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A dropping segment of the static current-voltage characteristic (CVC) is predicted for a thin 
metallic plate carrying a strong dc current. The nonlinearity mechanism is magnetodynamic and 
is due to the influence of the current's own magnetic field on the dynamics of the conduction 
electrons. A unified analytic description of the nonlinear CVC in the entire region of the onset of 
this nonlinearity is obtained on the basis of an asymptotically accurate solution of the magnetos- 
tatics problem. The change of the CVC shape as a function of an external (constant and uniform) 
magnetic field parallel to the current is investigated and the critical values of the fields at which 
negative differential resistance (NDR) sets in are obtained. It is proved that a current distribution 
uniform over the plate width is unstable in the NDR region. Stratification of the current (static 
domain wall) and hysteresis of the CVC are predicted. The necessary numerical estimates are 
made. 

1. INTRODUCTION 

A nonlinear current-voltage characteristic (CVC) of a 
thin metallic plate was investigated by us theoretically in 
Refs. 1 and 2. The nonlinearity is due to a magnetodynamic 
mechanism connected with the influence on the dynamics of 
the conduction electrons exerted by the magnetic field pro- 
duced by the current I. A special role is played here by a 
group of so-called "trapped" electrons that move, without 
colliding with the boundaries, along trajectories that 

tion perpendicular to the current, and c is the speed of light. 
The external constant and uniform magnetic field h, is di- 
rected along they axis. 

Let us estimate the conductivity of the electrons 
trapped by the combined nonuniform magnetic field 
H(x) + h,, under conditions when the following inequalities 
hold: 

- 
meander near the plane where the magnetic field reverses Here Ro is the Larmor radius in the field h,. We choose a 
sign. The features of the nonlinear CVC are determined by current whose magnetic field is much less than h,. ~h~ 
competition between the contributions made to the current necessary condition for electron trapping is the vanishing of 
by the untrapped and trapped electrons. In an external mag- the x component of the Lorentz force at some point inside 
netic field parallel to the plane of the plate and perpendicular the plate, iSe., 
to the current direction, the voltage drop V is a monotonic 
function of the current I. The sample resistance decreases 
then with increase of the current. This phenomenon was ob- 
served experimentally in single-crystal wires of pure zinc3 
and g a l l i ~ m . ~  

Interest attaches to more nontrivial manifestations of 
the magnetodynamic nonlinearity, particularly to the possi- 
ble onset of negative differential resistance (NDR). We dem- 
onstrate here this possibility, using as an example a plate in 
an external magnetic field parallel to the current direction. 
We show that at such a longitudinal orientation of the exter- 
nal field the CVC is an S-shaped curve. 

We advance simple physical considerations that explain 
the onset of the NDR in the situation considered. We have a 
metallic film of thickness d4 l  (I is the electron mean free 
path) through which a current I flows (Fig. 1). The magnetic 
field H(x) produced by the current and directed along the z 
axis is equal to zero at the middle of the plate x = 0, and has 
on the opposing faces the equal and opposite values H and 
-H: 

Here D is the horizontal dimension (width of plate) in a direc- 

From this we easily obtain the characteristic value of the z- 
projection of the trapped-electron velocity. Assuming u,, to 
be of the same order of magnitude as the Fermi velocity, u,, 
we get 

~,/z?~-H/h,<<l.  (1.4) 

The x component of the trapped-electron velocity is estimat- 
ed from the equation 

FIG. 1 .  Coordinate system; trajectories of untrapped ( 1 )  and trapped (2) 
electrons in a metal plate. 
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where R cc H -' is the trajectory curvature radius in the field 
H. According to (1.4) and (1.5), the relative number of 
trapped electrons is given by 

Since the trapped electrons do not collide with the sample 
boundaries during the entire free-path time, their conductiv- 
ity can be described by the formula 

go is the static conductivity of a bulky sample. Obviously, if 
the mean free path 1 is long enough the electric field in a 
sample with diffuse boundaries is completely determined by 
the conductivity (2.7), so that the voltage drop Vis inversely 
proportional to the square root of the current: 

In other words, the CVC should have a segment with a nega- 
tive differential conductivity. 

In the second section of this paper we study the dynam- 
ics of electrons in the combined magnetic field and present 
asymptotically accurate expressions, obtained by solving the 
Boltzmann kinetic equation, for the currents of the un- 
trapped and trapped electrons. In the third section is derived 
an equation that describes the nonlinear CVC in a wide 
range of the current I and of the external field h,; the onset of 
the S-shaped CVC with increasing h, and the change of its 
shape are demonstrated. In the fourth section we investigate 
the instability of a current uniformly distributed over the 
plate width on the dropping segment of the CVC; the inho- 
mogeneous current distributions due to the development of 
this instability are considered. The corresponding effects 
(current shutoff, hysteresis) are similar to those observed in 
semiconductors with S-shaped CVC. The singularities of the 
CVC under conditions of current stratification are also dis- 
cussed, numerical estimates are presented, and certain ques- 
tions that need further study are raised. 

2. ELECTRON DYNAMICS. CURRENT DENSITY 

Let us study the character of the electron motion in the 
combined nonuniform magnetic field H(x) + h,, which is as- 
sumed to be relatively weak: 

We introduce the vector potential 

A ( x )  = (0, A, ( x )  , A, ( 2 )  ; 
r (2.2) 

Av = J d x f ~  ( x f ) ,  A~ ( x )  =-box. 
d l 2  

Note that A, (x) is a positive even function of x inside the 
plate [H (d /2) = - H < 01 and vanishes on its boundaries, 
Ay(d/2)= -A, ( -d /2)=0 .  

The integrals of the electron motion are the total energy 
(equal to the Fermi energy E,) and the generalized momenta 

e 
p1=muZ- - A ,  (x) , 

C 

m is the electron mass and e the absolute value of its charge. 
For simplicity, we assume the electron dispersion law to be 
quadratic and isotropic. Under conditions (2. I), the second 
terms of (2.3) are small compared with the characteristic val- 
ues mu, and mu,. The electron moves therefore along the x 
axis with an energy E, = E, - ( p j  + pZ)/2m in an effective 
potential field. 

Figure 2 shows schematically the regions of electron 
motion in the (x, p, ) phase plane atp, > 0 (Fig. 2a) andp, < 0 
(Fig. 2b). The upper and lower curves that determine the 
electron turning points (u, = 0) inside the sample are given 
by the equation&, = U (x) and are described by the equations 

PV=P:  (x) =*pvo- 
C 

The upper and lower signs correspond respectively to the 
upper and lower curves. The shaded regions in Fig. 2 corre- 
spond to the trapped electrons. At a fixed coordinate, the 
region of existence of trapped electrons in the (p,, p,) mo- 
mentum space is bounded both inp, and inp, . Indeed, it can 
be seen from Fig. 2 that the integral of motionp, is bounded 
by 

atp, > 0 andp, < 0, respectively. It is easy to verify that the 
p, variation intervals in (2.6) exist only under the condition 

Note that Fig. 2 describes a situation wherein the effec- 
tive potential U (x) has a minimum inside the plate ( - d / 

FIG. 2. The (x ,  p,) phase plane and the regions where untrapped and 
trapped electrons exist in a nonuniform magnetic field ; a)p, > 0, b)p, < 0. 
The shaded regions correspond to the trapped electrons. 
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2 < x < d /2). It follows from inequalities (2.7) that the nonun- 
iform magnetic field can trap only those electrons having 

At H4ho this result corresponds to Eq. (1.4) which was used 
in the Introduction to estimate the conductivity of the 
trapped electrons. 

The moving untrapped electrons collide with the sam- 
ple boundaries and occupy under conditions (2.1) the greater 
part of the (x, p,, ) phase plane (see Fig. 2). The principal role 
in the formation of the conductivity is played by those carri- 
ers that move almost parallel to the plate surface. If 

the influence of the magnetic field can be neglected, and the 
density of the untrapped-electron current in a plate with dif- 
fuse boundaries is given by the known formula5 

In a sufficiently strong magnetic field, when 

calculations perfectly analogous to those of Ref. 2 lead to the 
following asymptotic expression: 

Expression (2.12) is obtained from (2.10) by replacing the 
mean free path I by the effective range (R +d ) ' I 2  of the un- 
trapped electrons. The current density (2.12) is independent 
of I and is determined by electron scattering from the sample 
boundaries. 

To find the trapped-electron current we must solve the 
Boltzmann kinetic equation (linearized in terms of the elec- 
tric field E ) for the nonequilibrium increment Sf to the fermi 
distribution function f,(~). If the current I is strong enough 
and the inequalities 

d~ (Rd) '!2<l, (2.13) 

are satisfied, we obtain 

Expression (2.14) does not depend on the coordinate x 
in view of the uniformity of the electric field E and of the 
conditions (2.13). In addition, it does not contain the cur- 
rent's own field, since the kinetic-equation term with the 
Lorentz force, according to (2.13), is much smaller than the 
collision term vSf. The magnetodynamic-nonlinearity 
mechanism manifests itself in the density of the trapped- 
electron current in view of the integration over the phase- 
space region (2.6), (3.7), whose dimensions depend strongly 
on H (x) a I. Simple transformations yield 

We have introduced here the function 
i 

which increases monotonically with increase of its argument 
and has simple asymptotic terms at small and large value of 
x. The argument a is of the order of the ratio of the current's 
own field to the external magnetic field, a -H /hoe We obtain 
accordingly the following asymptotic equations for the 
trapped-electron current density: 

at Hgh,, and 

at h,(H. The current density (2.18) is independent of the 
external field h, and agrees with the density obtained in Ref. 
2 at h, = 0. 

3. NONLINEAR CVC. CONDITIONS FOR REALIZATION OF 
NDR 

We now use the equations derived in the preceding sec- 
tion to describe the nonlinear CVC V(I)  [or, equivalently, 
E (H)]  and to investigate its form as a function of h,. Rigor- 
ously formulated, the problem is to solve the magnetostatics 
equation 

with boundary conditions 

In this manner, however, asymptotically exact results can be 
obtained only for individual segments of the CVC, where the 
current density is specified by one of the expressions (2. lo), 
(2.12), (2.17), or (2.18). A unified analytic description of the 
CVC can be obtained by using a simple and physically clear 
model based on the use of the effective conductivity, which 
takes into account the untrapped as well as the trapped elec- 
trons. 

According to (2.10) and (2.12), the conductivity of the 
untrapped electrons can be expressed by 

3 d 
Ountr = - (So - In 

8 1 

The conductivity of the trapped particles is determined by 
the following equations [see (2.17), (2.18)]: 

we have left out here for simplicity the numerical coefficients 
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contained in (3.17) and (2.18), and replaced the vector poten- 
tialA, (x) by its characteristic value2 = A, (0). As a result we 
have for the total conductivity a = a,,,, + a,,, 

(3.5) 
Putting 2 = Hd and replacing the left-hand side of (3.1) by 
- 2H /d, we obtain the CVC 

Following Ref. 2, we introduce the natural scales, under 
the conditions of magnetodynamic nonlinearity, for the 
magnetic and electric fields: 

In terms of these scales, the current-voltage characteristic 
takes the explicit form 

Equation (3.8) is the sought interpolation formula that pro- 
vides a unified analytic description of the nonlinear CVC. 
The agreement between the asymptotically exact calculation 
results of the Appendix with the various limiting formulas 
that follow from (3.8) corroborate the model proposed here. 

We consider now the behavior of the E (H) plots with 
change of h,. So long as the external field is weak enough and 
does not exceed a certain critical value h,, , i.e., ha < h,, , the 
function E (H ) increases monotonically. At h = hcr an inflec- 
tion point with a horizontal tangent appears on the E (H) 
curve. The "critical" magnetic field is determined from the 
equation 

The coordinates of the critical point in the (H, E ) plane are 

Hcr hcr Ecr 'h 
-= 

h 
0,464- -- - 

h '  K - 1,92(%) . 
When ha > hcr the CVC are S-shaped curves (in the coordi- 
nates V and I ). The dropping segment of the CVC is quite 
pronounced at ho)hcr.  In this range of the parameter h,  the 
coordinates of the extremal points of the function E (H ) can 
be obtained explicitly: 

FIG. 3. Current-voltage characteristic (dependence of E on H )  of a metal 
plate at various values of the external magnetic field h,: curves 1,2, and 3 
correspond respectively to h, = 0, h, = h,, , and h, = 5h,, . The notation 
is explained in the text. 

Figure 3 shows the CVC calculated from Eq. (3.8) for 
ha = 0, h,  = hcr,  and h,  = 5hc,, with I/d = 3 .  lo3. At this 
ratio of I and d a numerical solution of Eq. (3.9) leads to the 
following values of the critical quantities: 

4. INSTABILITY OF DROPPING SEGMENT OF THE CVC. 
STRATIFICATION OF CURRENT 

The CVC investigated in the preceding section was ob- 
tained assuming the current to be uniformly distributed over 
the width of the plate (along the z axis). On the basis of the 
analogy with the theory of semiconductors having S-shaped 
CVC (see, e.g., Ref. 6), it is natural to raise the questions of 
the stability of such a current distribution to perturbations 
that depend on the coordinate z. 

Nonuniformity of the current along thez axis means the 
appearance of an x component H, (x, z) of the magnetic field. 
Then Hz=H (x, z) also begins to depend on z (since 
div H = 0). If the characteristic scale of this nonuniformity 
hz 2 d (so that H, 5 Hz ), the effective conductivity of the 
metal is determined as before by Eq. (3.5). It must be borne in 
mind, however, that now they component of the vector po- 
tential also depends on z. We introduce the dimensionless 
vector potential 

for which the magnetostatics equation can be written in the 
form 

The homogeneous (indepedent ofz) solution of this equation 

specifies the CVC (3.6). Let us investigate its stability to 
small perturbations of the form 

6a, 6Emexp ( i k z - i o t ) .  (4.4) 
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Recognizing that 

1 d A ,  6 ~ = - - - - =  io -6a, hod 
c d t  c 

we obtain from (4.2) the following dispersion equation: 

It is obvious from (4.6) that on the dropping segment of the 
CVC, where the derivative dE  /da is negative, the uniform 
distribution is unstable to long-wave perturbations. Assum- 
ing jdE /da I -E /a, we find that the growing perturbations 
are those with wave numbers k < k 0 z d  -'. 

The instability established here is absolute and aperiod- 
ic. It is natural therefore to expect the new system state that 
results from the development of this instability to be static. 
We must therefore consider inhomogeneous solutions for 
Eq. (4), which we now find it convenient to write in the form 

a 

We shall analyze Eq. (4.7) with the aid of a method widely 
used to investigate, e.g., superheat nonlinearity in semicon- 
d u c t o r ~ . ~  Equation (4.7) coincides with the equation of mo- 
tion of a particle in a field with a potential W (a). In this case z 
plays the role of the time, and a that of the coordinate. The 
potential W(a) depends on the electric field E as an external 
parameter. In the interval 

where a dropping segment of the CVC exists (see curve 3 of 
Fig. 3), the derivative dW/da, i.e., the force acting on the 
particle, is zero at three points a,(E ) < a,(E ) < a,(E ). These 
points are obtained from Eq. (4.3) for a homogeneous CVC. 
Analysis shows that the function W(a) has maxima at the 
points a ,  and a, and a minimum at a,. It can be easily seen 
from this that in the interval (4.8) there exist bounded solu- 
tions a(z) that are oscillating functions of the "time" z and 
correspond to motion of the particle in a potential well W (a). 
It is very important that at some value of the parameter 
E = Eo the maxima W (a,) and W3(a) are equal, and a unique 
(existing only in this situation) monotonic solution ao(z) of 
Eq. (4.7) appears. Without writing the explicit form of ao(z), 
we mentioned that as z varies from - w to + w the func- 
tion ao(z) varies monotonically in the range 

This solution decribes the "coordinate" of a particle that 
executes an infinitely "slow" aperiodic motion with a total 
energy equal to W(a,) = W(a,). 

For the vector potential 

A (z) =hods, (z) (4.10) 

the existence of such an inhomogeneous solution means 
stratification of the current and the appearance of a kind 
("domain wall") in the plate. On one side of the kink A (z) 
reaches the value h&al(Eo), and on the other h&a3(Eo). The 

characteristic interval Az over which the function ao(z) var- 
ies, i.e., the width of the kink, is of the order of the thickness 
of the plate d. The electric field Eo at which the current 
stratification takes place is obtained from the equation 

Equation (4.11) has a unique solution in the interval (4.8). In 
an external magnetic field ho>h,, we have 

We emphasize that the electric field Eo is close to Emin 
[see (3.1 I)], and the current densities on the two sides of the 
kink differ by a factor a,/a,$ 1. 

The special role of the monotonic solution ao(z) becomes 
clear in investigations of the stability of inhomogeneous cur- 
rent distributions to perturbations of the type 

6a (z, t )  =6a (z) exp ( - k t ) .  (4.13) 

According to (4.7) and (4.5) we obtain for 6a(z) 

It follows hence that for the solution a(z) of Eq. (4.7) to be 
gable it is necessary that all the eigenvaluesil of the operator 
A be non-negative. By direct differentiation of (4.7) with re- 
spect toz it is easy to verify that tke function 6a(z) = da/dz is 
an eigenfunction of the operator A with an eigenvalueil = 0. 
If a(z) is a monotonic function [a = ao(z)], then da/dz has no 
zeros, i.e., it corresponds to the "ground state" of the prob- 
lem (4.14). InJhis case /2 = 0 is the minimum eigenvalue of 
the operator A. Consequently, the monotonic solution ao(z) 
of Eq. (4.7) is stable to the perturbation (4.13) If, however, 
da/dz has zeros then, by virtue of the oscillation theorem, 
il = 0 is not the minimum eigenvalue of the problem (4.14). 
Nonmonotonic (oscillating) solutions a(z) are therefore un- 
stable. 

Figure 4 shows schematically the CVC at ho > h,, , when 

FIG. 4 
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the current should become stratified over the width of the 
sample. In the given-current regime the voltage Vcc E first 
follows the ohmic law (2.12), increasing to the value at the 
point A.  This is followed (with further increase of the current 
I) by a discontinuity of the voltage to a value Vo a Eo corre- 
sponding to inhomogeneous distribution of the current with 
respect to the coordinate z. This inhomogeneous current 
states exists right up to I, = a3h@c/2a, while the CVC is 
the horizontal segment NK. With further increase of the cur- 
rent, at I >  I,, the voltage varies along the section KC. In the 
reverse direction, the CVC follows the "route" 
CKBLFNMO, a jumplike increase of V takes place at the 
point B, and the distribution becomes homogeneous at the 
point M for I = I, = alh@c/2.rr. 

On the horizontal branch of the CVC, the widths 
D, = D - D, and D, of the regions through which currents 
IIDl/D and I,D,/D flow respectively are governed by the 
total current I: 

The growth of the total current I is accompanied by expan- 
sion of the region with the large current. The plate's lateral 
face at which the kink appears is determined by extraneous 
factors that make the two faces nonequivalent. 

We present numerical estimates for a plate of thickness 
= lo-' cm having an electron bulk mean free path I = 0.3 
cm and a Fermi momentump, = 10-l9 g . cm/s. The char- 
acteristic scales of h and are, according to (3.7) and (A. 12), 

The parameters of the critical point (3.12) are 

These values correspond to a current density 
j,, = 8 lo5 A/cm2, while the specific power release per unit 
surface is 0.7 W/cm2. The characteristic CVC "switching" 
time from one branch to the other is of the order of the reci- 
procal growth rate (4.6) and turns out to be about lo-' s. 

We note that from the viewpoint of the thermodynam- 
ics of irreversible processes the current stratification in a 
conductor is the simplest example of the so-called dissipative 
structures, which have been attracting interest of late in var- 
ious branches of physics (see, e.g., Ref. 7). 

We point out in conclusion that it is of interest to ana- 
lyze the stabilities of segments MA and BK on the CVC to 
finite perturbations. Another no less important study is that 
of magnetodynamic nonlinearity in thin-wall hollow cylin- 
ders. The latter case corresponds to "short-circuiting" the 
lateral faces of the plate, i.e., to boundary conditions period- 
ic inz for Eq. (4.7). Since (4.7) has no stable static and period- 
ic solution, a moving current domain (soliton) whose veloc- 
ity is regulated by the total current should appear in place of 
the static kink. 

APPENDIX 

We present the results of an asymptotically exact solu- 
tion of the magnetostatics problem (3.1), 3.1) for individual 

CVC segments on which the current density is specified by 
one of the expressions (2. lo), (2.12), (2.17), and (2.18). 

We begin with the case when the metal conductivity is 
determined by the group of untrapped electrons. In a weaks 
combined magnetic field 

the inequalities (2.9) are satisfied and the current density 
takes the form (2.10). Owing to the spatial homogeneity of 
the current, the magnetic field H (x) it produces is linear in 
the coordinatex and Eq. (3.1) with boundary conditions (3.2) 
can be easily solved. The corresponding ohmic segment of 
the CVC is described by the expression 

It is just as easy to find the CVC in the region 

where the current density of the untrapped electrons is de- 
termined by (2.12) 

We consider now the more complicated situation when 
the current density is due to trapped electrons, and the con- 
ductivity of the untrapped ones can be neglected. If the ine- 
quality 

holds, the current density takes the form (2.18). The magne- 
tostatics problem (3. I), (3.2) with a current (2.18) was solved 
by us in Ref. 2. The current-voltage characteristic is here 
parabolic: 

A special study is required for the case 

which corresponds to the dropping section of the CVC. The 
trapped-electrons current density is given in this region by 
(2.17). We introduce the dimensionless vector potential f (g ) 
and the coordinate {: 

In terms of these variables, Eq. (3.1) with current density 
(2.17) takes the form 

f"(E)+fl/(l-E"=O. (A.9) 

The prime denotes the derivative with respect to 6. Equation 
(A.9) must be solved in the region 0<{< 1 with boundary 
conditions 
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f ' ( O ) = O ,  f ( l )=0 .  (A. 10) 

It can be seen from (A.8) that to find the CVC we need calcu- 
late only the quantity f '(1) that determines the numerical 
factor C in the expression 

(A. 11) 

In this case 

Numerical calculations yield for the sought constants the 
values f l ( l )  = - 10 and C = 2. 

It is easy to verify that in all the segments considered the 
CVC (3.8) obtained in the effective-conductivities model 
agrees with the results of the asymptotically exact calcula- 
tions. The only difference is that in (3.8) it is assumed that 
C = 1. In addition, the numerical coefficient y that deter- 

mines the scale of the magnetic field [see (3.7)] turns out to be 

(A. 12) 
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