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A complete system of equations describing the isothermal layered growth of solid solutions is 
derived by a phenomenological approach in which a step on an atomically smooth crystal face is 
treated as a line singularity. The step is described by either one or three kinetic parameters, 
depending on the diffusive permeability of the interface. The kinetics of a step is similarly de- 
scribed for the layered growth of a single-component crystal from a melt with allowance for heat 
conduction. A method is proposed for taking into account the adsorption mechanism for layered 
growth, and its effect is studied in the single-component and two-component cases. The problem 
of the velocity of an isolated step over an atomically smooth face is solved as an example. 

I. INTRODUCTION 

The mechanism for the motion of the interface during 
the growth of a crystal depends strongly on the properties of 
the interface. Growth on atomically rough surfaces requires 
only that the barrier for the incorporation of individual 
atoms be surmounted, and if the deviation from equilibrium 
is only slight the growth rate is proportional to the supersa- 
turation. 

Atomically smooth faces grow through a tangential 
motion of steps (layered growth): The steps themselves are 
rough, so that the velocity at which they move is proportion- 
al to the supersaturation. For the motion of an atomically 
smooth interface, however, the steps must be created as well 
as moved. Steps can arise only when a dislocation emerges at 
the interface or as a result of two-dimensional nucleation. In 
either case, the growth rate of the face is a nonlinear function 
of the supersaturation. The fundamental theory of layered 
growth in single-component systems is set forth by Burton, 
Cabrera, and Frank.' 

At phase equilibrium in a two-component system, the 
chemical potentials of each component in the crystal and in 
the melt are equal. Upon a deviation from equilibrium, the 
differences in chemical potentials drive fluxes of atoms 
across the interface. In the case of an atomically rough sur- 
fhce, these fluxes are included in the local boundary condi- 
tions, which are mass-balance conditions at each point on 
the interfa~e.~ These boundary conditions describe the 
growth rate as a function of the local supersaturation and 
also the diffusion flux, which is a measure of the exchange of 
the atoms of the various species across the interface. 

Atoms cannot become attached on atomically smooth 
surface regions free of steps. In contrast with a single-com- 
ponent system, however, there may be a purely diffusive ex- 
change of atoms between the phases in this case. The attach- 
ment of atoms to the crystal occurs at a step, which is a 
singularity from the standpoint of the macroscopic equa- 
tions in the volume. The formulation of kinetic conditions at 
the step requires special analysis. 

To illustrate the new approach we consider the growth 
of a pure crystal from solution. This problem has been ana- 
lyzed by C h e r n ~ v , ~  who used a model for the structure of the 

step, assuming it to be a semicylinder of microscopic radius 
and assigning it a certain kinetic coefficient. We will treat 
this problem in a phenomenological way, without specifying 
the particular structure of the step, and we will show that the 
kinetics of the step is described by a single parameter. By the 
same approach we will then derive the complete system of 
equations describing the layered growth of a two-component 
crystal. We discussed the kinetics of the motion of a single 
step, and, finally, we discussed the applicability of this meth- 
od to real systems, including systems in which adsorption is 
significant. 

GROWTH OF A PURE CRYSTAL 

We consider a rectilinear step moving at a velocity v 
over an atomically smooth face of a crystal growing from 
solution. The concentration field is described in the coordi- 
nate system moving with the step by the diffusion equation 

Here c is the relative fraction of the atoms of the precipitated 
component, and D is the diffusion coefficient. The x axis is 
the direction along which the step is moving; the z axis is 
perpendicular to the interface, with the solution occupying 
the region z = 0. Everywhere on the z = 0 interface we im- 
pose the condition of zero flux, dc/dz = 0, except at the posi- 
tion of the step. From the standpoint of the macroscopic 
diffusion equation, the s t e p a  linear singularity in a 
plane-is described by introducing a S-function source 
(more precisely, a sink): 

We are omitting the higher-order moments S '(x), S "(x), etc., 
which would be present in a singularity of the general source 
type, and we are also ignoring the finite height of the step, 
since these factors fade in importance rapidly with distance 
and therefore reduce to a restriction on the diffusion equa- 
tion with boundary condition (2) within short distances of 
the step. A restriction of the same sort arises from the specif- 
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ic microscopic structure of the step. In particular, at dis- 
tances less than the distance between the jogs on the step, 
two-dimensional equation (1) may not be valid. 

The distance a*, which sets a lower limit on the range of 
applicability of equation (1) with boundary condition (2), 
may be regarded as a characteristic dimension of the step. 
We wish to emphasize that this dimension, only the order of 
magnitude of which is determined physically, does not ap- 
pear in any ofour results. It figures only in certain intermedi- 
ate expressions, as a parameter used to form dimensionless 
variables. 

Near the step, but at distances greater than a* from the 
step, we can ignore both the time variation and the convec- 
tive term in diffusion equation (1). A solution of this equation 
with boundary condition (2) can then be written 

We measure the concentration from the equilibrium 
value c,. At thermodynamic equilibrium we then have 
a = 0 and A = 0. When there is a small deviation from equi- 
librium, we have in linear thermodynamics a linear relation- 
ship between the constant A and the source a :  A = Wa, 
where Wis a kinetic coefficient. The concentration distribu- 
tion in (3) near the step then becomes 

The source strength a can be expressed on the basis of mass 
conservation in terms of the step velocity 

where h is the height of the step, and a, and a, are the 
atomic volumes in the solution and in the crystal, respective- 
ly. 

The relationship between the step velocity v and the 
supersaturation of the solution, which is determined by the 
macroscopic boundary conditions, is found from the condi- 
tion that expression (4) be the same as the asymptotic solu- 
tion of the diffusion equation under boundary condition (2) 
at small values of r. In this case the sole parameter-which 
completely describes the kinetic properties of the step-is 
the "kinetic" dimension a. 

Instead of treating a step as a singularity in the macro- 
scopic diffusion equation, Chernov3 used a model of a step: a 
semicylinder with a radius equal to the actual height of the 
step. He specified the boundary condition on the semicylin- 
der in the form standard for a rough surface: 

D a c / a r = l $  ( c - c , )  =vQL ( I - - c , ) i n Q 6 ,  

where f l  is a kinetic coefficient. 
From the standpoint of our phenomenological ap- 

proach, Chernov's model corresponds to a characteristic 
step dimension a* = h and to the parameter values 
W = (a*fl )-'anda = a*exp( - D /pa*). Sincetheparameter 

a completely describes the kinetics of the step (the kinetic 
coefficient fl appears only combined with a in all the results 
of Ref. 3), these two approaches are essentially equivalent. 
However, our phenomenological approach is preferable in 
that it is not based on a model. 

GROWTH OF A TWO-COMPONENT CRYSTAL 

We consider the isothermal growth a two-component 
crystal consisting of atoms of species A and B. For definite- 
ness, we assume that the crystal is a substitutional solid solu- 
tion. We denote by c the atomic fraction of component B. 
The concentration fields in the initial melt, c,, and in the 
crystal, c,, satisfy the diffusion equation 

with the diffusion coefficients DL and D,. Here and below, 
the subscripts L and S refer to the melt and to the crystal, 
respectively. 

A diffusive exchange of atoms between phases (without 
a change in the total number of particles in either phase) can 
occur across an interface free of steps: 

DL acL -r[ ( P E - P A )  L- ( p B - p A )  SI=--.  D~ acs  
Q L  d~ 52.4 d z  

(6) 

Herep, and p, are the chemical potentials of atoms A and 
B, respectively, and the kinetic coefficient r is a measure of 
the diffusive penetrability of the interface. At thermody- 
namic equilibrium, the chemical potentials of the compo- 
nents in the two phases are equal, and there are no fluxes. We 
denote the corresponding equilibrium concentrations by cLE 
and c,, and we measure the instantaneous values of c, and 
c, from these equilibrium concentrations. The chemical po- 
tentials are related to the average free energy per atom (f ) by 

The chemical-potential difference in (6) can then be written 
for a small deviation from equilibrium in the form 

I I 

( 1 . 1 B - p . i ) L -  (11s- F A )  s = j L f ' c L - f :  C S .  

Here the second derivatives f ",, are evaluated at the equi- 
librium values of the concentrations (for stable phases we 
have f " , ,  > 0). 

For convenience and for greater symmetry in the result- 
ing equations, we introduce the notation 

Z = c  ,- ,I, ." , D,-DJ:Q,fJu (j=L, S ) .  

From the standpoint of the macroscopic equations, a 
step is a singularity. By analogy with the single-component 
case, we describe this singularity by a compact flux across 
the interface. The boundary condition at z = 0 is then 

d& d c"s D, - -aL6 ( x )  =r ( Z L - Z s )  =Ds --- a d  ( x ) .  (7) az  a z 

The strength of this compact flux differs on the two 
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sides of the interface, in accordance with the ability of the 
step to move. The relationship between the step velocity v 
and the sources a, and a, is determined by the conservation 
of the number of particles. The total fluxes of the atoms of 
species A and B through the step from the melt into the crys- 
tal are 

where h is the height of the step, and j is the convective flux 
through the step. This flux arises in the melt because of the 
difference between the atomic volumes a, and a,; as fol- 
lows from (8), this flux is 

For the velocity v we find from (8) 

Condition (7), along with the macroscopic boundary 
conditions, unambiguously determines the solution of diffu- 
sion equations (5). A lower limit is set on the range of applica- 
bility of this solution by the characteristic dimension of the 
step a*; everything we said in the preceding section for the 
single-component case also applies to this dimension. 

To proceed further toward the derivation of phenomen- 
ological equations for the sources a, and a,, we require that 
any possible effect of a time variation and of convection [the 
left side of Eqs. (5)]-which in principle falls off toward the 
singularity-become negligibly small quite close to the step, 
even at distances greater than a* from the step. In other 
words, near the step there must be a region of dimension 
I>a* in which the concentration distribution is described by 
the solution of a Laplace equation with boundary condition 
(7), specifically, 

Here Ei(6 ) is the integral exponential function. Here and be- 
low, the upper sign in (10) refers to :, , and the lower sign to 
c,. The constants c represent the leading term (which does 
not decay toward the step) of the general solution of the dif- 
fusion equations without sources. 

The dimension a, introduced in (10) is a measure of the 
effect of the diffusive permeability of the boundary. The dis- 
cussion below and the form of the phenomenological equa- 
tions depend on the relation between a, and the step size a*. 

1. Boundary of low permeability. At a*ga, the perme- 
ability of the boundary near a step is inconsequential, and 
the concentration distribution at a*<r<a,, found from (lo), 
can be written in the form 

A complete equilibrium in the system corresponds to a,, a,, 
A,, A, = 0. Upon a small deviation from equilibrium, the 
constants A,,, must be related in a linear way to a,,, by 
means of some symmetric, positive-definite kinetic matrix: 

h 

That the matrix W is symmetric can be easily seen by writ- 
ing, for example, an expression for the entropy production in 
a small cylindrical region around the step. Introducing the 
"kinetic" dimensions 

by analogy with the single-component case, and using these 
dimensions to replace the diagonal elements of the matrix 
W,,,, we find the following expressions for the concentra- 
tion distribution near the step: 

These expressions no longer contain the microscopic size of 
the step. the last terms on the right side of (1 1) reflect the 
correction to the concentration for the step curvature k (the 
Gibbs-Thomson effect), and a is the linear tension of the 
step. In this case the kinetics of the step is thus described 
completely by the three phenomenological parameters a,, 
a,, and W. Expressions ( I  I )  completely close the problem. 
The procedure for solving specific problems can be outlined 
as follows: Condition (7) at the interface, along with expres- 
sion (9) for the velocity, can be used to solve macroscopic 
equations (5) (with specific external boundary conditions) 
given the values of a,  and a,. The sources a, and a, are 
then determined unambiguously by the requirement that the 
asymptotic form of the resulting solution agree with ( I  1) in 
the limit as r-0. 

Conditions (1 1) are analogous to the kinetic boundary 
conditions at an atomically rough surface, which relate the 
values of the concentration at the interface to the atomic 
fluxes. The only difference is that the value of the concentra- 
tion is finite at the interface, while at a step it diverges logar- 
ithmically. In the latter case the correct approach is thus to 
require that the asymptotic form of the solution of the mac- 
roscopic equations agree with (1 1). 

2. Boundary of high permeability. At a* k a,, the pene- 
trability of the interface is important throughout the macro- 
scopic region. The second term in (10) is of the form z/?, 
analogous to the potential of a two-dimensional electric di- 
pole, and it falls off with distance in porportion to r-'. The 
discontinuity c: - c: is the concentrations at the interface, 
is also negligibly small in this case, so that the concentration 
distribution near the step can be described by 

where a = a, - a,. As in the single-component case, the 
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linear relationship between A and a upon a small deviation 
from equilibrium gives us one kinetic parameter a with the 
dimensionality of a length; as a result we have 

where we have added a term for the curvature of the step, as 
in (1 1). 

In the solution of specific problems in this case there 
would be no point in introducing arbitrary sources a, and 
a,. The boundary conditions at the interface, which replace 
(7), and the expression for the step velocity must be written in 
the form 

d EL d c's 
zL(x, 0) =E8 (x, 0) ,  DL - - Ds - =a6 (x),  (13) d z d z  

We then determine a from the condition that the 
asymptotic form of the solution of Eq. (5) in the limit r-0 
agree with expression (12). We call this version of the de- 
scription of the step "single-parameter kinetics," in contrast 
with the "three-parameter kinetics" obtained in the case 
a* (a,. 

We have thus found that, depending on the diffusive 
permeability of the interface, r ,  the kinetics of a step at the 
surface of a two-component crystal can be described by ei- 
ther one or (if r is not too large) three parameters. What 
appears at first glance to be the fundamental distinction 
between these two cases turns out to be a relative distinction 
in the sense that any step can be described by single-param- 
eter kinetics in a certain region of external macroscopic con- 
ditions. This conclusion follows from the observation that 
the second of the approaches described here is also complete- 
ly applicable to the case a*(a,, provided only that the di- 
mension 1 be greater than a, in the region in which we can 
ignore convective transport, the time variation of the diffu- 
sion equation, and the inhomogeneity of the external bound- 
ary conditions. In this case we can ignore the second term in 
(10) at distances rand thereby find a logarithmic distribution 
(12) with a single "kinetic" parameter a. If aa*(a,, i.e., if the 
step is "actually" described by three parameters, then an 
expression for a in terms of these parameters can be found by 
comparing (10) with (12) at r)a, and with (1 1) at r(a,: 

a= y-'a, 

where y is the Euler constant. The three-parameter kinetics 
of the step thus reduces to single-parameter kinetics, but 
only as long as the distance over which it is legitimate to 
replace diffusion equation (5) by a Laplace equation satisfies 
l>a,. If this condition does not hold, the step cannot be de- 
scribed by a single kinetic parameter, so that the step veloc- 
ity v will depend on a,, a,, and Win a way other than in the 
combination in (15). As the macroscopic dimension 1 de- 

creases to the step size a* (as a result of an increase in the 
velocity v, for example), a phenomenological description of 
the step by means of linear kinetic relations becomes impos- 
sible. 

An analogous description of the kinetics of a step holds 
for the case of the growth of a pure crystal from a melt with 
heat conduction. If there is a limitation on the rate at which 
heat can be transferred across the interface, a temperature 
dicontinuity will arise at the interface (the Kapitza discon- 
tinuity). In this case the step kinetics is described by three 
parameters. If the macroscopic dimensions are much larger 
than the characteristic dimension analogous to a,, the Ka- 
pitza discontinuity becomes inconsequential, and the step 
can be characterized by a single kinetic parameter. 

KINETICS OF AN ISOLATED STEP 

To illustrate the use of this approach we consider the 
motion of an isolated rectilinear step upon a small deviation 
from equilibrium. There are no fluxes either in the melt or in 
the crystal far from the step. The concentration in the melt 
differs from its equilibrium value by an amount c ,  , while 
that in the crystal differs in accordance with boundary con- 
dition (7) from its equilibrium value by an amount 
C, f nL/f"S. 

The solution of steady-state equations (5) with bound- 
ary condition (7) is 

Here 

The sign of the square root is chosen to satisfy the condition 
x , ,  - Ik 1 in the limits k-+ + W .  We are interested in the 
asymptotic behavior of expressions (16) at small distances 
from the step. This asymptotic behavior cannot be found by 
using the general expressions for A, and As in (17). We first 
consider the limiting case of low velocities, 

l=min {DL, D s ) l u ~ a o .  (18) 

To evaluate the asymptotic behavior at a,(r(l (we are ac- 
cordingly using the single-parameter description of the step 
kinetics), we can replace expression (17) by 

Substituting (19) into (l6), we find Z,,(x, z) at small distances 
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from the step (but at distances greater than a,): 

Here r = (x2 + z2)'I2, and y is the Euler constant. 
From the condition that the asymptotic behaviors of 

(20) and (12) agree, using relation (14), we find the following 
equation for the step velocity: 

DS= (DLDa)  eap { [ (D,+D,)  l n ( 2 )  a (D,-D,)  

If we had found the asymptotic behavior of the solution at 
r(a,, and if we had used (1 I), we would have found expres- 
sion (21) again, but with a given by (15). As the velocity in- 
creases, condition (1 8) may be violated. In this case, the sim- 
plified expressions in (19) are no longer valid. At sufficiently 
small r we can have a different limiting case: 

in which we can ignore in (17) the terms with r. We then find 
the following expression for Z.,,(r) at short distances from 
the step: 

From the condition that (22) agree with ( l l ) ,  we find the 
following equation for the step velocity: 

In the cases which arise in practice, we would usually have 
D,/DL (1, wB, 5 1. Expressions (21) and (23) for the veloc- 
ity v would then become the same, 

from which we find, with logarithmic accuracy, 

The step velocity v in (25) is a nonlinear function of the super- 
saturation c, . The reason is that the characteristic distance 
DL /v over which the logarithmic distribution is violated and 
the concentration approaches the value c, depends on the 
velocity v. Purely diffusive mass transfer is generally pro- 
duced not throughout the melt but only in a diffusion bound- 
ary layer of dimension 6. If this dimension is smaller than 
DL/v (as is always true in the limit of an extremely low super- 
saturation), this dimension S will appear in place of DL /v in 
the logarithm in (24), and the velocity v will be a linear func- 
tion of the supersaturation. 

We could discuss other problems of interest in the the- 
ory of the layered growth of crystals by an analogous ap- 
proach. In particular, a study of two-dimensional nucleation 
at an atomically smooth face requires consideration of an 
annular step and the incorporation of a term proportional to 
the step curvature in the boundary asymptotic expression 
(12). For an analysis of the motion of steps in echelon (the 
growth of a vicinal face), one would have to require that the 
concentration distribution near each step agree with (12). 

DISCUSSION OF APPROXIMATIONS 

We have examined the isothermal crystallization of a 
solid solution under the assumption that the state of the crys- 
tal and of the melt can be characterized completely by speci- 
fying the fields of the relative component concentrations 
c,(r) and cL (r). This assumption means that, first, at a given 
temperature there are no effects of stratification or ordering 
in the crystal; i.e., the mixing energy is quite small. Second, 
the concentration of vacancies and of interstitials is assumed 
to be negligibly small, as a result of the high formation ener- 
gy of these defects. Third, we are ignoring secondary effects 
of the onset of stresses in the crystal accompanying the non- 
uniform distribution c,(r) and the convection fluxes upon a 
redistribution of the cL (r). In this situation, which is typical 
during the growth of solid solutions, the relaxation of each of 
the fields c,(r) and cL(r) is described completely by a single 
diffusion coefficient (D, or DL), whose magnitude is deter- 
mined by the specific microscopic mechanism. 

A more important approximation is to ignore adsorp- 
tion at the interface between the crystal and the liquid. In all 
the derivations above it was assumed that the crystal grows 
as a result of the supply of atoms directly from the volume of 
the liquid to the step. We have ignored the alternative 
growth mechanism in which atoms from the melt initially 
enter an adsorbed layer on the surface and later cross the 
step and enter the crystal. These two mechanisms for the 
entry of atoms into the crystal work in parallel and should, in 
general, be considered jointly.' To do so will not complicate 
the phenomenological description in a fundamental way, 
since the adsorbed layer is an ordinary boundary for the inte- 
rior, as the step is for the adsorbed layer; it does not consti- 
tute a singularity as a step does for the bulk diffusion equa- 
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tion. All the additional coefficients can be introduced in the 
standard way. However, because of the increase in the num- 
ber of parameters and variables, the general equations be- 
come unacceptably complicated, and the number of differ- 
ent limiting cases increases catastrophically." 

We will therefore be content with a more restricted 
analysis of the growth of a pure crystal from a solution; from 
this analysis we can draw qualitative conclusions about the 
effect of adsorption in more general cases. Furthermore, it is 
in this restricted case that the adsorption seems to be most 
important. Introducing an adsorbed layer with a relative 
concentration c, (x) and a diffusion coefficient D, , which 
exchanges atoms with the solution at a characteristic rate 
T-', we replace Eqs. ( I )  and (2) by the system 

Here x is the ratio of the atomic area in the adsorbed layer to 
the atomic volume in the solution (R,), the dimensionless 
parameter p is a measure of the adsorption rate, and the 
kinetic coefficient B describes the exchange of atoms 
between the step and the adsorbed layer. As usual, c, and c 
are reckoned from their equilibrium values. The step veloc- 
ity v is related to the sources in Eqs. (26b) and (26c) by mass 
conservation: 

The general solution of system (26) in region r(1, where the 
time variation and convection can be ignored in the diffusion 
equations, is 

nDc ( x ,  z )  
m 

a+aA+aAl,k 
= (a+=,) i n  ( r / a )  +ip J e-kz cos ( k x )  d k ,  

1+lpk+lpl,k2 

a+aA (1-l,/lp) f (a+aA) k 
(a+aA)ln(r'a) +b S l+l,k+l,lrk2 cos (kx) d k ,  

where a is some constant dimension, and the strengths of the 
sinks from the volume (a) and from the adsorbed layer (a, ) 
are related by an equation which follows from 

From (27) we see that at large distances, ~ ) m a x l  I,, (1p1,)112] 
we have 

a+aA r 
c(x,z)=- c (x, 0) l n - ,  cA(x)=-; 

n D  a P (28) 

i.e., in this region the diffusive flux goes through the volume. 
This result means that under the condition 

D m a x  {Zp, ( Z p Z T )  "2} (29) 

it is sufficient to consider only the volume diffusion equation 
and to describe the kinetic properties of the step by the single 
phenomenological parameter a, as in the situation discussed 
at the beginning of this paper. However, the processes asso- 
ciated with the presence of the adsorbed layer generally af- 
fect the dimension a. In particular, an upper limit is imposed 
on a by the condition that expressions (27) retain their sign 
over the entire macroscopic region r)a*. 

If inequality (29) does not hold, the asymptotic behavior 
in (28) cannot be attained, and the kinetics of the step must in 
general be described by two parameters. To illustrate this 
situation we consider the particular case in which both of the 
lengths I ,  and (1p1,)1'2 are macroscopic: 

min {l,. ( L p L , )  ' )>a3.  (30) 

We thus see from (27) that the concentration distributions 
nearthestep, i.e., at a*<rgmin(I,, ( ~ ~ l , ) " ~ ) ,  areofthe form 

which means that there is a complete separation of volume 
diffusion from surface diffusion. The constant dimension a ,  
is a second (after B ) phenomenological parameter, which de- 
scribes the kinetics of the step with respect to the volume, 
and system (26) must be supplemented with the requirement 
that the asymptotic form of c(x, z) as r-+O coincide with a In 
(+-/a,). 

Under inequality (30), the "microscopic" kinetic di- 
mension a, corresponding to the single-parameter situation, 
(29), can be expressed in terms of the two microscopic pa- 
rameters a ,  and B as follows: 

Under condition (30), the right side of this expression is posi- 
tive, in accordance with the circumstance that the adsorp- 
tion mechanism can only increase the effective permeability 
of the step, so that we have a>a,.  In the limit a,+O, in which 
atoms cannot enter the crystal directly from the volume, a ,  
generally drops out of (31), and the dimension a becomes 
determined exclusively by the adsorption mechanism. 

In the case of strong adsorption ( p )  I), with the natural 
order of magnitude of the quantities D-D, -Bx, a,-%, 
1,/1,) 1 we find a = yl, from (3 1). This result means that in 
the case of strong adsorption the parameter a is relatively 
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insensitive to the microscopic structure of the step and is 
determined exclusively by the macroscopic length I,. 

When adsorption is weak (p- 1), the characteristic 
lengths I, and I, are generally of microscopic size. In this 
case we cannot resolve the flux to the step into two-dimen- 
sional and three-dimensional components, and the kinetics 
of the step is described by the single phenomenological pa- 
rameter a. 

In contrast with the growth of a pure crystal from solu- 
tion, in the case of the crystallization of a two-component 
crystal from a melt there are no special reasons for a strong 
adsorption. In this sense, the theory derived here for the 
growth of a two-component crystal with allowance for ad- 
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sorption effects may have a rather broad range of applicabi- 
lity. 

"The situation is aggravated by the circumstance that in the two-compo- 
nent case it is generally necessary to introduce two adsorbed layers, one 
on each side of the surface, and to consider the exchange of atoms 
between each of these layers and the crystal and the melt. 
- 
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