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A theory is proposed that enables one to study microphase layering in a melt of diblock copo- 
lymers with highly incompatible blocks. The structure of an isolated spherical domain (micelle) is 
studied. It is established that the interaction of micelles can be described by an electrostatic 
analogy. The interaction energy of two micelles is shown to have a minimum at a finite distance 
between them. Hence the transition to the microdomain state is of first order; at distances 
r(N 'IZa (N is the number of links in the polymer chain and a is the dimension of a single link) two 
micelles interact according to a Coulomb law; the equilibrium packing of spherical micelles is 
body-centered cubic; and the characteristic period of the microdomain structure is b -x ' /~N 'I3 
( x is a parameter characterizing the mutual repulsion of the blocks). Upon taking account of the 
results of Ref. 5, the complete phase diagram of the melt is constructed, with the regions indicated 
of existence of spherical, cylindrical, and lamellar microphases. 

1. INTRODUCTION 

A polymer chain is called a block copolymer if it con- 
sists of links of several types, with the links of each type 
collected into large-scale blocks (Fig. la). Solutions and 
melts of block copolymers have long attracted the attention 
of polymer specialists, owing to the ability of these systems 
to transform to a microlayered state. If the links of types A 
and B have a positive heat of mixing, then a tendency to 
layering arises. However, since the blocks A and B are linked 
into a single chain, layering can occur only on certain scales. 
Consequently a microdomain structure arises, which gives 
rise to many valuable properties of the system. The individ- 
ual domains can have the shape of plane layers (Fig. 2a), 
lamellar structure), of cylinders (Fig. 2b), or spheres (Fig. 
2c). The structures of the two latter types rise whenever the 
blocks A and B strongly differ in dimensions. 

The effects of layering in polymer mixtures are applied, 
e.g., in preparing composite materials with high resistance to 
cracking. On the other hand, they are sometimes undesira- 
ble, since the inhomogeneous structures that arise scatter 
light. Therefore the growing interest toward study of micro- 
domain structures in polymers is not amazing, both on the 
part of theoreticians1-lo and experimentalists."-l3 

However, despite the wealth of publications, the phys- 
ical properties of systems of block copolymers have not yet 
been studied enough theoretically. A number of the theoreti- 
cal studies on this problem have employed the Landau ex- 
pansion, which has restricted applicability. Thus, the results 
of Ref. 5, in which the phase diagram was constructed (Fig. 
3) of a melt of diblock copolymers (Fig. lb), are valid only in a 
small region near the critical point a = a, = 2.62, 
f = f, = 0.5. Here a is the characteristic interaction ener- 
gy per block (the exact definition will be given below), and f 
is the fraction of links of type A in the system. Consequently, 
the region a) 1 is not studied in this paper. Other 
have either employed ungrounded assumptions, or, beyond 
certain stages, they involve computer calculations. As a re- 

sult, even for the simplest system-a melt of diblock copo- 
lymers-many problems remain unelucidated. 

This study proposes a relatively simple, rigorously ana- 
lytical approach that enables one to study the equilibrium 
structure of a melt of diblock copolymers far from the criti- 
cal point where the interaction parameter a) 1. 

As is known,14 a polymer melt is a weakly fluctuating 
system to which one can apply the mean-field approxima- 
tion. In line with the approach of Liftshitz,15 one can sepa- 
rate the free energy Fof  the system into two components: an 
energy component arising from the interaction of links re- 
mote along the chain (or links of different chains), and a 
conformational component, which takes account of the con- 
nection of the links into polymer chains. The main difficulty 
is faced in calculating the conformational term (cf. the stud- 
ies on the theory of  globule^'"'^). We shall start analyzing 
this problem with studying the simplest case in which the A 
blocks are considerably shorter than the B blocks, and hence 
must form spherical domains during microlayering. Section 
2 will treat one such domain-an isolated spherical micelle. 
The next section will study the interaction of two micelles 
and establish an electrostatic analogy that describes this in- 
teraction. Section 4 will study the most stable structure hav- 
ing spherical domains, and will show that the transition to 
the microdomain state occurs jumpwise as a first-order tran- 
sition. Finally, Sec. 5 will treat transitions between micro- 
phases having different symmetry (with plane, cylindrical, 
and spherical domains). 

FIG. 1.  Triblock copolymer (a) and diblock copolymer (b); N, and N,  are 
the numbers of links of types A and B. 
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FIG. 2. Microdomain structures: lamellar (a), cylindrical (b), spherical (c). 

2. STRUCTURE OF AN ISOLATED SPHERICAL MICELLE 

Let us study a melt of diblock copolymers with a fixed 
number of links in the chain N = NA + NB (NA ) 1, NB > 1) 
and fixed fraction of links of type A, f = NA /N(1 (see Fig. 
lb). The mean square of the distance between the ends of the 
polymer chain without interaction is (R ') = 6Na2, where a 
is the effective radius of gyration of a single link. For the sake 
of definiteness, let us assume that the links of the two blocks 
(A and B ) have the same radii of gyration a. 

To good accuracy, we can consider the polymer melt to 
be in~om~ressible .~ Let us choose a system of units in which 
the volume per link is v = 1. Then the condition of incom- 
pressibility acquires the form 

Here @, (r) and @, (r) are the local concentrations of links of 
types A and B, whose mean values are 

Below we shall take the concentration to mean the concen- 
tration of links of type A: @ = a A .  

We can write the free energy of interaction of the links 
in the following forml4,l9: 

F < . ~ = ~ T  1 m A  (r) '3. (r)  d3r. 

FIG. 3. Phase diagram of a melt of diblock copolymers near the critical 
point a=xN f ( 1  - f )  = a, = 2.62, f = f, = 0.5 (according to Ref. 5): 
I-homogeneous phase, 2-body-centered-cubic phase, 3-hexagonal 
phase, 4-lamellar phase. 

Apart from inessential constant terms, using Eq. (2. l), we 
can represent Fin, in a more convenient form: 

(hereinafter we take the temperature T = 1). For most pairs 
of polymers the Flory parameter x is positive C;y = lo-,- 
lo-'). This corresponds to effective repulsion between the A 
and B links. 

For given spatial distributions @, (r) and @, (r), many 
ways exist of connecting the links into block copolymers. 
This is taken into account by the extra conformational term 
F,,, [@(r)], which reflects the polymer character of the prob- 
lem. Thus, the total free energy of the system is divided into 
two components. 

The first of these describes the system of separated, interact- 
ing links, and the second describes the system of noninter- 
acting links connected into polymer chains. We note that the 
quantity 5: aW6 plays the role of the Ginzburg param- 
eter G for the system being studied.'7918 In practice the con- 
dition aP6(1 is always fulfilled. Therefore we have G(1, 
and the separation in (2.3) is quantitatively regular. 

I f x  = 0, the links of both types are uniformly distribut- 
ed throughout the volume of the system. ASX increases, the 
contacts between the links of different types become ever less 
favorable. Therefore the melt will tend to layer into regions 
enriched in links of a single type. In the simplest case a single 
isolated spherical domain is formed, filled with links of type 
A (formation of a B domain is less favorable, since even in a 
homogeneous melt the fraction of B linksis close to unity). 
The structure of this spherical domain (or micelle) is shown 
in Fig. 4. It includes: 1) a nucleus of radius R >RA filled with 
A blocks (R, = N:l2a is the unperturbed radius of gyration 
of an A block); 2) a surface layer of thickness A(RA , in which 
the junctions of the A and B blocks are concentrated; 3) a 
coat of B blocks surrounding the nucleus." Correspondingly 
we shall divide the free energy of the micelle into three com- 
ponents-internal, surface and external: F = F, + F, + F,. 

The A blocks are seemingly attached at one end to the 
surface of the micelle, while the other, free end must lie near 

FIG. 4. Structure of an isolated micelle: I--core, 2-surface layer, 3- 
coat. 
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its center. Therefore the mean distance between ends of an A 
block is of the order of R>R, . That is, these blocks prove to 
be highly extended. The corresponding "elastic" free energy 
is calculated in Appendix A (A. 11): 

Here Q = 4n-R 3/(3NA ) is the number of chains forming the 
micelle. As Eq. (2.2) shows, the main component of the inter- 
action energy in the micelle belongs to the nucleus. Upon 
neglecting quantities of the order of f < 1, we find 

Thus the free energy of the nucleus is F1 = Fe + Fin,. 
The B blocks surrounding the micelle must be extended 

similarly to the A blocks: otherwise the concentration of B 
links in a certain neighborhood of the nucleus would consid- 
erably exceed the maximum possible (Q, = 1). Evidently 
the most favorable arrangement of the B blocks is radial (see 
Fig. 4). Let the nth link of a B block (counting from the 
junction point) lie on the average at the histancer from the 
center of the micelle. The condition of incompressibility im- 
plies that 

If a region of the chain containing M links is extended so 
that its ends lie at the distance Ar from one another, then this 
corresponds to the elastic free energy14 

Therefore the free energy of the entire coat is 

Only those regions of the chain will appreciably affect 
the properties of the thin surface layer that directly adjoin 
the junction point. The extension of the chains (of both A and 
B blocks) and the end effects begin to have an appreciable 
effect at scales considerably exceeding the thickness A of the 
layer. Therefore, in calculating the surface tension we can 
assume that both blocks, A and B, are of infinite length, 
while the junction points lie near the surface x = 0. If the 
blocks are incompatible, then links of one type (A ) will lie in 
the half-space x > 0, and those of the other type (B ) in the 
half-spacex < 0. The surface tension for this system is calcu- 
lated in Appendix B. The answer is: 

Herep, is the number of chains per unit of surface, and the 
thickness of the surface layer is 

A=aX-'!' (2.9) 

We must take two circumstances into account in order to go 
to a real micelle. First, we must take account for the transla- 
tional entropy of the chains not bound to the micelle. One 

can do this automatically by replacing the ideal-gas term 
p ln(p/e) in Eq. (B.9) with 

Here p = 1/N is the mean concentration of chains. In the 
surface tension, this leads to the substitution 
a , -ml  - p, l n p  (the t e m p  in (2.10) gives a negligibly small 
contribution after integrating over the volume of the mi- 
celle). Second, the calculation of Fl in Appendix A did not 
take account of the logarithmic corrections: it was assumed 
that the A block is strictly extended in the direction toward 
the center of the micelle. One can easily show that actually 
the links of the A block can deviate from their radius by a 
distance of the order of R, . Therefore, in particular, the end 
of the A block proves to be seemingly included in a volume 
Vl -RR :. In the free state this end can lie within the limits 
of a volume V, -R 1. Hence the logarithmic correction to 
the free energy per link is AF = - In Vl/V, = In R, /R. 
Upon including also this correction in a, ,  we finally obtain 
(with logarithmic accuracy): 

Here we have defined a=xNA. 
Upon combining Eqs. (2.4), (2.5), (2.7), and (2.12), we 

find the free energy of the micelle: 

Here we have E = a - ln(al/' f -I), and x = R /R, . Upon 
minimizing (2.13) with respect to x, we can show that the free 
eneregy of the micelle first becomes negative at E = 2.06a1l3, 
x = 2.18a1I6. Hence the threshold for forming a single mi- 
celle is 

a,=ln ( l l f )  + '/, ln aC+2.06a': >1. (2.14) 

Its radius is 
' l a  R=2,18aC Ra. (2.15) 

We note that, if the A and B blocks were not linked into a 
single copolymer, the threshold for layering would be 
a, = ln(l/ f )," which corresponds to the first principal 
term in (2.14). Hence the second and third terms in (2.14) 
describe the elevation of the threshold a, owing to the lin- 
kage between the blocks. 

Now we shall verify the assumptions that we have ac- 
cepted without proof in the course of the presentation. As 
Eq. (2.15) implies, the radius of the micelle at the instant of 
creation is RsR, .  Therefore the A blocks and the initial 
regions of the B blocks are actually highly extended. On the 
other hand, for regions of the chain whose dimension is 
smaller than r, - R : /R, the extension will no longer be ap- 
preciable. Therefore we can neglect the extension in study- 
ing the surface layer, whose thickness is A = RA a; '" 
<rb - RA a; 'I6. 

Let us estimate the dimensions of the coat of B blocks, 
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i.e., find the distance D up to which the concentration of B 
links bound to the micelle exceeds the concentration of links 
of "foreign" chains. The condition (2.6) implies that 
r - ( ~ n ) ' ' ~  - R (n/N, )'I3. An unextended region of the chain 
containing n links has the spatial dimension r'-n1'2a. Upon 
equating r and r', we find 

At distances r)D, the presence of the micelle only slightly 
alters the concentration of the links of both types. 

Thus, a micelle for a = a, consists of 

Q = ~ ~ R ~ / ~ N , - C C ;  N: a3 

chains that form an A core of radius R and a B coat of radius 
D)R, separated by a thin spherical layer. In this layer of 
thickness A(R, the concentration of links of the two types 
undergoes a jump practically from 0 to 1 according to the 
law (B.4) 

(Here the x coordinate is measured along the radius of the 
micelle from its surface to its center). In this same layer all 
the junction points are concentrated of the A and B blocks, 
which are distributed with the following density (B. 12): 

3. INTERACTION OF TWO MICELLES 

As was shown at the end of the previous section, the 
perturbation caused by a micelle at distances r)D from it is 
small. Therefore, if we are interested in the interaction of 
two micelles at distances r)D, then we can use an expansion 
of the free energy in powers of the small deviation in concen- 
tration 6@ = @, - f ,  and restrict the expression to the 
leading quadratic term. Letp(r) be the deviation of the con- 
centration ofjunction points from the mean value 1/N. Since 
S@(r) in the region of interest to us varies on scales consider- 
ably exceeding D, while the dimension of an A block is much 
smaller than D, then we have 

Let us write the free energy for a givenp(r) in the form21 

Here pk  is the Fourier transform of the function p(r) while 
the coefficient has been set in front of the integral for conve- 
nience. We can easily associate the quantity B (k) with the 
correlation function of the density ofA links. In turn, we can 
calculate the latter by the method of Ref. 8. The answer is: 

(1-e-") 
B (k) =l+A-i (k) =I+ 

2 (u+e-"-1) - (1-e-") -2af, 

(3.2) 

Here we have u=k2Na2=kZR: / f .  I f a f ( 1 ,  then we 
have 

We can easily verify that the separation 
B (k) = 1 + AP1(k) corresponds to separation of the free en- 
ergy into an ideal-gas component (corresponding to indepen- 
dent translational motion of the chains) and a component 
corresponding to interaction of the chains. Let several mi- 
celles exist at the points r,, r,,. . . They form a certain trial 
distribution of junction points 

p'" ( r )  =QIG (r-r,) +Q26 (r-r2) +. . . . 
The free energy can reach a minimum in the case in which 
the free chains not bound to micelle are arranged somehow 
to give rise to the distribution 6p(r). We must take account of 
the translational component of the free energy only for free 
chains. Hence we can rewrite (3.1) in the form 

Upon minimizing (3.4), we obtain 

Equation (3.5) shows that the free ends of the chain com- 
pletely screen the trial "charge" Q"'= $p'"d3r, since 
A(0) = 0. A single micelle gives rise to the trial distribution 
p'O'(r) = Q6(r), so that 

Here we have RN = NuZ. Thus the "charge" of the micelle is 
screened on the scale ofRN, which corresponds to the unper- 
turbed dimension of the copolymer and considerably ex- 
ceeds the maximum dimension D of the micelle. 

The dependence of p on r/RN is shown schematically in 
Fig. 5; it has the following asymptotics: 

1, s < l  
e-"'[ (hi2--hz2) cos hzs-2h1Lz sin k , s ] ,  s B  I ' 

(3.8) 

Here we have A,  = 1.682, A, = 2.218. 
If two micelles lie at a distance r,,)D, then we have 

p'"'(r) = Q6(r - r,) + QS(r - r,). We can find from (3.6) their 
interaction energy: 

FIG. 5. Dependence of the interaction energy of two micelles on the dis- 
tance between them. 
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Upon comparing (3.9) and (3.8), we find that two spherical 
micelles at distances D(r(R, interact according to the 
Coulomb law 

Equation (3.10) justifies the term "charge," which we have 
employed up to now to denote .fp(r)d 3r. The function p(r) 
itself can be called the charge density here. Interestingly, the 
entire charge of the micelle is concentrated in the surface 
layer. 

At the greatest distances r)RN, the interaction energy 
declines exponentially while oscillating. The quantity Uint 
has an absolute minimum Uin, < 0 at r- R, . 

Now let us study the interaction of two micelles at small 
distances: R(r(D. The fundamental effects in this region 
affect the coat ofB blocks associated with the micelle. In the 
coat the chains are strongly extended. Hence each chain is 
characterized by a certain average trajectory r(n), where n is 
the order number of the monomer (see Appendix A). Let 
E = dr(n)/dn. Let us single out a small oriented area d S. 
Owing to the condition of incompressibility (2. I), the pro- 
duct Ed S must equal the number of chains crossing this area. 
Consequently, if we integrate the form Ed S over the closed 
surface, we obtain the number of junction points in the re- 
gion bounded by this surface*': 

We call attention to the fact that (3.14) does not differ from 
(3.10). 

We note that the conformation of the chains forming 
the coat coincides with the lines of force of the "electric" 
field E. Hence, for an isolated micelle the chains will lie radi- 
ally (Fig. 6a) and for two micelles-along the lines of force of 
a system of two identical charges (Fig. 6b). 

Thus, both in the region r)D and when R(r(D, the 
interaction of micelles can be described by using an electro- 
static analogy. 

4. ORDERED STRUCTURES FORMED BY SPHERICAL 
MICELLES 

Let us turn to studying the thermodynamically most 
stable structures that can be constructed of spherical mi- 
celles. As was shown in the last section, the interaction ener- 
gy of micelles has a negative minimum at r - R, . This means 
that the threshold for formation of a single micelle is lowered 
if it lies in the field of another micelle. Evidently, even before 
a single micelle can appear under equilibrium conditions 
(i.e., when r=a -a, <0), the formation of an ordered 
structure constructed of micelles with the characteristic pe- 
riod b - RN will be thermodynamically favored. Equation 
(2.13) implies that the free energy of an isolated micelle at 
small T will be Fo = - Qr. On the other hand, the depth of 
the minimum in the interaction energy of the micelles (cf. 
(3.9)) is of the order of Uin, - - Q '/R,a2. Consequently, an 
ordered structure will arise when r - - Q /  
RNa2- - a;l2f ' I 2 .  Here the corresponding transition will 

E dS=Q, div E=p. 
occur jumpwise, i.e., will be a first-order transition. 

(3.11) Ultimately all these conclusions are based on the idea 

Thus, if Q is the charge, then we must identify E with the 
electric field intensity. 

The elastic free energy of the extended chains in (cf. 
(2.7)): 

Here the summation is performed over all the links. Upon 
taking account of the constant density, we find 

The principle that Eq. (3.12) should be minimized under the 
additional condition (3.11) leads to the following system of 
electrostatic equations: 

that a region exists in which the micelles attract one another. 
The authors of Ref. 7, who also studied the problem of mi- 
celle formation, arrived at contrary conclusions: first a rar- 
efied gas of micelles appears, and only at a certain stage (with 
increasing density), it becomes ordered. This is explained by 
the fact that Ref. 7 introduced a repulsion between micelles 
without any proof (Eq. (3.6) of Ref. 7). 

With increasing r the period b of the structure begins to 
decline. Let us study the region r)a;l2 f ' I 2  in which b(RN. 
In this region the micelles interact according to the Coulomb 
law. While using (3.6), let us expand the interaction energy in 
a three-dimensional Fourier series. As calculated per unit 
cell we have 

n 

sin, = I kz (erp i tr .)  / Q2 
l+A (k) ' (4.1) 

2 k s=1 

. - 
Consequently, the "external" component of the energy of an 
isolated micelle is the energy of a charged sphere of radius R: 

F3= (1/16na2) (Q21R), (3.13) 

This coincides with (2.7) as it should. The interaction energy 
of two micelles in the region R(rgD varies according to the 

b 

Coulomb law: 

Uin,= ( 1 1 8 ~ ~ a ' )  (QVr)  . 
FIG. 6. Conformation of chains in the coat: isolated micelle (a); two inter- 

(3.14) acting micelles (b). 
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Here c is the concentration of micelles, n is the number of 
them per unit cell, and the r, are the coordinates of the mi- 
celles, while the summation is performed over all vectors k of 
the reciprocal lattice. 

Since the size of the unit cell b4R,, all the nonzero 
reciprocal-lattice vectors considerably exceed R , ' in mo- 
dulus: Ikl)R, '. Hence we have (cf. (3.3)): 

Upon substituting (4.2) into (4. I), we find Fin, = 9, + F Z ,  
with 

In order to determine the type of packing, we must minimize 
F2 for a fixed concentration c. We obtain as the result: 

Here the coefficient x for the most widespread types of pack- 
ing is: x = - 8.913634 (simple cubic), x = - 9.073806 
(face-centered cubic (fcc)), x = - 9.074370 (body-centered 
cubic (bcc)), x = - 9.073446 (hexagonal close-packed 
(hcp)). 

Thus the bcc structure proves most stable. We call at- 
tention to the fact that the relative difference of the coeffi- 
cient x does not exceed lop4 for three types of packing-bcc, 
fcc, and hcp. For this reason alone, the relaxation of the melt 
into the most stable state must be very slow. 

Now let us find how the period b of the structure varies 
with increasing T (we assume for definiteness that b = cell3). 
One can easily show that the main component of the interac- 
tion energy of the micelles always corresponds to the screen- 
ing background, or in other words, to the free energy of 
translational motion of the unbound chains (the term 9,). 
In the general case in which Sp -p, we must modify (4.3): 

Here v = c-' is the volume per micelle, while 
p =p( l  - cQN) is the concentration of free chains. The free 
chains are uniformly distributed throughout the space out- 
side the micelles, whose volume we can negle~t .~ ' .  Hence we 
can convert (4.6) into the form 

Let us rewrite the equation (2.13) for the intrinsic free energy 
of a micelle in the form 

Here we have 

Thus the free energy per unit volume is 

Upon minimizing (4.9) with respect to x and y and allowing 
for the fact that we always have q, (x)(w, we find 

Consequently, the radius of the nucleus of the micelle is 

The characteristic period of the structure is 

Thus, both characteristic scales R and b for 7% 1 prove 
proportional to a~ ' I 3 .  That is, with increasing degree of 
polymerization N they increase more rapidly than the di- 
mension of the chain a N  ' I 2 .  Further, with increasing r the 
period b of the structure initially varies according to the law 

and then begins to increase: 

When T) 1, we note that the melt now contains practically 
no free chains: they all participate in forming domains. If 
r ( l /  f ,  the inequality D(b(RN is satisfied. That is, the 
fraction of the volume occupied by micelles (including their 
coats) is small. When T) l /  f ,  when the inverse relationship 
holds, D)b)RN, the micelles strongly overlap in their coats. 
In this region Eqs. (4.10) and (4.11) continue to hold, but the 
character of the interaction of micelles that determines the 
type of packing changes. The point is that the dimensions D 
of the coat become larger than the dimension RN of the 
chain. Hence one can no longer neglect the effects involving 
the free ends of the B blocks. Therefore, one can only assume 
that the bcc packing is conserved in this region. 

5. TRANSITIONS BETWEEN SPHERICAL, CYLINDRICAL, AND 
LAMELLAR STRUCTURES 

Up to now we have been treating structures with spheri- 
cal domains. However, microphase layering can also involve 
formation of cylindrical domains (see Fig. 2b) and lamellae 
(plane layers, see Fig. 2a). Let us find out when the corre- 
sponding structures will be the most stable for a melt with 
strongly incompatible blocks: a =xN,>l.  As we shall 
show below, the transitions between these structures occur 
in the region f - 1, in which all the chains belong to micelles 
(i.e., to spheres, cylinders, or layers), while the micelles 
strongly overlap in their coats, and hence all the chains are 
strongly extended. One can easily show that the macromole- 
cules associated with a given micelle densely fill the corre- 
sponding Wigner-Seitz cell. Let us fix the concentration of 
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corresponding to the nucleus of the domains (filled with A 
FIG. 7. Complete phase diagram of a melt of diblock copolymers in the links), and an component i'e., 9P = Uln 

a =XNf ( 1  - j') and f: 1-homogeneous phase, 2-body- + Uex.  The energy Uin is calculated exactly in Appendix A, centered-cubic phase, 3-hexagonal phase, Llamellar phase. 
Eq. (A. 1 1): 

micelles (and hence also the volume of a cell). Evidently, the a 
free energy of extension of the chains becomes less as the 
Wigner-Seitz cell approaches a spherical form (or circular in 
the case of cylindrical domains). Since the corresponding 
structures will be the most favorable, it is reasonable to use a 
spherical (circular) approximation for the Wigner-Seitz cell. 

Let R be the radius of the nucleus of the micelle. Then 
the outer radius of the Wigner-Seitz cell is R, = R f - 
where d = 3 for spherical domains, d = 2 for cylindrical do- 
mains, and d = 1 for lamellae. The elastic free energy 9, is 

3t2 
R ~ + ~ N * - ~ ,  packed in a bcc lattice. When fcl (a) < f < f,, (a), the most 

Utn=hd 7 
32a (5.1) stable structure is one made of cylindrical domains packed in 

I2=n/3, A3=4n/15. a hexagonal lattice. The region f,, (a) < f < 1 - f,, corre- 
sponds to a lamellar structure. With further increase in f 

The energy U,, for lamellae (d = 1) is calculated exactly as the transitions are repeated in reverse order. As Eq. (2.14) 
for Uln : in the cases d = 2 and d = 3 the quantity U,, is implies, when a) 1, we have f, (a) - e  - " . 
found approximately in Appendix A (with an accuracy no One can find from (5.4) that the characteristic period b 
worse than 20%). As a result we have for all three types of structures is of the order of 

6 - ~ 1 3 1  \ \ ' 3 1 ~ z /  

\ \  I I I /  
\ \  I I I 
\ \  1 / / I  

- \<>,u',' 
I I I I 

b - a N / ~  '/I, n - 2  X (5.5) 
U,,=xd7 Rd+2N, , z,= ( ~ 1 6 )  ( l / f - I ) ,  

4a In particular, the exact result for a lamellar structure is: 

x2= ( ' I k )  ln (I/!). x3= (+ IB)  ( l - j t '3) .  
(5.2) 

b =4 (3/n2) '"a2V1/*X'Ie. (5.6) 

separated into two componente: an internal component Ui, 42 44 Q6 48 

The surface free energy of a micelle is (see (B.3)): 

In the region being studied, the A and B blocks are com- 
pletely separated. Therefore the bulk component of the in- 
teraction energy of the links and the free energy of transla- 
tional motion of the chains do not depend on the 
concentration of micelles nor on their arrangement. Conse- 
quently, these components of the free energy can be neglect- 
ed during minimization. Thus the free energy per unit vol- 
ume is 

Upon substituting (5.1)-(5.3) into (5.4) and minimizing, we 
find that the transition from a spherical structure to cylindri- 
cal occurs at f,, = 0.12, and from cylindrical to lamellar at 
f,, = 0.28. 

Thus the phase diagram of a melt for a) 1 has the form 
shown in Fig. 7. The same diagram shows the results of 
Leibler,5 which are valid in the region a-a, = 2.62. The 
results of this section and those of Ref. 5 mutually supple- 
ment one another. The corresponding phase-transition lines 
smoothly join one another (dotted regions in Fig. 7). Conse- 
quently one obtains an approximate complete phase diagram 
of the melt of diblock copolymers: if the fraction of links of 
one type f < f, (a), then the system remains homogeneous. 
When f, (a) < f < f,, (a) spherical domains arise and are 

Let us turn attention to the fact that the period of a lamellar 
structure proves independent of f .  

The relationship b a N ' I 3  has been found experimental- 
ly for a lamellar structure1' and for a cylindrical structure.13 
This relationship has been derived theoretically22 for a la- 
mellar structure in a polymeric solution. 

Thus we have been studying the equilibrium structures 
that arise in the melt of diblock copolymers with highly in- 
compatible blocks. We note certain lines along which this 
study might be generalized. First, it is interesting to study 
melts of macromolecules of more complex architecture (trib- 
lock copolymers, etc.). Second, in practice one often en- 
counters solutions of block copolymers-in a substance of 
low molecular weight or in some homopolymer-rather 
than melts. Finally, it is very important to study the dynam- 
ics of formation of microdomain structures. As a rule, poly- 
mer systems have very long relaxation times. Hence the ther- 
modynamically more favored structure may prove 
inaccessible from the kinetic standpoint. We can expect that 
the dynamics of microphase layering of polymer stystems 
will prove very distinctive. 

APPENDIX A 

As was shown in Sec. 2, the A blocks in a micelle are 
highly extended: one end of the block (the junction point 
with the B block) is "attached" to the surface of the micelle, 
whereas the other end must lie in the vicinity of the center of 
the micelle, i.e., at a distance - R)RA . Therefore each chain 
can be characterized by a definite trajectory about which it 
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fluctuates weakly (the magnitude of the fluctuations is - R, ). We can describe this trajectory with the functions 
r(n), where n is the order number of the monomer unit. The 
transition from describing in terms of the probability P [r(n)] 
to describe with the trajectory recalls the transition from 
quantum mechanics to classical mechanics. 

Let the free end of the A block lie at the distance r, from 
the surface of the micelle. Evidently, the chain lies along the 
radius of the micelle and hence is characterized by the scalar 
function r(n)-the distance from the surface, r(N, ) = r,. Let 
g(ro)dro be the number of chains whose ends lie in the interval 
dr,, while E = dr/dn is the local extension of the chain. We 
can write the free energy corresponding to the nucleus of the 
micelle in the following form (cf. (2.7)): 

Two additional conditions are imposed on the unknown 
functions E (r, r,) and g(r,): 

where 

S ,  ( r )  =2 ,  S2 ( r )  =2nr .  S3 ( r )  =4nr2;  

d = 3 corresponds to a spherical micelle, d = 2 to a cylindri- 
cal micelle, and d = 1 to a lamelle. The condition (A.2) fixes 
the number of links in each chain, while the conditions (A.3) 
expresses the constancy of the density of the nucleus of the 
micelle. 

The minimization of (A. 1) under the additional condi- 
tions (A.2) and (A.3) leads to the equation 

E ( r ,  ro)  = [cp ( ro )  - c p  ( r )  l'", 
Herecp is an unknown function. Let dr/dcp = f (p ). Then we 
can rewrited (A.2) in the form 

Here we have p, = cp (r,) and p * = cp (0). The solution of Eq. 
(A.4) has the form 

Hence, upon taking account of the definition of the function 
f (cp 1, we find 

Upon substituting (A.6) into (A.3), we obtain the equation 
i 

h ( t )  dt  

where 

The right-hand side of Eq. (A.7) contains a polynomial of no 
higher than second order in u1I2. One can easily show that 
S = 1 corresponds to h (t ) = (1 - t )-'I2, S = u'I2 corre- 
sponds to h = (1 - t )-'I2 - tanh-'(I - t )'I2, and S = u 
corresponds to h = (2t - 1)(1 - t )-'I2. 

Thus ford = 3 we have 

g ( r )  =8xR2N,- 'x  (a r th (1 -xz )  '"- (1 -x2 ) '" ) ,  ( A 4  

wherex = r/R. Here number density of ends in the micelle is 

2 x 
p ( x )  = ---- {ar th  ( 1 - x 2 )  'A- ( 1 - 2 )  ' h ) ,  

N ,  ( I - x Z )  

and the p(x)  relationship is shown in Fig. 8a. For d = 2 we 
have 

g ( r )  =2nRN,-'x arth ( I - z2 )" ' ,  

-1  5 
p ( x )  = N a  - l  -x arth ( I - x 2 )  '". 

Finally, ford = 1 (see Fig. 8b) we have: 

p ( x )  = x l [  ( 1 - x 2 )  lhNA].  (A. 10) 

Upon substituting the solutions (A.8)-(A. 10) into (A. I), we 
find the elastic energy of the nucleus of the micelle4': 

where 

(A. 11) 

FIG. 8. Distribution of the free ends inside the nucleus of a spherical 
micelle (a), inside a plane layer (b), and in the outer part (the coat) of a 
spherical or cylindrical domain (c). 
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Now let us calculate the elastic energy of the outer part 
of the micelle, while assuming it spherical in form: the B 
blocks fill the spherical layer R < r < R,, where r is the 
distance from the center of the micelle. If d = 1, then the 
problem reduces to one already solved. For d = 2 and d = 3 
the ends of the B blocks, as it turns our, do not fill the entire 
spherical layer, but only a certain zone that adjoins the outer 
surface r = R, (Fig. 8c). Consequently the integral equation 
(A.7) is greatly complicated. However, an approximation 
works very well here that has the ends of the chains attached 
to the surface r = R,. In fact, for the inner regions this ap- 
proximation elevates the free energy ford = 3 by a factor of 
40/$=:4, ford = 2 by a factor of 24/$ ~ 2 . 5 ,  and ford = 1 
by a factor of 12/$=: 1.2. For the outer regions for d = 2 
and d = 3, the error will be even smaller than ford = 1, i.e., 
smaller than 20%. Thus, the elastic free energy of the outer 
part is5' 

d=3: U,,= (16naZ)-'Q2 (IIR-IIR,), (A. 12) 

d=2: U,,= (16naZ)-'2Q2 In (R,IR) . (A. 13) 

Here Q is the number of chains in the micelle. 

APPENDIX B 

Let us study a melt of diblock copolymers with blocks of 
infinite length. The free energy of interaction of the blocks 
has the form (2.2) under the additional condition (2.1). If 
x > 0, the system becomes layered: the half-space x > 0 is 
filled with A blocks, and x < 0 with B blocks. Then the junc- 
tion of the A and B blocks here proves to be somewhere near 
the plane x = 0. Let us find the surface free energy of the 
system and the distribution of junction points. 

Let the inhomogeneous distribution of the links of type 
A be fixed: @, = @(x). In the zero-order approximation we 
can neglect the end effects (in particular, the fact that the 
ends of the A and B blocks are joined) and can calculate the 
conformational component of the free energy by the follow- 
ing formula (see Ref. 17): 

Upon summing the contributions from the A and B blocks, 
we obtain the following expressions for the total free energy 
per unit surface: 

Upon minimizing (B.2) while using the substitution 
@ = sin2 y, we find the surface tension1: 

and the density profile 

Hence the interaction parameter must be small: X( 1. 
Let us take into account the end corrections. We can do 

this by the method of Ref. 23. The partition function of a 
chain (referring to one of the blocks) whose ends lie at the 
points r ,  and r, is 

Here Zo is the partition function in the zero-order approxi- 
mation, and $(r) is the a priori distribution function of the 
ends as normalized by the condition: 

j 9' (r) d3r= l (B.6) 

and as connected to @(r): 

$"r) =const @ (r)  . (B.7) 

Thus, if the second ends of the chains are free, while the first 
ends are distributed with the concentrationp(r), then the end 
corrections have the form 

Here the first term in the curly brackets is the ideal-gas term. 
Now let us take account of the contributions from the 

two blocks of the copolymer. The first ends of the A and B 
blocks are joined and have the same distribution function 
p(x), while the other ends are free. Upon adding the expre- 
sions (B.8) corresponding to the A and B blocks, we obtain 

Upon taking account of (B.6) and (B.7) and transforming to 
the free energy per unit surface, we convert (B.9) into the 
form 

(B. 10) 

Upon minimizing (B.lO) with respect to p(x), we find 
u = 0 0  + 0 1 ,  

(B. 11) 
(B. 12) 

Herep, is the number of copolymers per unit surface. Equa- 
tion (B. 12) shows that the junction points are concentrated in 
a surface layer of thickness A. 

Here the thickness of the surface layer is A = The 
applicability of (B.2) is restricted by the condition A)a. 

'I These statements, which we have thus far taken on faith, will be substan- 
tiated below. 

''The free ends of the B blocks lie far outside the coat (at a distance >D 
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''One must not neglect the volume of the micelles only for very large 7, for 
which the micelles begin to overlap. However, in this case the term 9, is 
already inessential. 

4!The energy of a cylindrical domain or a plane layer is infinite. Therefore 
we cite below the values per unit of length of the cylinder or unit area of 
the plane layer. 

5!The calculation of the free energy is performed in exactly the same way 
as in deriving Eq. (2.7). 
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