA ne' dox ( o )  
j = ~ '  

Is=- m d 2 T  ch2(oi2T) ' 

Here n is the electron density and v is the frequency. In the 
parquet approximation the exchange scattering of electrons 
by the impurity spin transition (J - 1, J )  gives the following 
contribution to the conductivity: 

We recall that for J = 1/2 the one-ion anisotropy is absent 
altogether and there is accordingly nothing to discuss. If the 
more exact expressions for the amplitudes from (19) are 
used, the integration of expressions (2) and (22) in (23) re- 
duces in the approximation to the replacement w+2T, but 

since (19) is transcendental in this case we cannot write down 
an analytical expression for j. 

5. THE ROLE OF MAGNETOSTRICTION 

It was mentioned in the Introduction that a second 
mechanism which can lift the magnetic-field-induced degen- 
eracy of the impurity levels is magnetostriction. In the rare 
earths the magnetostriction is mainly due to a one-ion mech- 
anism.' In our case this is the Jahn-Teller mechanism: the 
displacement of the equilibrium position of nearest ligands 
alters the symmetry of the Coulomb field acting on the impu- 
rity ion. In materials based on transition elements the spin- 
orbit coupling is weaker than the crystal field, and the defor- 
mation mixes the orbital parts of the wave functions. In rare 
earth metals the spin-orbit coupling is 10' times stronger 
than the crystal field, and the magnetic moment of the ion is 
compelled to follow the variation of the orbital angular mo- 
mentum, and therefore the crystal field and the interaction 
of the impurity ion with Jahn-Teller distortions of the envi- 
ronment are written in terms of the total angular momentum 
of the ion. Thus, in our case the ordinary Jahn-Teller effect 
is magnetostrictive; in addition, the quasidegeneracy of the 
impurity levels is induced by an external magnetic field. If 
the splitting is sufficiently large, specifically, 

AE>D exp {-arcsin yl/A,g,y,), (25) 

then the Kondo effect will be suppressed. At the present time 
we have a rigorous theory of the formation of elastic forces 
by interacting electrons and ions only for simple metals such 
as tin." Therefore, we shall attempt to estimate the role of 
magnetostriction in the framework of a simple model of local 
deformations of the crystal field. We first assume that condi- 
tion (25) holds, and we evaluate the magnetostrictive split- 
ting AE,, without allowance for the Kondo effect. Then, by 
decreasing the external magnetic field, we determine the 
minimum possible value of AE,, allowed by the magneto- 
striction. Our calculation follows Ref. 19, a study of magnet- 
ostriction phenomena in regular magnets. The Hamiltonian 
for strains interacting with an impurity, with allowance for 
the hexagonal symmetry of the lattice, is of the form 

Here uaB is the strain tensor, and C,, = CarBrS is the elastic- 
constant tensor in the Voigt notation.'O We assume thus that 
an impurity ion with the same charge as the hot ions does not 
perturb the elastic constants. The mass difference and the 
exchange and electronic magnetostrictions will be neglected, 
since they cannot give a larger effect than the one-ion mecha- 
nism (see Ref. 2 1). 
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We rewrite the interaction Hamiltonian in (26) in the 
Hubbard-operator representation 

We are interested in the renormalization of only the lowest 
quasidoublet. Keeping only these levels in (27), we find the 
one-site Hamiltonian of the impurity: 

where 

The introduction of new Hubbard operators 

on the eigenstates of Hamiltonian (28) 

allows us to write (28) in diagonal form: 

Here the operators X and Z are related by the formulas: 

1 xtJ*J-'= - 0 0 
sin 0.  (Zfil-2;') +cos2 - . Zf12-sin' - . Zf21 

2 2 2 
(29') 

By differentiating the effective Hamiltonian of the strains 
(which we assume to be classical) 

If,,, (u,,) =-T In Sp, exp {-PH''mP') (31) 

with respect to u , ~ ,  we find the equations for the equilibrium 
displacements: 

A,--'/,G, (3J-1) +GL (J-I)'; 

2C13u,+C3,~,,+ (2.7-1) G3(XJJ>x=-G3 (J-1)2, (32b) 

2C,,u,-f hl(XJ-'8 ">nf=O. (324 

The averaging in (31) and (32) is only over the magnetic 
states, as is indicated by the subscript M. It follows from (29) 
and (30) that the splitting AE,, is governed mainly by the 
quantity R. An equation for R can be found by substituting 
(29') into (32c) and averaging with Hamiltonian (30): 

A 1 &-=- - sin B.(Zl1-ZZ2>,. 
4C4, 

(33) 

Here we have used the axial symmetry of the hexagonal crys- 
tal and set R = u,, . It obviously follows from (30) that for 
T = 0 the most favorable state is realized for ( Z  ' I ) ,  = 1 
and at the maximum rhombohedra1 distortion R. The latter 
is easily found from (29) and (33) 

Then the maximum level splitting due to magnetostriction is 

Expressions (34) and (35) give somewhat exaggerated values 
for the distortion and the splitting, since in our naive calcula- 
tion we ignored the fact that the displacement of the nearest 
neighbors of an impurity is unfavorable for the next-nearest 
neighbors, since the spin-wave spectrum of the host matrix 
has a large energy gap. Such an estimate is the most pessimis- 
tic for the realizability of the Kondo effect. For estimates we 
take the parameters for erbium: C, z 5 lo4 cm- ' (Ref. lo), 

z 3 . lo4 cmW2 (Ref. 19), R z lop3 (corresponding to the 
~haracteristic values of the giant magnetostriction), and 
J = 15/2. Then AE,, =: 1-3 cm-'. This estimate cannot be 
considered totally reliable since the necessary experiments 
for determining the magnetoelastic coupling constants in 
pure rare earth metals have not been done. 

6. ESTIMATES OF THE CRITICAL FIELDS 

Let us ascertain the values of the magnetic fields at 
which the impurity levels would intersect in the absence of 
conduction electrons when an impurity of one rare earth 
metal is substituted into the matrix of another. The resonant 
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impurity could be Tb, Dy, or Ho and the matrix could be Er 
or Tm. The value of the field depends to a large extent on the 
anisotropy constants of the particular impurity. The crystal- 
field parameters A :, , which determine the anisotropy con- 
stants D L  (see Ref. 22), were calculated in Ref. 23 with 
allowance for only the nearest neighbors, while in Ref. 22 the 
contributions of the next coordination spheres were also tak- 
en into account. The results of these calculations are given in 
Table I. It is difficult to give preference to one or the other set 
of constants since the screening radius of the point charges of 
the rare earth ions are unknown. Following Ref. 22, we take 
the effective exchange to be the same for all rare earth met- 
als. This is reasonable since the paramagnetic Curie tem- 
perature of rare earth metals is described well by the de 
Gennes function 

More exact estimates of the exchange parameter would be 
pointless in view of the uncertainty in the anisotropy con- 
stants. The latter are also taken from Ref. 22. Thus 
2 2go = 43.05 cm- ', and the anisotropy constants andg fac- 
tors are given in Table 11. Supppose we substitute the Tb ion 
into the Tm matrix. In the ferromagnetic phase the impurity 
levels are shifted with respect to their position in the para- 
magnetic phase: 

here EP," is the energy of the level with projection M in the 
paramagnetic phase. In a sufficiently strong magnetic field 
the Tb level with M = J = 6 will be the ground state, but as 
the field is decreased the levels EM = , and EM = , - cross at 
the point h z 590 kOe. An analogous estimate for Dy substi- 
tuted into Tm gives h z 370 kOe. Measurements of the elec- 
trical conductivity in fields of such a size involve consider- 
able experimental difficulties. A further decrease in the field, 
however, leads to the crossing of levels with other projec- 
tions-levels which are lower lying in these fields. We have 
not considered this situation, but apparently the picture is 
qualitatively the same. Then the effect could be observed in 
weaker fields. For example, in the case of Tb in Tm the cross- 
ing of the M = 3 and M = 4 levels occurs in a field h = 132 
kOe. The helical structure in such fields is still "squeezed 
out" in rare earth ferromagnets. 

7. THE INFLUENCE OF LANDAU QUANTIZATION 

The estimates made in the previous section show that 
the magnetic field in which the effect is expected to occur is 

TABLE I. Crystal-field constants (in cm-') 
- - I Ref. 23 1 Ref. 22 

A 6' 133 

TABLE 11. Anisotropy constants (in cm-') 

extremely large, in the range 100-500 kOe. If the effective 
mass m* of the conduction electrons is of the order of the free 
electron mass m, the cyclotron frequency of the conduction 
electrons is - 10-lo2 cm-l. It is therefore clear that Landau 
quantization is important for electrons with m* Sm. In 
large fields the cyclotron radius becomes much greater than 
the distance between impurities [which are assumed to have 
a low concentration obeying inequality (9a)], and a fraction 
of the electrons do not "notice" the impurities in the trans- 
verse direction, since their wave functions do not overlap. 
This should lead to a decrease in the Kondo amplitude. On 
the other hand, the motion of the electrons becomes quasi- 
one-dimensional, a situation that usually enhances scatter- 
ing effects. In order to reach an understanding of the direc- 
tion of the net change in the magnitude of the effect, we need 
only evaluate the elementary graphs of type (a) or (b) that 
make up the whole parquet graph. 

Let us evaluate, for example, an element of type (a). We 
write the "bare" electron Green function in the momentum 
representation in the Landau gauge (see Ref. 24) 

GEP (iw) = 5 dn, dn, 
= 0 

,l=o i o - sn (pr) 
(36) 

where cP denotes the wave functions of the electron in the 
Landau representation: 

1 
71 (o) (pBgh+2B<Sz>). 

2m 

w, = eB /mc is the cyclotron frequency, B is the magnetic 
induction, 

is the Hermite function (normalized to unity), and H,  (6) is a 
Hermite polynomial. Green function (36) now depends on 
pairs of momenta, since momentum is not conserved in the 
direction transverse to the field. Substituting function (36) 
into (a) and integrating over all the intermediate momenta 
(the rather unwieldly calculation is not shown), we obtain 
the following answer at T = 0: 
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$n$ (kyl)  $nq' (kw'l) 6 (k,-k,') 6 (k,-k, ')  e ' 1 2 k z ~ k u - k u ' )  

n, '=l(w-Fmt (h,)  +i6)' 

The expression in braces is the correction to the mass opera- 
tor, showing that the logarithmic correction has been pre- 
served. We note, however, that a new effect has appeared: for 

the correction diverges as a square root. Here we have only 
set out to verify that the Landau quantization does not sup- 
press the Kondo effect. The features which appear in the 
electron subsystem due to fulfillment of resonance condition 
(38) require separate study. We note only that, as can be seen 
from (37), there can exist a magnetic field in which the loga- 
rithmic and square-root singularities in (37) add together: 
the inequality 

can be satisfied by an appropriate choice of the magnitude of 
the quasimomentum, i.e., at any value of the magnetic field 
(but for sufficiently small A E  ), while the equation 

can be satisfied by choosing the magnetic field. We thus see 
that at a certain value of the field the conduction electrons 
that have quantized orbital motion can enhance the Kondo 
singularity. 

CONCLUSION 

Let us discuss these results. The Kondo effect is due to 
the presence in the crystal of closely lying local levels which 
scatter anomalously strong by the conduction electrons. In 
our case we propose to create the local levels by introducing 
easy-plane impurities into an easy-axis ferromagnet. In a 
Heisenberg ferromagnet the local levels can be created by 
introducing a small number of negative exchange bonds. 
This leads26 to the formation of a bound state of the impurity 
and a spin wave, to the appearance of an oscillatory effective 
interaction between impurities (through the spin waves), 
and, as a result, to low-temperature effects of the "glass" 
type. The question of such effects exists both in Heisenberg 
ferromagnets and in metallic ferromagnets upon formation 
of local levels due to anisotropy. For the symmetry consider- 
ation here, thez projection of the total angular momentum is 
conserved; this also requires the formation of a bound state 
in the case when the lowest state of the impurity in the crys- 
talline field without the transverse exchange interaction is 
IM ), with M  < J (a situation that we have not considered in 

this paper). However in a metallic ferromagnet the electrons 
can not only create an oscillatory interaction but can also 
screen the impurity. Therefore, in the case M <  J it is not 
clear in advance which type of manifestation-Kondo or 
glass-will be predominant. 

Further, in our model we have ignored the difference 
between the volumes of the impurity host ions, and this can 
affect the degree to which the impurity is of the easy-plane 
type. We believe that allowance for this circumstance can 
only shift somewhat the parameter region in which the local 
levels exist without fundamentally altering the basic picture. 

Finally, we note that the square-root singularity which 
arises when Landau quantization is taken into account is due 
to the quadratic dependence of the electron energy on the z 
projection of the momentum. For example, for a dispersion 
relation of the form 

this singularity does not arise-only the Kondo singularity 
remains. This means that for spectrum (39) the results of 
Secs. 3 and 4 will apparently remain unchanged. Therefore, 
the specific geometry of the Fermi surface and the relation 
position of the c axis of the crystal and the direction of the 
external magnetic field take on a special significance. At the 
same time, this fact suggests that the effect should be aniso- 
tropic and should therefore be less pronounced in polycrys- 
talline samples. 

It is also clear that singularities of type (37) should also 
be exhibited by crystalline films on account of size-effect 
quantization. 
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