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We find the "density-density" correlation function of a one-dimensional spinless Fermi gas with 
strong repulsions between the fermions at zero temperature. The correlator decreases at large 
distances as a power law and we show that in all orders of large-interaction perturbation theory, 
the exponent a can be simply expressed in terms of the sound velocity c in the system: a cc c-'. 

51. INTRODUCTION 

The problem of finding various correlation functions is 
of great interest in the theory of one-dimensional quantum 
systems. In many cases the asymptotic behavior ofthe corre- 
lators at large distances turns out to be particularly impor- 
tant. Moreover, relatively few theoretical results have been 
obtained so far in this field. 

Efetov and Larkin1 have suggested that the behavior of 
the correlation functions of one-dimensional Fermi systems 
at large distances is determined by the long-wavelength gap- 
less excitations. Taking only those excitations into account 
and neglecting all others one can find the explicit forms of 
the correlation functions. 

Another approach to the problem of evaluating the cor- 
relators is connected with the linearization of the quadratic 
spectrum of the fermions and the introduction of two kinds 
of particles. It is possible to perform the calculations exactly 
in the framework of that model.24 

It has been shown1 that the correlation functions found 
using these two approaches agree qualitatively. Their char- 
acteristic property is a power-law decrease at large distances 
at zero temperature, and a continuous dependence of the 
exponents on the interaction constant. 

However, both approaches are based on assumptions 
which are difficult to prove, though they are plausible. 
Moreover, in Ref. 5 it was noted that the asymptotic behav- 
ior of the pair correlation function can be determined by the 
singularities of the structure factor S ( k  ) for k = 2k,, 4kF, 
and so on (k, is the Fermi momentum) and hence cannot be 
connected with sound-like excitations. Nonetheless, Kriv- 
nov and Ovchinnikov5-' have shown that, notwithstanding 
this fact, the qualitative behavior of the correlators is un- 
changed, and have suggested that the corresponding expo- 
nents are simply connected with the sound speed in the sys- 
tem. 

It is the aim of the present paper to find the asymptotic 
behavior of the "density-density" correlation function at 
large distances in a one-dimensional system of spinless fer- 
mions with strong binary interactions (repulsions), taking 
into account all orders of perturbation theory in the large 
interaction constant. 

The Hamiltonian of this system has the form5 
N N 

a=- g ( x - x )  h=2rn=1. 
,=1 ax, ,<, 

(1) 

Here V(x) is the pair interaction potential, assumed to be 
long-range, and g is the coupling constant. In what follows 
we consider everywhere the repulsion case: g > 0. It is con- 
venient to specify the boundary conditions by assuming that 
the particles move on a circle of great length L. One must 
then assume that V(x) is periodic with period L. Instead of 
the original V we can introduce a periodic potential 

v (x) = V(x+nL) ; 

this does not affect the results in the thermodynamic limit 
L +  ca,N-t cn ,L /N=a .  

The equal-time "density-density'' correlator at zero 
temperature is defined as follows: 

G ( R )  =p2 j I Y (0, R, x3, . . . , x )  x . dr,, 

wherep = a-' is the equilibrium density of the system, and 
Y the wave function of the ground state. 

It turns out that as R + co the correlator G (R ) tends to 
p2and thedeviationh (R ) = G (R ) - p2fromthisvalueatzero 
temperature decreases as a power law with increasing dis- 
tance: 

The exponent a is sometimes called, by analogy with the 
theory of phase transitions, the critical exponent. Its deter- 
mination is one of the problems of the theory. 

Krivnov and Ovchinnikov5 found the exponent a in the 
limit of strong repulsion: g -+ m. In that case the system 
with Hamiltonian (1) can be treated rigorously in view of the 
formation ofa Wigner crystal with lattice constant a = L /N. 
This enables us to regard the system as a gas of interacting 
phonons and the interaction can be neglected in the first 
approximation. We shall call such an approximation a har- 
monic one; it is better the larger g. The value of a in the 
harmonic approximation was found in Ref. 5: a = 4kFc, ', 
where k, = ~ra- '  is the Fermi momentum and c, the sound 
speed in the same approximation. In the same paper the hy- 
pothesis was put forward that the exact value o f a  is equal to 
4kFcP' where c is the true sound speed in the system. This 
result is independent of the actual form of the interaction 
potential and is valid for sufficiently large c-such that the 
Wigner crystal picture is valid. 

Our further aim is a proof of this assumption; for this it 
is necessary to go beyond the framework of the harmonic 
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approximation and to take into account the contribution of 
the anharmonic terms. This will be done in 5 2 by perturba- 
tion theory in terms of a large interaction constant. We ob- 
tain in 5 3 for the system a convenient representation of the 
ground state wave function, which is used in $ 4  to calculate 
the "density-density" correlator and to find its asymptotic 
form. In that case we establish to all orders of perturbation 
theory the connection of a with the sound speed c. We give 
the proof of the basic relations in the Appendix. 

52. PERTURBATION THEORY AND DIAGRAM TECHNIQUE 

To reformulate the problem in phonon language we 
must change to collective variables. It turns out that the 
Fourier coefficients of the density operator p, , which have 
normally been used as collective variables since the work of 
Bogolyubov and Z ~ b a r e v , ~  are inconvenient for our goal. 
Krivnov and Ovchinnikov5 introduced "lattice" variables 
p, which take the presence of a Wigner lattice into account 
explicitly even in zeroth approximation: 

In what follows we shall work both with the spatial Fourier 
components of (4) 

9, ( t )  =N-~"E rp. ( t )  exp ( - i p n ) ,  rpp+=rp-l 

and with the space-time Fourier components 

pp,.=T-'I2 5 dtrp, ( t )  exp ( - l o t ) .  
-ce 

Herep is a dimensionless "momentum" which takes on qua- 
si-discrete values 27rma/L, where m is an integer, while Tis a 
large time interval introduced in (10) below. 

The transformation to the variables pp ,  is canonical 
whereas the transformation to thep, is not. It is also impor- 
tant that the p,, in contrast to thep,, are periodic inp with 
period 27r. As already noted, the leading term in the asymp- 
totic behavior of G (R ) is determined by the singularity of the 
structure factor at k = 277, but pp a s p  + 277 is, in no way 
simply connected with p, a s p  + 0. On the other hand, in 
terms of the variables pp we can restrict ourseleves to small 
p, because of the periodicity, and this simplifies the problem 
considerably. 

In the new variables the Lagrangian corresponding to 
the Hamiltonian (1) is obtained in the usual way after ex- 
panding the potential in a Taylor series in pi, and is written 
in the following form: 

7 n 

We have here made the stretching e$ -+ g-''2pp. There is 
no linear term in pp if the potential is periodic. mob) de- 
scribes the free phonon spectrum? 

a, ( p )  = { 4 g  z "" (nu)  ( I -eos n p )  
n - I  

1 '" 
As g -+ co the energy of the elementary excitations equals 
w,(p). These excitations have an acoustic character: as 
p -+ 0, w, = colpl where the sound speed in the harmonic 
approximation is 

m 

The remaining terms in the Lagrangian correspond to 
the terms following the quadratic in the Taylor series expan- 
sion of the potential: 

ca 

" ( . . . p.) = z v(") ( k a )  n [exp ( ipmk)  I ] .  (8) 
l t = i  ,i,=1 

It is important that for small momenta we have 
,I 

Finally, a@) guarantees conservation of quasimomentum ac- 
curate to the reciprocal lattice vector, i.e., up to integer mul- 
tiples of 27r. 

Changing in the normal way to an imaginary time we 
construct for the system (5) a perturbation theory in large g. 
We choose some large time interval T and write down the 
action in it as a functional of p,,, . After transforming the 
sums overp into integrals we have in the imaginary time 

m z 

To simplify the notation we agree, where this does not lead to 
confusion, to omit all the integration signs and the S-func- 
tions, as well as not to indicate explicitly the arguments of 
rt' and p. The action can then be written as 

ce 

( g N T )  I -"  '2~:' 

n=3 

The integration 

is implied. 
We get directly from (1 1) the elements of the diagram 

technique: the free phonon propagator is 

GO-' ( p ,  o )  = (2g)- '  Co2+o,' (P) I (13) 
and the n-point vertices are (gNT)' -"" rt'. In the vertices 
the momentum conservation law is satisfied modulo 27r and 
energy is conserved. The integration (12) is performed over 
the internal independent momenta. Each diagram is multi- 
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plied by its own symmetry coefficient which is found by stan- 
dard rules.9 

The ground state energy can be written in the form 
1 

E.=-lim - In J Dp exp (-S (p) ) . 
T - r m  T 

(14) 

Here Dq, = II, ,  dpP,, is the functional-integration symbol. 
The zero-point oscillation energies in the harmonic approxi- 
mation as well as the anharmonicity corrections to it are 
included in E,. These corrections are a sum of connected 
vacuum diagrams. 

5 3. THE WAVE FUNCTION 

We now obtain a representation of the ground-state 
wave function in the form of a path integral which is needed 
in what follows. 

It is well known'' that functional integration with a 
weight exp( - S (q, )) and a fixed valuepP (t  = 0) = pP gives as 
T + w the square of the modulus of the ground-state wave 
function: 

P 

We shall assume to be real. Introducing an auxiliary inte- 
gration D J  = IIpdJp and changing to Fourier components 
we have 

The internal integral over q, has the meaning of the partition 
function Z(J )  of the original system in the presence of a 
"source" Jp and its coefficient functions are the Green func- 
tions of the system1' 

G("' ( p , ,  a,; . . . ; p,, a,), n = 2 , 3 , .  . . , 
integrated over the external frequencies with account taken 
of the conservation laws: 

D'"' (pi . . p n )  

In what follows we shall write the sum in (16) in abbreviated 
form, e.g., as JD '2 '~ ,  bearing in mind, however, that we are 
summing here only overp and not over w .  

Substituting Z (J) in the form (16) into (15) we get a rep- 
resentation of the ground state wave function as a path inte- 
gral: = 

§ 4. ASYMPTOTIC FORM OF THE "DENSITY-DENSITY" 
CORRELATOR; CONNECTION WITH SOUND SPEED 

We proceed now to find directly the correlator (2). After 
some simple transformations we can write (2) in the form 

m 

where D 'q, indicates integration over all pP but po and 

We substitute (18) into (19) and integrate first over q, and 
then over J. As a result we get 

One can show that the asymptotic form of this expres- 
sion in terms of R is determined by the behavior of D '2'(p) at 
small momenta. In fact, in the case where D "'(p) has at the 
origin a first-order pole, h (R ) decreases as a power law and 
the exponent is proportional to the residue at that pole, while 
the coefficient of proportionality equals 4r(ga2)-'. 

This result is obtained after transforming (20) by using 
the Poisson summation formula and using the properties of 
the integrals D(") En (k ) for large k. 

We show in Appendix I that D '2'(p) has indeed a simple 
pole at the origin and 

0''' ( p )  -+'l,gG'" ( p ,  0 )  , p+O. (21) 

Using the relation G -' = G ;  ' + II (II is the polarization 
operator) and the result from Appendix I1 

as well as the explicit form (13) of Go, we find that the residue 
of D '*'(p) at the origin equals agc-', and hence that the criti- 
cal exponent is 

which we wanted to prove. 

5 5. CONCLUSION 

We have thus established that the asymptotic form of 
the binary "density-density" correlation function at large 
distances, at a rather arbitrary form of the potential V(x) ,  is 
simply related to the sound speed in the system considered. 
Knowledge of this relation simplifies greatly the finding of 
the asymptotic behavior of the correlators, since the problem 
of evaluating c is appreciably simpler and there exist for its 
solution methods that give a good approximation. 

We note that the connection between the critical expo- 
nents of various correlation functions and the sound speed 
was well known in the literature for some systems of a special 
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form. For instance, in Ref. 11 the long-wavelength asympto- 
tic form was found for the many-particle Green functions in 
an exactly soluble model of a one-dimensional Bose gas with 
point interactions. It was shown that it has a power law char- 
acter and the exponent was expressed in terms of the sound 
speed. Very recently papers were published by Izergin and 
K ~ r e ~ i n ' ~ ~ ' ~  where, in the framework of the quanta1 inverse 
scattering method, a general method was developed for find- 
ing various correlators in this model. In particular, a repre- 
sentation was obtained in Ref. 13 for the "density-density" 
correlator in the form of a series in inverse powers of the 
large interaction constant. However, one should note that 
this model cannot be treated by our method, since the poten- 
tial is 8-shaped and does not have a long range. This mani- 
fests itself in the fact that in contrast to our case the sound 
speed remains finite at g = a. Nonetheless, the results of 
Ref. 13 as g + m agree with (23). 

All this enables us to suggest that the postulated con- 
nection between the critical exponents of the correlators and 
the sound speed is quite general. There is undoubted interest 
in finding similar relations for other correlation functions 
and also in establishing analogous regular relations in other 
models, in particular, in the lattice model of a Fermi gas. 

In conclusion we thank V. Ya. Krivnov for useful dis- 
cussions. 

APPENDIX I 

In this Appendix we show the validity of Eq. (21) to all 
orders of perturbation theory. We recall the definition of 
D '2'(p): 

rn 

2nD("(p)= 3 G ( P ,  o)do. 
- m 

Introducing the polarization operator II@,o), we write 

II does not contain poles in o ,  while G ;( has an nth order pole 
at the points f i,,@) (see (13)). We show in Appendix I1 
that, thanks to the property (9) of the bare vertices, 
II(p),o) a p Z  asp + 0 independently of o. The derivatives of 
II with respect t o o  at smallp therefore also possess the same 
property. Hence it follows that if we are interested in (A. 1) 
only in the leading terms we can retain in the integral, after 
evaluating the residue, only the terms which do not contain 
derivatives of 11 with respect to o .  Moreover, we can replace 
i, ,@) in the argument of II by zero. After that (A. 1) takes the 
form 

Writing the analogous series for G (p,O): 

and comparing (A.2) and (A.3) we can verify the validity of 
(21). 

APPENDIX II 

Here we prove Eq. (22) in which c is the exact sound 
speed, c, the sound speed in the harmonic approximation, 
and II(p,O) the polarization operator at zero frequency. It is 
well known (see, e.g., Ref. 14) that 

where E, is the ground-state energy density. It includes a 
classical part governed by the spacing a between the parti- 
cles and also the zero-point energy and the anharmonic cor- 
rections to it:cg is obtained by differentiating the classical 
part. Using (14) we write (22) in the form 

where Z is the partition function. 
Our plan for the proof is the following. We first of all 

elucidate the behavior of the vertices of the effective action 
for small momenta and obtain for them Ward-type identi- 
ties. using these identities we can transform (A.4) into a 
Schwinger-Dyson equation for the polarization operator 
and thereby complete the proof. 

The vertices of the effective action r(")  (pl,ol;. . . p, ,on ) 
are written in the form of a sum of single-particle irreducible 
diagrams. One verifies easily that the property (9) which is 
valid for "bare" vertices rt' remains valid also for the 
"dressed" ones (the vertices at zero frequencies are those 
without the frequency label) 

a 

We introduce the following notation for the derivatives of 
the rt) and of the I?("' : 

'"r(") is defined in exactly the same way. We designate simi- 
larly the second derivatives: ")rtJ(pl, . . . p, - , ) (the deriva- 
tives are with respect to different momenta). The arguments 
on the right-hand side of (A.6) take into account the momen- 
tum conservation. The sequence of the arguments is unim- 
portant, since r(" '  is a symmetric function. 

From (8) and (A.6) we get the derivatives of the bare 
vertices with respect to a: 

These equations give a recipe for differentiating directly in 
diagram language. Using (A.7) one shows easily that the fol- 
lowing Ward identities are valid for the single-particle irre- 
ducible vertexes: 

Indeed, attaching in all possible ways an additional line with 
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zero momentum to the diagrams I"") we obtain all the dia- 
grams'l'r'" + l', and furthermore with the correct symmetry 
coefficients. 

We now find the right-hand side of (A.4): 

Here the unconnected correlators are indicated by angle 
brackets. We wish to compare this expression with the 
Schwinger-Dyson equation for the polarization operator 
which is obtained after adding to (10) a term with a "source" 
J and differentiating the Schwinger equation (SS /Sp ) = J 
with respect to J a t  J = 0. (Here S/6p is a functional deriva- 
tive.) As a result we have 

ca 

(A. 10) 

For the sake of convenience we have indicated here only the 
arguments over which we do not integrate. We can express 
the right-hand side of (A. 10) in terms of irreducible vertices 
and obtain a diagram series for II. 

The mean value (pn ) in (A.9) is an uncoupled correla- 
tor which is equal to the sum of products of all possible con- 
nected ones. We denote by (pn  ), that part of the sum in 
which ( p  ) does not occur at all and by (pn  ), the part of the 
sum in which ( p  ) occurs but not to a power higher than 
unity. One sees easily that 

It is also clear that if J = 0 we have ( p  ) = 0. We can thus 
replace (pn ) by (pn  ) , in (A.9) and (pn  ) by (pn  ),. We can 
then write (A. 10) in the form 

1 6 + E - ( ~ N T )  i - n l z ( g ~ ~ )  "T:~") ( p )  G-' ( p )  6 T ( c p n ) l  
,, = 3 

n!  

It now remains to note that after differentiating ll with re- 
spect to the momentum the vertices l?t)(p) turn into "'rt' 
and the operation (gNT )'"G - 'S/SJon (pn  ) , turns out to be 
exactly - id /da, thanks to the Ward identity (A.8). Indeed, 
(pn  ) is in the form of a sum of contractions of single-parti- 
cle-irreducible vertices and exact propagators; S/SJ joins in 
turn to each single-particle irreducible vertex or propagator 
a new end, while G -' amputates it. When the momentum 
tends to zero and at zero frequency this is, according to (A.8), 
equivalent to differentiation with respect to a. The left-hand 
and right-hand sides of (A.4) are thus the same. 
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