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We consider the spectrum of long-wavelength excitons and optical phonons in crystals with one- 
dimensional disorder (crystals such as ZnS with alternating layers having the sphalerite and 
wurzite structures). We find the spectral density and density of states of the dipole-active excita- 
tions for crystals with this sort of one-dimensional disorder and with a Coulomb dipole-dipole 
interaction. We show that because the excitation spectrum is nonanalytic, the exponential factor 
in the asymptotic density of statesp(~)-exp( - c, I E ~ )  at frequencies in the fluctuation region 
differs from both the corresponding factor in the asymptotic spectral density 
d ( ~ , k  ) -exp( - c , I E ~ ~ ' ~ )  and the asymptotic behavior ofp(a) in the short-range interaction prob- 
lem (E = w - uo is the distance from the edge of the continuum). 

Zinc sulfide crystals exhibit plane stacking faults due to 
coexistence of the two structural modifications of ZnS- 
sphalerite and wurzite. Sphalerite and wurzite layers orient- 
ed perpendicular to the hexagonal axis can alternate in a 
disordered manner. In this case there is one-dimensional dis- 
order along a preferred axis.' One-dimensional disorder of 
this sort arises in many other systems as 

The experimental study of the excitonic reflection spec- 
tra in ZnS crystals containing stacking faults and the theo- 
retical interpretation of these spectra6 have shown that the 
observed shift and inhomogeneous broadening of the exciton 
line are described well by a model with one-dimensional dis- 
order. 

In the present study we consider the energy spectrum of 
long-wavelength dipole-active elementary excitations (exci- 
tons and optical phonons) in uniaxial crystals with one-di- 
mensional disorder in cases where the Coulomb dipole-di- 
pole interaction is important, leading to nonanalyticity of 
the spectrum. An additional feature of this problem is that 
the dipole-active excitations are described by a vector equa- 
tion for the dipole moment density, unlike the scalar prob- 
lems usually considered.' 

We calculate the spectral density and density of states of 
the dipole-active excitations. In a number of cases the prob- 
lem of evaluating the spectral density can be reduced to a 
scalar problem with a short-range interaction.' In contrast 
to Ref. 8, however, for a definite sign of the dispersion of the 
branches the leading contribution to the asymptotic density 
of states in the fluctuation region is from the long-wave- 
length states of the nonanalytic region of the spectrum. In 
this case one obtains an asymptotic density of states p ( ~ )  
which differs from that for the standard one-dimensional 

Specifically, 

Here E = w - m0 is the distance from the edge of the contin- 
uum. We also find that the exponential factor in the asymp- 
totic density of states (1) has a different energy dependence 
from that of the asymptotic spectral density d ( ~ , k ,  = 0) 
found in this study: 

The phenomenological relations in this paper apply 
specifically to the optical phonon spectrum in a crystal of the 
ZnS type with stacking faults. 

1. FORMULATION OF THE PROBLEM 

In an ideal crystal the long-wavelength dipole-active 
excitations are described by Maxwell's equations together 
with the material equations of the medium. After E and D 
are eliminated from these equations, the equation for the 
polarization P becomes 

where the second and third terms in the braces give the sepa- 
rate contributions due to the longitudinal and transverse 
electric fields. 

To take the dispersion explicitly into account we can 
expand the functionxi '(w,k), which is analytic ink (see Ref. 
10, p. 47), in a series. To terms of second order we have 

x,;-' (0 ,  k )  =x,,-' ( 0 )  +iytji ( 0 )  ki+ailim (a) k,k,. (4) 

This approach has certain advantages over the conventional 
approach of writing an equation for E (or D) and expanding 
the tensor E~ (w,k) [or ~i '(w,k)] in a series in k, since expan- 
sion (4) is valid for natural waves of arbitrary polarization. 

In a crystal with disorder it is convenient to separate 
x i  ' into an average value ( x i  ') and a fluctuating part 
S X ~  '. A crystal described by Eq. (3) with ( x i  ') substituted- 
in will henceforth be called a virtual crystal. In the case of 
one-dimensional disorder the fluctuations SX-' are func- 
tions of z and z'. In the Fourier representation we have 

6y-' (k , ,  k,') = dz e r p  (-ik,z) bX-' (z, z') exp (ih,'zf) dz' 

d ( E ,  k,=O) =arI E 1 ' "  exp (-a21 E lah). (2) The fluctuations ax-', likex-I itself, fall off rapidly as 
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functions of the difference z - z'. In the long-wavelength 
limit (k,d( 1, k ;d(l, whered is the distance between crystal 
planes) the integrand of the inner integral in (5) can therefore 
be expanded in powers of (k, + k :). In the case of small 
fluctuations SX-' it is sufficient to keep only the term of 
zeroth-order in (k, + k ;) in the expansion of the inner inte- 
gral in (5). In the outer integral, however, the argument of 
the exponential is large for any k, or k i. This exponential 
must therefore be taken into account exactly. 

Substituting expression (5) for SX- ' in (3), transforming 
to a coordinate representation in z, and neglecting retarda- 
tion, we obtain an equation for the natural waves in a crystal 
with one-dimensional disorder: 

where the operator 

dk, kikj 
L , ~  ( z - z ~ )  =j  -- exp{ ik , ( z -z ' ) ) ,  

2n kZ  

like the operator ki k,/k * in k space, acts on the vector P to 
extract its irrotational part; k, = (k, ,k, ), k, = - id /dz. 

With an eye toward applications to the ZnS crystal, let 
us consider the case in which the fluctuations, just as in the 
virtual crystal, are characterized by a uniaxial symmetry, 
although a different symmetry from that of the virtual crys- 
tal. Let us first consider the spectrum of the virtual crystal 
and then take fluctuations into account. 

The spectrum of the virtual crystal in the small-k limit 
(i.e., without allowance for spatial dispersion) has the follow- 
ing properties. The frequency of a wave polarized perpendic- 
ular to k, in the (x, y) plane (the s wave) is determined by the 
equation 

xl-' ( 0 )  -%-' ( 0 )  =xy,-' ( 0 )  =o. (7) 

The solution of system (6 )  for a wave polarized in the plane 
passing through k, and the z axis (a wave ofp polarization) is 
given for different relationships between k, and k, by the 
roots of the following equations: 

for k, 4k1 

xi,-' (0 )  EX,,-' ( 0 )  =o; 
Pl-k, P=(O, 0 ,  P,), (84  

xl-' ( 0 )  +4n=0; Pllk, 

for k, %k, 

xll-' ( 0 )  +4n=0; 

Pllk; P= (0 ,  0 ,  P,). 

Thus the frequency of ap-polarized wave depends as k 4  on 

FIG. 1. The function w(k,)  in the long-wavelength region of the spectrum: 
1) nonanalyticity region, 2) spatial dispersion region. 

the relationship between k, and k, (on the direction of k), 
i.e., has a nonanalytic dependence1' on k. In the intermediate 
region k, k, the frequencies determined from Eqs. (8) and 
(9) are joined by smooth curves (with no intersections). 

For the sake of definiteness we shall consider the case 
when the anisotropy of the short-range interaction is small: 
/x- '(w) - X- '(o)lg 1. Then the branches of the spectrum 
join the frequencies w, and w,, which are roots of Eqs. (8a) 
and (9a), and also Z, and Z,, the roots of Eqs. (8b) and (9b). 
Figure 1 shows the spectrum o(k,) for the case in which the 
signs of the constants which determine the dispersion of the 
branch in the nonanalyticity region and in the short-wave- 
length region coincide; it is seen that the dimension of the 
nonanalyticity region of the spectrum o(k, ) is proportional 
to k, . 

Let us turn to a calculation of the spectral density and 
density of states of the excitations under study. 

2. LONG-WAVELENGTH EDGE OF THE NONANALYTICITY 
REGION (k,<k,) 

The spectrum near o, for a uniaxial virtual crystal is 
given to second order in k, /k, 4 1 and k,d( 1 by 

1 k," 1 
a-00 = -Ao7 f - Boklz, 

2 k ,  2 (10) 

where 

In the region under study we have P, (P,, and so we find 
from (6) with allowance for (10) 

+ (F) -' fixl,-' ( Z )  pz ( z )  =o. 

For considering long-wavelength states we may treat the 
fluctuations S X , ~  '(z) as &correlated7: 

( a x l , - l / a ~ )  -2<sxll-i ( z )  P X ~ , - ~  ( z ' )  >=D,,G (z - z ' )  . (12) 

Equation (1 1) with correlator (12) has the form of the 
Schrodinger equation with a "white noise" potential; this 
problem was studied in Refs. 8 and 9. As in Ref. 8, Eq. (10) 
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and correlator (1 1) are rendered simultaneously dimension- 
less by introducing a dimensionless frequency shift 
w' = (w - wc)/no and dimensionless coordinate z' = z/2,, 
where 

Q 0 -Dl,':";'" - k '1" 
.L (13) 

is the scale of the decay of the spectral density and density of 
states, and 

L,=D,;"A o ' ~ ~ ~ a  (14) 

is the scale of the localization length near the frequency 
w, = w, + P , k  : which determines the long-wavelength 
edge of the spectrum for fixed k,. The spectral density 
&(wl,k :) for arbitrary w' and k : (k : = k, I,) was found nu- 
merically by Halperin,' who also established the asymptotic 
form of &(wf,k :). In particular, for k : = 0 and o' > a, 

and in the fluctuation region 

d ( w f ,  0 )  =2'"51) w ' / l h  exp [ - 4 / , 1 2 ~ f ) ' " ] .  (15.2) 

In a crystal with one-dimensional disorder it is conven- 
ient to introduce a density of states with fixed k,. The 
asymptotic form of this function is the same as that in the 
standard one-dimensional with the scale S1, from 
(13) substituted-in: 

We see from (13) and (16) that because the spectrum is 
nonanalytic, the characteristic scale of the decay of the den- 
sity of states with fixed k depends on k, . The total density of 
states p(w) is given as the integral of (16) over all k,. At a 
fixed distance Iw - w,l from the edge of the spectrum, for 
small values of k, the region of nonanalyticity and, conse- 
quently, the contribution of these k, to p(w) will also be 
small. At large k, the long-wavelength edge moves away 
from w,, and this decreases the contribution of large k, to 
p(w) at this frequency. Therefore, the integral of (16) over k, 
can be evaluated by the method of steepest descent: 

This expression differs from the asymptotic form ofp(w) 
in the standard one-dimensional problem because of certain 
aspects of the behavior of&) in the nonanalytic spectrum of 
the virtual crystal (for o 2 w,). In fact, because of the nonan- 
alyticity, the phase volume in k space which contributes to 
p(o) near w, is smaller than it would be in an analytic spec- 
trum: Eq. (10) gives a small distance (0 - w,) from the ddge 
not only fork of small modulus but also in a narrow interval 
of angles 6 in k space about 6 = r / 2  (i.e., a small ratio k, / 
k, ). Therefore, the singularity inp(w) turns out to be weaker 
than the Van Hove singularity near the edge of the analytic 
spectrum (p(w) a (w - w,)"~ in the three-dimensional case) 
and is of the form p a (w - w,). The slower growth of the 

density of states of the virtual crystal in the region o > w, 
leads to a slower decay of the density of states in the fluctu- 
ation region. 

The asymptotic density of states near the branch joining 
the roots of Eqs. (8b) and (9b) differs from (17) (except in the 
case of a hexagonal virtual crystal) because the dispersion of 
the branch is anisotropic in the transverse direction. Specifi- 
cally, in the expression for the spectrum of this branch 

the quantity B, = B,(k,/lk, 1 )  depends on the direction of 
k,. Integration over the directions of k, by the method of 
steepest descent gives 

where Dl is given by a relation analogous to (12). 
We note that the presence of other, non-one-dimension- 

a1 scattering mechanisms in real crystals (e.g., scattering by 
point defects or scattering with emission of acoustic phon- 
ons) should eliminate the one-dimensional localization of ex- 
citations. Nevertheless, if the damping r due to these mech- 
anisms is sufficiently small the "one-dimensional" 
asymptotic forms obtained above for the spectral density 
and density of states are valid. In particular, asymptotic 
form (1 6) obtains for r g n , .  

3. CONTINUUM REGION 

The spectral density near the flat part of spectrum, i.e., 
in the region where k, (k, and w = 0, + hBlk : (see Fig. 1) 
can be evaluated in the limit k, -0. Finding the spectrum of 
the virtual crystal from Eq. (6) to terms of 0 (k 2, and drop- 
ping the terms containing the small quantity k,, one can 
reduce the problem of evaluating the spectral density to the 
problem of short-range forces. The corresponding scales for 
the decay of the spectral density 0, and localization length 1, 
turn out to be different here than in (13) and (14) 

Q1=D "c;'" 1 -D;'" C,", I 5 1- (19) 

where 

In the present limit k, -4 the frequency w, is doubly degen- 
erate. Here the spectral densities of thep and s waves coin- 
cide: &,., (w,k, ) = dyY (w,k, ). 

At finite k, the nonanalytic term in Eq. (6) begins to 
have an influence on thep wave. In this case the spectrum of 
thep wave in the virtual crystal is of the form 

To determine the boundaries within which one can use the 
results of the short-range problem, one should estimate the 
nonanalyticity correction to the frequency of the localized 
state. To first order this correction is 
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For 

correction (21) is small compared to 10, - ol ,  and 
d,.. (w,k, = 0) is therefore described by Halperin's numeri- 
cal solution with parameters (19) at all frequencies except, 
first, in the narrow interval 

in which spectrum (20) is substantially nonparabolic and, 
second, in the far asymptotic reaches of the fluctuation re- 
gion, where the exponentially decaying quantity p(w,k, ) be- 
comes smaller than the unperturbed density of states in the 
nonanalyticity region. 

At large k, , when 

D, (A,c,) - l ~ k , ~ ~ , " ‘ ~ ; ' "  c;"" (24) 

the nonparabolicity of the spectrum becomes important at 
all frequencies, corresponding to both the diffusion and fluc- 
tuation regions. Thus in this case the problem reduces to 
finding the spectral density for a system with short-range 
forces and a nonparabolic spectrum. We shall not consider 
this problem here. 

It can be shown, using spectrum (20), that in the region 

a - a , ~ Q 1  (25) 

d(w,k,) can be evaluated for all k, by perturbation theory. 
At still greater values 

the minimum value of the derivative dw/dk, of spectrum 
(20) increases; near the frequency w, there is no longer even 
an approximately flat part of the spectrum, and perturbation 
theory applies at all frequencies. 

It should be noted that all these values of k are nonethe- 
less small compared to the characteristic values of k, for the 
localized states, which are of the order of the localization 
length I ; '. Therefore, all the states considered above are 
actually situated in frequency near w,. 

Excitations whose frequency w lies in the interval 
w, < w < w, (when k, z k, ) at a sufficient distance from the 
frequencies w, and w, corresponding to the flat parts of the 
spectrum are weakly scattered by fluctuations ax-'. There- 
fore, the spectral density tensor dPPij (w,k) expressed in terms 
of the single-particle polarization Green function differs lit- 
tle from the spectral density of the virtual crystal and can be 
evaluated by perturbation theory. 

In an analogous way, the density of states to within par- 
ametrically small corrections is the same as the unperturbed 
density of states of the virtual crystal. This is also true at 
frequencies near w,, since the flat parts of the spectrum for 
different k, fall at different values of the frequency 
w = w, + tB,k : and therefore give only a small correction 
to the total density of states. 

4. OPTICAL PHONONS IN ZnS CRYSTALS WITH STACKING 
FAULTS 

In a ZnS crystal with stacking faults there is a random 
alternation of layers having cubic and hexagonal environ- 

ments (i.e., having the sphalerite and wurzite structures). 
Such a crystal can be characterized by the fraction c of hex- 
agonal layers arranged in an uncorrelated manner.6 The 
stackings of the three nearest crystalline planes in the spha- 
lerite and wurzite crystals are the same. Differences appear 
only for stackings of four or more planes. Consequently, the 
frequencies of optical phonons in the nearest-neighbor ap- 
proximation are the same in cubic and hexagonal ZnS; a 
difference arises only when the next nearest neighbors are 
taken into account, and it is therefore small. 

Accordingly, the susceptibilities of pure cubic (x")) 
and pure hexagonal ( x ( ~  ) ) crystals are 

where Ze is the ion charge, ,u is the reduced mass of the ZnS 
unit cell, w, is the frequency of the TO phonon in cubic ZnS; 
A1 9 Ail 4 4 .  

The invese susceptibility of the virtual crystal is given 
by the average ofx- '  over the modifications: 

and the quantities D, and D appearing in (12)-(26) are now 

D l ,  ,l=c(l-c) A,, lld/4a2, (29) 

where d is the distance between crystalline planes of the 
same sublattice. 

It is a peculiarity of ZnS that the nonanalyticity region, 
which is absent in one of the pure components (the cubic), is 
formed only on account of an admixture of the other compo- 
nent. The dispersion of the branch in the nonanalyticity re- 
gion 

a I - aO=~(AL-A1l )  / 2 a t < a t  

is parametrically small by virtue of the small difference in 
the eigenfrequencies of the initial pure components. 

The presence of stacking faults is manifested experi- 
mentally in a broadening of the Raman line, for example. 
Upon excitation of a phonon of s polarization, the fluctu- 
ation contribution to the Raman linewidth should, accord- 
ing to (19) and (29), depend on the concentration of defects in 
a manner characteristic of one-dimensional disorder: 
r, ~ $ 2 ,  = [ ~ ( l  - c ) ] ~ ' ~ .  For a phonon of p polarization the 
nonanalyticity of the spectrum causes the linewidth to de- 
pend substantially on the angle 8 between the z axis and the 
direction of the k momentum transferred to the phonon. For 
8 #O,n-/2 perturbation theory calculations give 

sin 0 rp = +A,,'=] , r p K a i - a o .  

(30) 
The unusual density dependence of r, arises because the 
density c of the hexagonal layers determines both the corre- 
lator of the fluctuations, i.e., (29), and the dispersion of the 
branch in the nonanalyticity region. 
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Estimates of the maximum fluctuational linewidth of 
the optical phonon (for c = 0.5) give r, z 1 cm-', a value 
comparable to the anharmonic linewidth in these crystals. 

"Nonanalytic behavior of w(k ) was first found in Ref. 11 for the phonon 
spectrum of ideal diatomic ionic crystals. For the virtual crystal under 
study the nonanalyticity is due to the anisotropy of the initial compo- 
nents. 

'A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crys- 
tals, Wiley, New York (1966). 

*J. H. C. Hogg and W. F. Duffin, Phys. Status Solidi 18, 755 (1966). 
3A. V. Turik and A. I. Chernobabov, Fiz. Tverd. Tela (Leningrad) 23, 
1861 (1981) [Sov. Phys. Solid State 23, 1088 (1981)l. 

40. P. Aleshko-Ozhevskii, Pis'ma Zh. Eksp. Teor. Fiz. 35, 119 (1982) 
[JETP Lett. 35, 144 (1982)l. 

'E. A. Vinogradov, A. N. Vtyurin, A. F. Goncharov, P. N. Zhizhin, I. S. 
Kabanov, V. F. Shabanov, Opt. Spektrosk. 52, 159 (1982) [Opt. Spec- 
trosc. (USSR) 52, 93 (1982)l. 

6A. Yu. Maslov and L. P. Suslina, Fiz. Tverd. Tela (Leningrad) 24, 3394 
(1982) [Sov. Phys. Solid State 24, 1928 (1982)l. 

'I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Vvedenie v Teoriyu 
Neuporyadochennykh Sistem [Introduction to the Theory of Disor- 
dered Systems], Nauka, Moscow (1982). 

'B. J. Halperin, Phys. Rev. 139, A104 (1965). 
9H. L. Frish and S. R. Lloyd, Phys. Rev. 120, 1179 (1960). 
'OV. M. Agranovich and V. L. Ginzburg, Kristallooptika s Uchetom Pros- 

transtvennoi Dispersii i Teoriya Eksitonov, Nauka, Moscow (1979) 
[Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed., Spring- 
er-Verlag, New York (1984)l. 

"I. G. Lang and U. S. Pashabekova, Fiz. Tverd. Tela (Leningrad) 6,3640 
(1964) [Sov. Phys. Solid State 6, 2913 (1965)l. 

Translated by Steve Torstveit 

750 Sov. Phys. JETP 61 (4), April 1985 lpatova eta/. 750 




