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It is shown that the standard a model used to derive the well-known one-parameter renormaliza- 
tion group (RG) equation describing quantum diffusion is unstable against the inclusion of a series 
of additional (microscopically derivable) vertices. The instability is due to the infinitely rapid 
growth of the additional RG charges, which affect the diffusion in a nonperturbative way, in the 
initial stage of the RG transformations. 

5 1. INTRODUCTION 

The scaling theory of localization proposed by Abra- 
hams, Anderson, Licciardello, and Ramakrishnan' has deci- 
sively altered the prevailing ideas about quantum diffusion 
of free particles in a disordered medium. The main conclu- 
sions of this theory include the absence of delocalized states 
in two-dimensional (d = 2) systems and the absence of a 
sharp transition between localized and delocalized states for 
d > 2--contrary to Mott's idea that there is a minimum of 
the metallic conductivity.' These conclusions to a large ex- 
tent rest on Thouless's hypothesis3 that the only relevant 
scaling parameter in the localization theory is the conduc- 
tance of the sample. 

Thouless's hypothesis has found its most rigorous mi- 
croscopic confirmation in the a-model approach."" The 
use of the nonlinear tensor a model1' for describing quantum 
diffusion was proposed by Wegner.4 This model was first 
derived microscopically (in different versions) by Efetov, 
Larkin, and Khmel'nitski? and by Wegner and Shafer6 and 
has since been derived by a number of other authors.'-" The 
a-model approach has been used to ~ b t a i n ' ~ ~ ~ . ' ~  a one-pa- 
rameter renormalization-group (RG) equation which agrees 
in the region of weak disorder with the RG equation ob- 
tained qualitatively in Ref. 1. This approach has reproduced 
in a simple way the results of a direct summation of dia- 
g r a m ~ ' ~  and has also confirmed the conclusions of the one- 
parameter theory.' 

In the present paper we show that the one-parameter 
description of quantum diffusion is unstable in a space of 
dimension d>2. In a consistent microscopic description one 
must include an infinite number of relevant RG charges 
which affect the conductance of the system. These charges 
are due to the presence in the a model of additional vertices 
proportional to higher powers of the matrix A which breaks 
the (global) symmetry of the model; this matrix was intro- 
duced in Wegner's original paper4 and plays an extremely 
important role in the localization problem. (The additional 
vertices are obtained as small corrections in the usual micro- 
scopic derivation of the a model in the quantum-diffusion 
problem.) The corresponding charges experience an infinite- 
ly rapid growth in the initial stage of the RG transforma- 
tions, so that they must be taken into account even if their 
"bare" values are arbitrarily small. 

We stress that such an instability is present only in the a 
model describing the localization problem. In models de- 

scribing other phase transitions (e.g., in the n-field model14 
or the C F  a model15) the instability does not arise. In such 
models one can introduce additional vertices analogous to 
those under consideration, but they turn out to be irrelevant: 
the corresponding charges decay away under the RG trans- 
formations. 

The fundamental distinction between the statistical 
models and the localization problem was recently demon- 
strated by Efetov,16 who found an exact solution of the local- 
ization-theory a model on the Bethe lattice. This model sys- 
tem exhibits a Mott transition between localized and 
delocalized states. Although this result is not directly rel- 
evant to a real physical system, the discrepancy with the 
conclusions of the scaling theory of localization1 does not 
seem accidental. The instability of the one-parameter RG, as 
demonstrated in the present paper, shows that the nature of 
the localization for d>2 remains an open question. 

5 2. DESCRIPTION OF THE MODEL 

The diffusion of noninteracting electrons in a disor- 
dered medium is described with the aid of the correlator 

K ( r ,  r'; o) = ( G R ( r ,  r l ;  E +  o) G A  (r', r; F )  ), (1) 

where GR (A  ) is the retarded (advanced) Green function of an 
electron in a medium with randomly distributed impurities, 
and the angle brackets denote an averaging over the impuri- 
ty distribution. By representing the Green functions as func- 
tional integrals one can perform in the very first step both the 
averaging over impurities and the integration of the "fast" 
electron variables which are irrelevant to the diffusion prob- 
lem. 

As a result, the calculation of correlator (1) reduces to 
evaluating the functional averages with a weight factor 
exp( - F ) ,  where F is  the functional for the generalized non- 
linear a model"' ' 

Here = v,lJd is the diffusion coefficient (I,'= v,r0 is the 
mean free path, r0 is the time between elastic collisions), v is 
the electron density of states, 6- + 0, and Q (r) is a 2N X 2N 
Hermitian matrix satisfying the conditions 

QGI, SpQ=O. (3)  

The matrix elements of Q are the quaternions 
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where To is the 2 X 2 unit matrix, ;i, = iu, (a = 1, 2, 3), and 
the a, are Pauli matrices. In the case of potential scattering 
by impurities the Q are real numbers; if in addition to the 
potential scattering there is a weak scattering by magnetic 
impurities (or in the presence of a weak external magnetic 
field), the Q $ are complex numbers, and in the case of a spin- 
orbit interaction with impurities, Qi and Q: are real 
numbers and Q and Q are imaginary numbers1' (Ref. 5). It 
will sometimes be convenient to write the matrix elements of 
Q (and of other matrices) in the form Qg = Q S ,  where 
A, B = 1,2 are block indices which arise on account of the 
averaging of the two different Green functions in correlator 
(I), and a ,  P = 1, . . . , N are the replica indices. In the final 
results one should set N = 0 in accordance with the usual 
replica method." 

It is very important in the following discussion that 
functional (2) contains a gradientless vertex Sp(AQ ), where 
the matrix A is 

The appearance of this vertex is due to the difference in the 
frequency dependences and analytic properties of the retard- 
ed and advanced Green functions in correlator (1). 

In Refs. 12, 5, and 10 it was concluded that functional 
(2) is renormalizable. The only relevent RG charge turned 
out to be the dimensionless resistance t = (?rvL3/8)-'. In a 
space of dimension d = 2 + E the Gell-Mann-Low equation 
for this charge in the one-loop approximation is of the form 
(in the replica limit N = O)'',': 

dF/dE=-cf-af2=p ( f )  , (5) 

where { = I d  - ' is the logarithmic RG variable, and i = t / 
167~; here 

is a small parameter of the theory and corresponds to a weak 
disorder. The coefficient a depends on the pressure of scat- 
tering by magnetic or spin-orbit impurities in addition to 
ordinary potential scattering: 

- 1, potential scattering 
a = [ 0, magnetic case 

1, spin-orbit scattering 

Equation (5) is valid for i(1. In this limit it agrees with 
the equation proposed in the qualitative RG approach.' 
Since Eq. (5) was derived in a microscopic approach, it has 
served as the most rigorous justification for the qualitative 
approach. ' 

In the present paper we show that the picture based on 
the one-parameter RG is unstable. An infinite number of 
relevant RG charges, associated with the following addi- 
tional vertices," arise in the system: 

These vertices are not "more nonlinear" than the original 
functional (2). The problem is that the interaction in the 
model is due to geometric restrictions (3) on the field Q (r). 
Therefore, the functional integration should be carried out 
over independent components of the matrix Q. For this it is 
convenient to choose, for example, the following parametri- 
zation, analogous to that used in Ref. 11: 

Here B is an arbitrary N X N  matrix (whose elements, as in 
(4), depend on the type of scattering). Additional vertices (8) 
and (9), like the original vertex (2), contribute in the approxi- 
mation quadratic in the independent variables W. 

Let us first study the properties of the charges y and r 
under the RG transformations and investigate their influ- 
ence on the Gell-Mann-Low equation (6) for (Sec. 3). We 
then present the scheme for deriving vertices (8) and (9) from 
the usual microscopic model of noninteracting electrons in a 
random field (Sec. 4). In Sec. 5 we discuss how the additional 
vertices contribute indirectly to the diffusion coefficient in 
the evaluation of correlator (1). In Sec. 6 we show that the 
instability in question is present only in the replica (N = 0) 
limit of the investigated u models (2)-(4) (or the equivalent 
supersymmetry u models). A preliminary report of this 
study has been published else~here.~ '  

5 3. GROWTH OF THE CHARGES UNDER THE RG 
TRANSFORMATIONS 

Let us consider the properties of the additional vertices 
(8) and (9) under the RG transformations in the standard 
scheme. '4,5,10 A field Q (r) satisfying conditions (3) is written 
in the form 

where the "fast" field Qo(r) is written with the aid of parame- 
trization (lo), while the "slow" unitary matrices U(r) recast 
the "slow" field Q (r) in the form 

The functional 8, describing the slow long-wavelength fluc- 
tuations is obtained by integrating over the fast variable 
Qo(r): 

where = F + @ + Y [see Eqs. (2), (8), and (9)]. 
It turns out that when vertices (8) and (9) are subjected 

to RG transformations (1 3), new auxiliary vertices are gener- 
ated which should be included in the functional in order to 
ensure its renormalizability. Let us demonstrate this for the 
simplest-gradientless-vertices (8). 

As a result of RG transformations (13) any @, vertex (8) 
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generates in the approximation linear in y, and t the follow- 
ing contribution to the functional describing the slow fluctu- 
ations (here d = 2): 

(The derivation of this and other analogous expressions is 
outlined in Appendix 1). Here we generate the auxiliary ver- 
tices 

mnkm dr Sp (AQ) 'Sp (AQ) "-'. (15) 

One should also add these vertices to the functional, assum- 
ing that the "bare" values of the corresponding charges are 
equal to zero. Under the RG transformations vertices (1 5), in 
turn, contribute to the renormalization of the initial vertex 
@, and also generate auxiliary vertices containing products 
of three matrix traces. 

By repeating this procedure the required number of 
times, we ultimately add to the functional all possible ver- 
tices of the form 

where (k ,  ) is any set of whose numbers which satisfies the 
condition B kj = n. We note that the number of necessary 
auxiliary vertices (16) (equal to the number of ways in which 
one can represent n in the form of a sum of natural numbers) 
grows extremely rapidly with increasing number (n) of A 
matrices in the original additional vertices (8). 

The functional including all the vertices (16) together 
with the original vertices (2) and (8) is formally renormaliza- 
ble in the single-loop approximation. The RG equations (de- 
rived in Appendix 1) for the "vector" y, , whose components 
are all the charges yik)),  are conveniently written 

d < i d ~ = c m ,  (17) 

where f, = y, 2 - ', and T, with allowance for (6) and (7), is 

Here C, the matrix of coefficients, depends on n and a [i.e., 
on the type of scattering (7)] in an extremely complicated 
way, but its largest eigenvalue, which governs the growth of 
the charges y, in linear equations (17), nevertheless turns 
out to have a very simple dependence on these parameters 
(see Appendix 1): 

Thus the initial growth of the charges y, under the RG 
transformations is described by the following formula: 

ynmexp [ (n2-n) TI mexp [ (n2-n) t o ~ j .  (20) 

It turns out (see Appendix 2) that the RG equations for 

the charges r, associated with the gradient vertices (9a)-(9c) 
agree with equations (17) to within unimportant parameters, 
the charges associated with different vertices being renor- 
malized independently of one another in the linear approxi- 
mation. Therefore, in the initial stage of the RG transforma- 
tions all the charges r, (9a)-(9c) also grow in accordance 
with (20). 

It will be shown in Sec. 4 that the bare values of the 
charges y, and r, fall off with increasing n: 
yn O - I?,, O - (wr0)" ( 1. Nevertheless, for large enough n the 
renormalized values of the charge y, and I?, reach a value - 1 (regardless of their bare values) because of the nZ depen- 
dence in exponential law (20). For estimatig the value of the 
renormalized charge it is convenient to set the parameter 6 
equal to go = ln(wr0)-'. Then even in the region id( 1 the 
charge 

yn- (mo) exp [ (n2-n) f o g o ]  - ( a t u )  n(l-ni~), 

i.e., beginning with numbers n 2 to-', all the charges grow 
without bound with decreasing frequency w. 

This same conclusion is also valid in a space of dimen- 
sion d > 2. Here one must only replace the parameter T in (20) 
by re (E = d - 2): 

We see from expression (14) that equations of type (17) 
are formally related: any vertex @, contributes to the renor- 
malization of the vertices containing a smaller number of 
matrices A. In the initial stage of the RG transformations 
(for T a 6 6 - 4 )  this contribution can be neglected (since the 
bare values of y, fall off with increasing n); this corroborates 
Eq. (19). Further, by virtue of (20) the contribution of 
charges with larger n becomes dominant in the renormaliza- 
tion of any given charge. This promotes infinitely rapid 
growth of all charges y for T+ + 0. 

The subsequent change of all the charges is due to the 
nonlinear character of the R G  equations. It is important that 
the contributions nonlinear in y and r to the RG equations 
are also proportional to nZ (see Appendix 2), i.e., have no 
influence (since the bare charges are small) on Eq. (20) for the 
growth of the charges in the initial stage of the RG transfor- 
mations. In contrast, the corrections nonlinear in i (the 
many-loop corrections) to the RG equations can be propor- 
tional to any power of n. However, as is shown in Appendix 
2, the most dangerous many-loop corrections to the eigen- 
values of matrix (17) are proportional to n2(ni)k i. This 
means that in the domain of application of the perturbative 
RG approach (i(1) these corrections do not affect the 
growth law (20) of charges with indices n 2 i -' (the extra 
power o f t  in the many-loop corrections ensures the neces- 
sary formal smallness). At the same time, for charges with 
indices n ) i  -' the single-loop growth law (20) no longer ap- 
plies. (This does not imply, of course, that the changes do not 
grow-we simply cannot describe their behavior in this ap- 
proach even in the initial stages of the renormalization 
group). The growth of charges with indices somewhat 
greater than i -' promotes the growth of all charges with 
smaller indices by virtue of the aforementioned coupling 
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between the equations. When these charges reach - 1 the 
nonlinear corrections should be taken into account. 

When the nonlinearity is taken into account, the RG 
equations for all the charges (including the "resistance" i ) 
become coupled. Therefore, the inclusion of any of the new 
charges will cause an avalanche-like growth of all such 
charges. In this case it would not appear feasible to obtain 
information on the change in the charges in the nonlinear 
regime, as this would require solving an infinite system of 
nonlinear RG equations. 

We can nevertheless state definitely that all vertices (8) 
and (9) are relevant under the RG transformations, so that 
the fixed point y = r = 0 is unstable. The infinitely rapid 
growth of the charges in the initial stage of the RG transfor- 
mations causes them to have a substantial effect on the re- 
normalization of the dimensionless resistance: the simple 
equation (5) should be replaced by Eq. (A. 11) (see Appendix 
1). In Sec. 5, we show that these vertices also contribute di- 
rectly to the diffusion coefficient. 

5 4. DERIVATION OF ADDITIONAL VERTICES FROM THE 
MICROSCOPIC MODEL 

The reasons why the u model [Eqs. (2) and (3)] must be 
supplemented with vertices (8) and (9) in a consistent micro- 
scopic description can be illustrated as follows. When quan- 
tum corrections are ignored, the conductivity is described by 
the classical Drude formula: 

The standard u model (2) cannot reproduce the frequency 
dependence in (22): the only w-dependent term in (2) does not 
contribute to the diffusion coefficient (and remains un- 
changed under renormalization). 

The problem is that small frequency corrections are ne- 
glected in the derivation of the u model. Let us outline a 
consistent microscopic derivation of the model with 
allowance for the o corrections (for simplicity we shall re- 
strict the discussion to the case of potential scattering, 
a = - 1); this approach will give rise to vertices (8) and (9). 
We must take these vertices into account, of course, not in 
order to reproduce the Drude formula, but because of the 
extraordinarily rapid growth of the corresponding charges 
(Sec. 3). At the same time, formula (22), like the law of con- 
servation of number of particles (Sec. 5), is a convenient test 
of the internal consistency of the theory. 

Correlator (I), which describes the quantum diffusion 
of noninteracting electrons in a random potential, is conve- 
niently written in the form 

TO= -- 62 
- 4b22 ! (6h (r) bh (rr) ~ X P  (-S [Q, ~ I ) ) D Q  I N=O 

where 

Z=I  exp{-S[Q])DQ. SIQI-S[Q.h=01, (24) 

while the generating functional S [Q, h ] is defined by the 

expression 

(25) 
The functional integration in (25) is over intermediate 2N- 
component fermion fields (N is the number of replica compo- 
nents), while the matrix Green function G is 

The matrix structure of the auxiliary field h (r) is 

where h, and h3 are arbitrary real N X N matrices and hT is 
the transposed matrix. 

Correlator (23) with definition (24)-(27) is essentially 
the same as the correlator obtained in Refs. 5, 6 and 10 (the 
correlator in form (23) was derived in Ref. 18). We stress that 
expression (23) is formally exact. 

For w = h = 0 action (25) reaches a minimum for the 
class of spatially constant fields B, satisfying condition (3).5,6 
In the case of slight disorder (6) the long-wavelength proper- 
ties of the model are determined solely by the transverse 
fluctuations of the field Q (r) about the m i n i m ~ m , ~ . ~  i.e., one 
should take into account in the integral of (23) only fields Q (r) 
which satisfy condition (3). (In the present case of potential 
scattering, where the matrix (4) is quaternion-real, condition 
(3) defines the quaternion Grassmann manifold Sp(2N)/ 
SP(N X SP(N 1.1 

To evaluate the hydrodynamic action 8 (usually called 
the effective free energy) we expand functional (25) in slow 
transverse fluctuations SQ = Q (r) - a, about the minimum: 

where 

and Go is obtained from G (26) by replacing Q (r) with a,. The 
Gaussian integration in (28) gives, in the usual way, a pro- 
duct of Green functions Go. 

The small parameter of expansion (28) is actually kl,, 
where k - ' is the characteristic scale of spatial variations in 
the field Q(r). For w = 0 expansion (28) in the first nonvan- 
ishing order in kl, gives the gradient term of the ordinary u 
model (2). 

To incorporate thew corrections the green functions Go 
should be expanded in 07, (we are assuming for now that 
h = 0). We see from (26) that this expansion is simultaneous- 
ly an expansion in the matrix A. To first order in 07, this 
expansion gives the o-dependent term of the ordinary u 
model (2). Further expansion in o gives rise to vertices (8) 
and (in conjuction with the expansion to second order3' in 
kl,) vertices (9). Thus the bare values of the charges y,, and 
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r, at vertices containing n matrices A are proportional to 
( ~ 7 ~ ) ~  (the numerical values of the bare coefficients and cer- 
tain details of the derivation for n = 1, 2 are given in Ref. 
18). 

We stress that if we were able to obtain (by some non- 
perturbative method, for example) arbitrarily small but w- 
independent values of any charges y, T, then the one-loop 
law (19) would lead to unbounded growth of charges with 
any indices n, as the many-loop corrections are known to be 
negligible in the initial stage of the RG transformations. 

8 5. CONTRIBUTION OF ADDITIONAL VERTICES TO THE 
CORRELATOR 

In this section we describe how the additional vertices 
(8) and (9) contribute directly to the diffusion coefficient and 
show that the presence of gradientless vertices (8) does not 
necessarily lead to nonconservation of particle number. To 
calculate the correlator (23) the generating functional (25) 
must be expanded up to terms quadratic in the auxiliary field 
h (r). To this end, the Green functions that appear in (28) must 
be expanded in powers of h. When vertices (8) and (9) are 
neglected, only one h term in the generating functional is 
important: SphQ. 

Vertices (8) and (9) are obtained as a result of expanding 
Green function Go (expressions (26) for Q (r) = go) in powers 
of iwr0A. With allowance for the field h the expansion is in 
powers of the combination iwr0A + h. Therefore, in addi- 
tion to vertices (8) and (9) one gets (to within numerical coef- 
ficients) the various h vertices obtained by replacing one or 
two matrices by the matrix h. In addition, expansion in 
klo leads to the vertices containing Vh that can be obtained 
from (9) by the substitution VQ-Vh. 

The evaluation of the correlator by the RG procedure 
reduces to the problem of calculating the correlator in the 
approximation of noninteracting fluctuational modes using 
the renormalized values of all the relevant charges instead of 
the bare values. In the situation under study this procedure 
should also include the renormalization of the coefficient in 
all the h terms. (This, of course, is equivalent to renormaliz- 
ing the pre-exponential factor of correlator (23); this factor 
has an extremely complex structure when thew dependence 
is taken into account). 

In the case of the a model, where the interaction is de- 
termined by geometric restriction (3), the free-diffusion ap- 
proximation corresponds to an expansion of all the vertices 
up to second order in the independent variables W of Eq. 
(10). The effective diffusion coefficient has the simplest de- 
pendence on the charges I? (9) when all the h terms except 
SphQ are neglected. In this approximation correlator (23) 
has the usual diffusional form: 

where the renormalized diffusion coefficient geff is 

Thus vertices (9) not only change the form of the RG equa- 
tion for i but also contribute directly to 9. Here the two 

types of contribution do not cancel each other, and the RG 
equation for geff depends substantially on r. 

To describe the dependence of the diffusion coefficient 
on the gradientless vertices @, (8) one should take into ac- 
count all the h and h vertices obtained from (8) by the substi- 
tution wr0A+h. The generating functional in the free-diffu- 
sion approximation is 

Here X, Y, and Z are renormalization factors which depend 
on{ = lnll -'. The quantity Z i s  determined by the contribu- 
tion of all vertices (8): Z a  2 y, n2. Analogously, X or Y is 
determined by the contribution of all the vertices obtained 
from (8) by replacing one or two A matrices, respectively, by 
h. Then correlator (23) becomes 

In order to have conservation of particle number 

K (0, o) =2srv/(-io), (34) 

it is necessary that the renormalization factors be related by 
XZZ-1- - I f  iotoY. (35) 

With allowance for (35) correlator (33) reduces to the ordi- 
nary diffusion form (30) with a diffusion coefficient 

instead of geff. 
Relation (35) should be satisfied at all stages of the RG 

transformations. Its validity for the bare values of the coeffi- 
cients X, Y, and Z is guaranteed by the aforementioned rela- 
tion between the coefficients for the w and h vertices. This 
relation is maintained during the RG transformations on 
account of the special matrix structure (27) of the field h (r). 
The corresponding RG equations are rather awkward and 
will not be given here (they are analogous to those derived in 
Appendix 1). 

In deriving relations (3 1) and (36) we ignored the h ver- 
tices containing the gradients of the fields h and Q. When 
these vertices are taken into account the formula for the ef- 
fective diffusion coefficient depends on two more renormal- 
ization factors. We shall not give this formula since the pur- 
pose of this section is to demonstrate the connection between 
vertices (8) and (9) and the effective diffusion coefficient 
geff. To actually evaluate Seff in a perturbative RG ap- 
proach involves the solution of an infinite system of nonlin- 
ear RG equations (or the equivalent nonlinear functional 
equations-see Appendix 1) and does not seem feasible. 

5 6. ABSENCE OF THE INSTABILITY IN THE STATISTICAL 
MODELS 

We shall show that the instability described above is 
peculiar to the u models which arise in the description of 
quantum diffusion and does not appear in the description of 
phase transitions in non-Abelian statistical models. As a 
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simple example let us consider the n field model14: 

where the N component vector n lies on a sphere SN-  . For 
N >  2 this a model, like model (2)-(4) for a = - 1, is asymp- 
totically free.14 If this model is treated as the long-wave- 
length limit of a lattice magnet with an anisotropic interac- 
tion, then anisotropy terms analogous to the additional 
vertices (8) and (9) arise in the microscopic derivation. For 
example, the vertex analogous to (9a) is written 

where the vector A = (1,0, . . . ,0).  
It turns out that the anomalous dimensionality to A, / 

8~ of vertex (38) is always negative: 

Consequently, the anisotropy terms (38) turn out to be irrele- 
vant in the n-field case. In the case of the C p -  o model15 
describing a system with an N component complex order 
parameter an analogous statement holds: the anomalous di- 
mensionality of the anisotropy vertex introduced in the cor- 
responding way is negative: 

Let us now find out whether the additional vertices (8) 
and (9) affect the RG properties of a model (2)-(4) for integer 
N (all the RG results given above referred only to the replica 
limit N = 0). Let us focus for now on the case a = 0, in which 
conditions (2)-(4) define the a model on the complex Grass- 
mann manifold U (2N )/U (N ) X U (N ). Let us consider the 
somewhat more general U (2N )/U (p) X U (2N-p) Grassmann 
u model [defined by conditions (2)-(4) with SpQ = 2(N -p), 
1 <p< N in place of SpQ = 01. The RG scheme for this model, 
which includes the additional vertices (8) and (9), is the same 
for arbitrary p as the scheme for p = N given in Sec. 3 and 
Appendix 1. The greatest eigenvalue, which describes the 
exponential growth of additional vertices (8) and (16) [or (9) 
and (A. I)], turns out to be independent ofp and equal to 

However, by virtue of the obvious isomorphism (for p = 1) 
U (2N)/U (1)aU (2N - 1) =: CPZN- (Ref. 19), this formula at 
first glance is inconsistent with formula (40) for the C P -  ' 
model [while for N = 1, by virtue of the isomorphism 
CP z S 2 ,  formula (41) is also inconsistent with formula (39) 
for the case of the three-component n field]. The inconsis- 
tency is, of course, illusory. Formula (41) gives the greatest 
eigenvalue of the matrix C (17). It turns out, however, that - 
for all natural numbers N the contributions a exp(Am,, tog ) 
to the action cancel. Moreover, forp = 1 the action contri- 
butions corresponding to all the eigenvalues of the matrix C 
except the smallest cancel, and that eigenvalue is precisely 
what is given by formula (40). 

The point is that the vertices (8) and (16) [or (9) and 
(A. I)] are not linearly independent for natural numbers N 
andp. To see this, we use the parametrization Q = A exp W, 

where Wis given by expression (10) with B being an arbitrary 
(2N - p) Xp matrix of complex numbers. Then for p = 1 
(and for any N )  we have Sp(AQ)" = 2 cos n p  + 2(N -p) 
(where p = B +B ), from which it is clear that vertices (16) 
and (8) are linearly dependent. The coefficients in the linear 
combinations are such that the action contributions propor- 
tional to the exponentials containing the extra [as compared 
with (40)] eigenvalues cancel. 

For p > 1 the contributions of all the eigenvalues no 
longer cancel. For stability of the model it is sufficient that 
the exponentials with positive arguments cancel. By virtue 
of formula (41), vertices with fixed "anisotropy order" n can 
be dangerous only for a model with N<n/2. Let us consider 
for this case the action contribution that is quadratic in W, 
assuming the charges of all the other vertices are renormal- 
ized: 

yn=  c,Xi erp ( A n )  

(Xi is the eigenvector of matrix (17) corresponding to eigen- 
value Ai). The contribution of the vertices containing the 
product of I matrix traces is proportional to N1- . Conse- 
quently, for any exponential there arises an Xi -dependent 
polynomial of degree n - 1 in N. Direct evaluation for sever- 
al n shows that the polynomials corresponding to all the 
eigenvalues except the smallest go to zero for N = 1,2, . . . , 
m,, with mnm,, > n/2 (the particular number of natural 
roots of the polynomial m, also depends on p and n). The 
action contributions corresponding to certain eigenvalues 
cancel. In particular, for any natural N and p the growing 
action contributions corresponding to positive eigenvalues 
cancel. There is a similar cancellation for natural N andp in 
the quaternion Grassmann a models [a = f 1, see (7)]. It is 
natural to assume that such cancellations will also occur for 
any anisotropy order n. 

We stress that in the replica limit N = 0 (or in the equi- 
valent supersymmetry such cancellations do 
not occur: only vertices (8) and (9) contribute directly to the 
action (to second order in W), since the contributions of the 
auxiliary vertices (16) and (A. 1) are proportional to N (or are 
identically zero in the supersymmetry approach). 

5 7. CONCLUSION 

The main result of this paper is that the one-parameter 
RG for describing the quantum diffusion of noninteracting 
particles is unstable. The instability arises because the addi- 
tional vertices (8) and (9) introduced into the standard a 
model (2)-(4) turn out to be relevant under the RG transfor- 
mations. Despite the small bare values of the corresponding 
charges, they can grow (within the limits of the approach 
used here) to values - 1, whereupon they substantially influ- 
ence the diffusion. The diffusional behavior is ultimately de- 
scribed by a system (in essence infinite) of nonlinear RG 
equations that cannot be solved directly. 

The instability is peculiar to the theory of localization. 
It appears only in the replica (N = 0) limit of the a models 
defined on Grassman manifolds (3) and (4) or in the a models 
defined on the supersymmetry Grassman manifolds (the two 
descriptions are equivalent in a perturbative RG approach to 
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localization theory). No such instability appears in the de- 
scription of phase transitions in non-Abelian statistical mod- 
els (the n field model, the C p  u model). When these models 
are treated using ordinary perturbation theory (expanding in 
t d )  the difference between them does not show up. With 
allowance for the a corrections in the theory of quantum 
diffusion (or the corrections in powers of the anisotropy co- 
efficient in the case of magnets) the leading logarithms to 
highest orders in to no longer cancel, and asymptotic series 
with rapidly growing coefficients appear. These series are 
essentially the same in diffusion theory as in the statistics of 
magnets except for the signs of individual terms. The RG 
procedure can be regarded as the partial summation of these 
series. Formula (39) shows that the terms cancel one another 
in the case of magnets but not [by virtue of (19) and (20)] in 
the theory of localization. 

The instability of the RG against the inclusion of addi- 
tional charges does not mean that including them will appre- 
ciably alter the conductivity in the region t&(l. The infi- 
nitely rapid growth of the charges at td-4 may indicate 
that the bare value of the "resistance" to depends on the 
physical (renormalized) value tin a nonanalytic way. Then in 
the region t&- 1 the picture should be qualitatively differ- 
ent from the predictions of the one-parameter theory. 

We sincerely acknowledge many discussions with V. M. 
Agranovich, A. I. Larkin, Yu. E. Lozovik, D. E. Khme1'- 
nitskiy, and V. I. Yudson. We are especially grateful to K. B. 
Efetov and V. V. Lebedev for many constructive comments. 

APPENDIX 1 

Here we outline the RG transformations of the addi- 
tional vertices (8) and (9) in the linear approximation in the 
charges y and r. In this approximation the charges corre- 
sponding to the four types of vertices (8) and (9a)-(9c) are 
renormalized independently of one another, as will become 
clear below. We give the derivation of the RG equations only 
for the charges corresponding to vertices (8) and (9a). The 
RG equations for the charges I?,, and r,, differ only in an 
inessential way from the equations ~hown.~ ' ]  

To ensure renormalizability one should include a num- 
ber of auxiliary vertices in the functional in addition to (8) 
and (9a). In the case of gradientless vertex (8) the auxiliary 
vertices are given by (16). The renormalization of vertex (9a) 
(simply denoted Y, in this Appendix) generates auxiliary 
vertices with the structure 

where (kj j is a set of positive whole numbers whose sum is 
equal to n, while the densities of functionals (8) and (9a) for 
n = k are 

c p k = S p  (AQ) k ,  %=SP ( A Q )  ( V Q ) ' .  ('4.2) 

Let us consider the change in the following functional 
under the RG transformations: 

where F i s  the original functional (2) and Or - ' is the sum of 

all vertices (9a), (A. 1) and (8), (16) in which the number (n) of 
A matrices does not exceed a certain m. It is convenient to 
represent the density f of functional (A.3) in the form 

where f (r)=lCr,(r) is the density of the gradient part of the 
original functional (2), and 

0 ( r )  =0 . . . , Qm, (~1, . . . , p m ]  

is the density of the functional O[Q, A] [including the gra- 
dientless part of functional (2)] in implicit form. 

To carry out the RG transformations (13) one should 
write the field Q (r) in form (1 1) and expand the rapid fields 
Qo(r) in the independent variables W of Eq. (10). Then the 
evaluation of continuum integral (1 3) reduces to the problem 
of evaluating the functional averages with weight exp( - Fo) 
(these averages are denoted below by the symbol ( . . . ),), 
where 

is the part of functional (2) that is quadratic in Wand does 
not contain the slow variable Z)(r) [Eq. (12)l. We note that 
upon substitution (10) the Jacobian of the change of variable 
from Qo(r) to W(r) in integral (13) is equal to unity in the 
replica limit N = 0. Here we are discussing the RG transfor- 
mations only in this limit. 

Evaluations in the one-loop (linear in t ) approximation 
should be done by expanding functional (A.3) to terms of 
second order in W. Here the contribution to the renormal- 
ized functional 3 describing the slow fluctuations is given by 
the following expression: 

Here we have made use of the fact that upon explicit separa- 
tion of the fact and slow fields functional (A.3) decomposes 
into four parts: 

5=E0+50+51+52, (-4.6) 

where 3, is equivalent to the functional 3 in terms of the 
slow variables Z), and 8, contains 2 - j gradients of the fast 
variable W. In (A.5) allowance is made for the fact that F l r O  
in the approximation to second order in Wif the gauge of the 
matrix A$, is chosen such that its block diagonal elements 
are equal to zero: A" = A2' = 0. lo''' Here A = VUU + is the 
matrix in terms of which the gradients of the slow field are 
expressed: vZ) = U+[A, A]U. All the expressions simplify 
considerably in this gauge since (A, A) = 0. 

The density of functional O after expansion to second 
order in W is represented in the form 

n 
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Here the superscripts (1) and (2) indicate the number of W 
matrices in the given variation, and the subscripts j = 0 or 
j = 2 on the variation S$ gives the number of matrices A in it 
[2 - j is the number of gradients of the fast variable accord- 
ing to classification (A.6)]: 

6(')(pn=n Sp PnW, P=Ag, 
(A.9) 

(6(l)$.) '=-4z Ep PkWPn-kA2+2 Sp [ W .  A'] Pn, 
k= 0 (A. 10) 

(6"'+,) r=-4 ~p p h ~ ~ ' w p n - h - '  A2 

+2z Sp PkWPn-k[ W ,  A'] +Sp P n { W ,  A)'. 

The usual RG equation (5) is obtained by evaluating the 
average (F2)0 instead of (A.6). Evaluating this average in the 
usual way (see Refs. 5 and 18) together with average (A.6), we 
find after substituting expressions (A.7)-(A.lO) into these 
averages that Eq. (5) becomes 

(A. 11) 

The bare values of the I9 terms in (A. 11) are small since y and 
I' are small. Therefore, in the initial stage of the RG one can 
as before use Eq. (5) instead of (A. 11). Then the RG equa- 
tions for the function I9 = I9i -I, obtained from (A.6) when 
(A.7)-(A. 10) are taken into account becomes linear with re- 
spect to the variable T [see formulas (18) and (21)] and as- 
sumes the form (in the replica limit N = 0): 

+ (n-k)  k 
a2a 

( ~ n - ~ l n - 2 k l )  I}. 
d q , k  apn-k 

Illustrative formula (14) given in the main text is obtained 
from the first line of formula (A. 12) ifjust the a, vertex (8) is 
substituted in instead of the functional. 

For relatively small n it is convenient to seek the solu- 
tion of equations (A. 12) after expressing the functional O 
explicitly in the form of a sum of all the vertices (8), (9a), (1 6), 
and (A. 1). In this case Eq. (A. 12) breaks up (in the linear 
approximation under consideration) into independent sys- 
tems of ordinary linear differential equations for the charges 
y, !k~ l  and rLk1J. The first of these is Eq. (17) in the main text, 
and the second is written symbolically as 

dE/d.r=~("'F, , .  (A. 13) 

Here F, = I?, -', where r, is the vector with components 
I'Lk1 1, with 

Matrices C(") and D(") are found directly by substituting 
O in the form of a sum of all vertices containing n matrices A 
in Eq. (A.12). For n = 1 we have for these "matrices" 
~ ( 1 )  = ~ ( 1 )  = 0. 

For n = 2 the density 8 of functional is 

e = ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ ~ + r ~ ~ ~ + r ~ ~ ~ ~ ~ ~  
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(A. 12) 

and the matrices D'2' and C(2' coincide: 

(A. 14) 

For n = 3 the density of functional O is 

~ = Y ~ ~ P ~ + Y ~ ~ ~ ~ ~ ~ + Y ~ ~ ~  (Q) 3+r3~3+r21$2~l  

and the dimensionality of matrices C'3' and D(3) do not coin- 
cide. If the components of the vector r are chosen in the 
form ( r 3 ,  r2, + r12, r l l l ,  rZ1 - r I2 ) ,  then 

(A. 15) 

and the matrix C(3' is the 3 x 3 matrix on the upper left-hand 
corner of the matrix D'3'. 

One is readily convinced by a direct calculation that the 
largest eigenvalues of matrices (A.14) and (A.15) are de- 
scribed by formula (19). Here all the eigenvalues of the ma- 
trix D'~ '  are integers, and the additional (in comparison with 
the matrix C(3)) eigenvalue is negative. These regularities per- 
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sist at larger n as well: all the eigenvalues of the matrix C(") 
are integers, this matrix being a diagonal block of the matrix 
D'"), and the additional eigenvalues of the latter are nega- 

Thus the RG equations (17) and (A.13) for vectors y 
and r agree to within irrelevant combinations of auxiliary 
charges J?!41. 

Law (19) for the largest eigenvalue of the matrix C(") 
was checked by direct calculation all the way up to n = 7 
(6'' is a 15 x 15 matrix). We shall show5' that the asymptotic 
behavior of the largest eigenvalue of the matrix D(") (or C'") ) 
for n) 1 is also described by A,,, -n2. 

We write functional O as a sum of gradient vertices (9a) 
and (A.1) each containing n matrices A, and we write the 
density of the functional in the form 

x r ( x ; x n , x i  . . . . ,  ~i)+(~n)(~(~i)...~.(~~)8i.,,i. 
n-16xr<l 

(A. 16) 

Here the sets of variables ( $, ) and ( pk ) (1 <k<n) (A.2) have 
been replaced by functions $(x,) and g, (xi) of the discrete 
parameter 

x= kln, (A. 17) 

which runs over values from n-' to 1. The discrete set of 
charges rLk1) has been written as a function 
r(7; x0, x,, . . . ,x,) which is specified at a discrete set of 
points (xi ), where I is a rather large On)  fixed number that 
is formally independent of n, since the condition 2. kj = n is 
taken into account by the Kronecker delta in (A. 16). 

The interval between adjacent values of the discrete 
variable xi is Ax = l/n. For n) 1 the sum over xi can be 
replaced by an integral: 

I 

(A. 18) 

Here the Kronecker delta goes over to the S function: 

(A. 19) 

As a result, the density of the functional [Eq. (A. 16)] is now 
written 

where the functional 8 * does not depend explicitly on n. 
Expression (A.21) should be substituted into (A.12) 

(where the last terms in every line, which do not conserve n, 
have been discarded), which must also be converted from the 
discrete to the continuous description. Here the partial de- 
rivatives in (A. 12) go over to the vibrational derivatives in 
accordance with the rules 

80 1 a0 d0 1 60 -+-- + - -  

89, n 6p(x) ' alp, n 6$(x) ' 
(A.21) 

the correctness of which can be readily checked by compar- 
ing the formulas obtained by directly taking the derivatives 
6 /6g, (or 6 /a$) of (A.20) or by evaluating the corresponding 
partial derivative of (A. 16) and then passing to the contin- 
uum limit using (A. 17)-(A. 19). 

As a result, Eq. (A. 12) is transformed into the following 
functional equation: 

(Here we have explicitly written out the terms obtained by 
transforming the second and third lines of Eq. (A. 12); analo- 
gous terms are obtained by transforming the first and fourth 
lines.) This equation can be written symbolically as 

-dO*jd~=n'G(rp, I$), 

where the functional G does not depend on n. It follows that 
8 * (and hence r) does not depend on n2r, i.e., all the eigen- 
values are proportional to n2. Taken together with the direct 
calculations for n (7, this proves formula ( 19). 

We note that the n2 dependence is of a simple combina- 
tional origin: the order of magnitude of the relevant terms in 
(A. 12) is determined by the number of permutations (C  
-n2) of the two Wmatrices in the functional On .  The above 
proof demonstrate that in the limit n) 1 Eq. (A. 12) is homo- 
geneous in n, so that its eigenvalues have the same order of 
magnitude. These same combinatorial arguments are used 
below to estimate the n dependence of the contributions of 
higher orders in I' and i. 

APPENDIX 2 

Here we show that the contributions nonlinear in r and 
the rnultiloop contributions (nonlinear in i ) to the renormal- 
ized functional F grow no faster than the linear contribu- 
tion for n-tw , at least in the initial stage of the RG transfor- 
mations. (If this were not the case, dependence (19) and (20), 
which were found in the linear approximation, would not 
apply even for r ,  i(1). 

The nonlinear contribution of orders (in r) to the RG 
equation is given by the following averages: 

The gradientless vertices (8) and (16) do not give a nonlinear 
(logarithmic for d = 2) contribution to the RG equation, 
since 0, and 0, contain V W [see (A.7)-(A. lo)]. 

Let us estimate the n dependence of the terms in (A.23). 
In 0, one should choose the two matrices W from an expres- 
sion of the type [AQ (1 + W)]" , which can be done in C 2, 
ways-hence the proportionality to n2. In O, (the explicit 
form of which is not given here), which contains one gradient 
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of the slow (G ) variable and one gradient of the fast ( W) vari- 
able, one should choose only one matrix Win an expression 
of this type, while the second matrix W arises in the expan- 
sion of VQ, without any combinational coefficient; conse- 
quently, 0, is proportional to n. Finally, in O,, which con- 
tains two gradients of the fast variable, there is no 
combinatorial freedom in the order in which the two W ma- 
trices are taken, i.e., no dependence on n arises. Therefore, 
the first term in (A.23) does not give rise to an important 
dependence on n, while the second and third give corrections 
to A,,, that go as n2rs  - ' and can be neglected as long as 
r(1. All these qualitative arguments can be confirmed by a 
procedure analogous to the derivation of functional equa- 
tions (A.22) in Appendix l .  

The multiloop corrections (in the approximation linear 
in r) stem from the following averages (j)O): 

(Explicit expressions for FA and Fl are easily obtained with 
the aid of parametrization (10); they are given up to terms 
0 ( W4) in Ref. 1 1 .) Here the indices 0, 1, 2 correspond to clas- 
sifications (A.6); FA contains not less than four, and Fl not 
less than three, matrices W. In actually evaluating the dia- 
grams it is convenient to introduce explicitly the invariant 
counterterms for separating the fast variables from the slow 
and to use dimensional regularization of the ultraviolet di- 
vergences in accordance with the scheme of Ref. 10. 

Examples of multiloop diagrams are given in Fig. 1. The 
important dependence on n is determined by the number of 
permutations of the W matrices in vertex 0, -, : this is the 
number C T;; - - , of ways in which an expression of de- 
gree m - j in W can be obtained from [AG (1 + W + W2/ 
2 + W3/4 + . . . ) I n ,  where m is the number of lines leaving 
the vertex andj  is the number of gradients of the fast variable 
in the vertex; for n>m this number varies as nm - j .  

Let us consider the diagrams corresponding to the first 
term in (A.24) [this is the only term which contributes to the 
renormalized gradientless vertices (8)]. At a fixed number m 
of lines leaving vertex 0,, the smallest number of loops (i.e., 
the minimum possible power of the small parameter t ) ,  
I *m/2, is for diagrams of the type shown in Fig. la: they 
are proportional to nm 1 ,"I2 - '. These diagrams, however, do 
not contribute to the Gell-Mann-Low equation. The reason 
is that in evaluating the I-loop contribution to the functionp 
( a ') the bare values to and r0 of the charges in the dia- 
gram should be expressed in terms of the physical values of 
these charges to an accuracy - ? A p 2 .  Then the diagrams of 
type a cancel with powers of diagrams having a smaller num- 
ber of loops. This also applies to diagrams of type b and in 
general to all diagrams which "repeat" diagrams of lower 
orders (i.e., diagrams which can be cut into disconnected 
parts at a single junction point). 

Since diagrams of type b need not be taken into account, 
the minimum possible number of loops at a fixed number m 
of lines leaving the 0, vertex is I = m - 1. Such diagrams, 
proportional to n2(ni )m - ', are exhausted by the types shown 
in parts c, d, and e of Fig. 1 (in part e with any number of 

FIG. 1 .  Examples of multiloop diagrams: the filled and open squares, 
triangles, and circles denote vertices a,( F,), @,( F,),  O,(F;), respectively 
(see Appendix 2). 

vertices FA; it is essential only that any two adjacent FA 
vertices can be drawn together along a single line; then one 
vertex and one line vanish, i.e., the number of loops does not 
change). However, even these diagrams do not contribute to 
the Gell-Mann-Low equations. 

To see this, let us first consider the momentum struc- 
ture of diagram c. The vertex F; contains two gradients of 
the vast variable. Symmetrizing the corresponding scalar 
product by a relabeling of the momenta and using the identi- 

we see that the momentum structure reduces to the standard 
structure 

Consequently, evaluating this diagram with the aid of di- 
mensional reg~larization'~~" does not give rise to any impor- 
tant dependence on d: this diagram is proportional to E-'  

(where w = 2 - d > 0) and, just as in a and b, should cancel 
with the contribution from diagrams of lower orders (since 
no term a E - ' ,  the only one that can contribute to the func- 
tion p, arises here). 

Analogous arguments can also be made for diagrams d 
and e. Let us arrange the momenta appearing in the last 
vertex FA as in Fig. Id. Here these momenta appear in other 
parts of the diagram only in the form of a sum. Therefore, 
any linear substitution of the momentum variables which 
leaves the sum unchanged will not affect the other vertices of 
the diagram. It is easy to see that such substitutions will 
permit one to symmetrize the scalar product of momenta at 
the vertex FA so as to cancel (2 k)2 in the denominator of 

767 Sov. Phys. JETP 61 (4), April 1985 V. E. Kvartsov and I. V. Lerner 767 



diagram d after using identity (A.25). As a result, the mo- 
mentum structure of diagram d reduces to that of diagram c. 
By repeating this procedure the required number of times, 
one can also reduce any diagram of type e to form c. (These 
diagrams are contractible not only in the graphical but also 
in an analytical sense!) Thus, like diagrams c, all diagrams of 
types d and e give no contribution to the Gell-Mann-Low 
equation. 

Diagrams of type f, in which the vertices FA are joined 
by more than two lines, are not trivially reducible. However, 
for a fixed number of lines leaving the 0, vertex, these dia- 
grams contain at least one extra loop (in comparison with 
diagrams c-e): for m(n they are proportional to 
nm ?" - ' = n2(ni )" - 2. Consequently, the contribution of 
these diagrams to the RG equations for charges with indices 
n 2 i - I ,  for which the single-loop result (20) gives an un- 
bounded growth, can be neglected in comparison with the 
single-loop contribution. We stress that the number of such 
diagrams is finite (i.e., a nonanalytic function f (ni)  cannot 
arise), since for a large number of loops (m>n) the expression 
em+,, ?"' goestozeroforfixedn-t-'. 

Diagrams g and h, which correspond to the second term 
in (A.24), are outwardly analogous to diagrams c and d, but 
are nevertheless known to be reducible. This is because the 
average over angles of the gradients of the slow variables 
appearing here in different vertices gives rise to a factor d -' 
whose expansion contains all powers of E = 2 - d.  But be- 
cause the n dependence of vertex @, for m(n is nm- ' (see 
above), the contribution of these diagrams to the RG equa- 
tions goes as n2(ni)"' - i. Finally, it is easy to see that the 
most dangerous diagrams, which correspond to the third 
and fourth terms in (A.24), are proportional to n2(ni )" - ? 
and n2(ni)"' - 1 3, respectively, i.e., their contribution to the 
RG equations for charges with indices n -i - ' is also negligi- 
ble. 

The RG equations are nevertheless nonlinear even 
when corrections (A.23) and (A.24) are neglected. The non- 
linearity is due to the contribution of charges r to the RG 
equation for i (A. 11); allowance for this contribution makes 
parametrization (18) inapplicable. Because the bare value of 
r is small, this contribution is negligible for i&4 .  It can, 
however, become relevant even at small r, making RG equa- 
tion (6)  for i formally inapplicable. 

"We are considering the replica limit (N = 0) of the a model obtained bv 
integrating over th; intermediate fekion fid~ds.~ The replica limit of thk 
a model obtained bv integrating over the boson field~~, ' .~ or the super- 
symmetry (T modelio." describethe same initial physical model. ~ i l  of 
our results would remain unchanged if an alternative a-model descrip- 
tion were chosen. 

2'The coefficients in vertices (8) and (9) are written in such a way that for 
the two-dimensional case (d = 2) the charges y and r are dimensionless 
and have a normal scaling dimensionality of zero. 

,'The vertices obtained on expanding to higher powers of k are unimpor- 
tant: their normal scale dimensionality at d = 2 is negative. Physically, 
the difference between the o and k expansions stems from the fact that in 
elastic scattering, which leads to quantum interference, the frequency 
transfer is conserved but the momentum transfer is not. 

4'The coefficient matrix of the RG equations for charges T,, (9c) has a 
higher dimensionality than D'"' for n>4, but it contains Dl"' (and conse- 
quently, C'") ) as a diagonal block, with the additional eigenvalues having 
a negative real part. For charges r,, (9b) the RG equations coincide for 
a = 0 with the equations for the charges T,, (9c); for a2 = 1 the law for 
the maximum eigenvalue A,, corresponding to r,, differs unimpor- 
tantly from (20), but A,, - n2 for n> 1. 

5'We are indebted to V. V. Lebedev for suggesting the idea of the proof. 
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