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An analysis is given of the interaction of an electron beam with plasma for v,,,,/v, = (mi / 
me)'/', when the principal nonlinear process is the development of modulation instability. A 
detailed numerical simulation has been carried out of the beam-plasma interaction in one-dimen- 
sional geometry. Simple physical estimates that can be used to determine the turbulence param- 
eters are reported. It is shown that they agree well with the results of numerical calculations. 
Similar estimates are then used to investigate beam relaxation in the three-dimensional situation. 

There are many experimental situations involving plas- 
mas, both in the laboratory and in space, in which the relaxa- 
tion of an electron beam cannot be described either by the 
quasilinear theory or the weak-turbulence approximation 
(see, for example, Ref. 1). The development of the modula- 
tion instability of beam- excited Langmuir oscillations leads 
to the spatial modulation of turbulence and to the appear- 
ance of collapsing Langmuir cavitons.' This collapse leads to 
additional damping of the oscillations, and the influence of 
this effect on beam relaxation has been examined in a consid- 
erable number of papers (see, for example, Refs. 1 and 3). 

Apart from the additional energy dissipation, modula- 
tion instability broadens the spectrum of excited oscilla- 
tions. Since the growth rate of beam instability is not sign- 
definite, this fact may substantially alter the energy flux 
flowing into the plasma.4-6 We shall investigate this effect by 
considering the interaction of a beam of sufficiently fast elec- 
trons with a plasma. 

Most of this paper is concerned with the numerical sim- 
ulation of the beam-plasma interaction in a one-dimensional 
model. Simple estimates are given for the rate of energy dissi- 
pation, the level of turbulence, and other spectrum param- 
eters. The fact that the estimates are in good agreement with 
numerical calculations is a justification for using these ideas 
in the description of the beam-plasma interaction in the 
three-dimensional situation. 

1. Consider the excitation of oscillations by an electron 
beam with relative velocity spread Av/u, > (n, /nO)'l3, for 
which the instability may be regarded as kinetic (Av is the 
velocity spread in the beam and n, its density). Let the beam 
velocity v, be sufficiently high, i.e., 

nonlinear effects restrict the amplitude of the oscillations to 
a level much lower than that predicted by quasilinear theory, 
we shall neglect the change in the beam distribution func- 
tion. The electric field in the Langmuir oscillations excited 
by the electron beam is described by 

The first term on the right-hand side of this equation de- 
scribes the interaction with the beam, which assumes a par- 
ticularly simple form in the k-representation 

The second term in (2) describes collisional damping. 
Let us suppose that the beam and plasma parameters 

are such that the growth rate of the modulation instability 
y,,, -w, W/nTis much greater than that ofthe beam insta- 
bility, where W- IE I2/8.rr is the oscillation energy density. 
The structure of the steady (albeit only on average) distribu- 
tion of the oscillations does not then depend on the proper- 
ties of the beam. Figure 1 illustrates schematically the distri- 
bution of energy over a range of scales, i.e., the turbulence 
spectrum. It is clear that the spectrum can be characterized 
by three parameters: the width Ak, the oscillation energy 
density W, and the positionp ofthe spectrum peak. In strong 
Langmuir turbulence, the spectrum width Ak is related to W 
by'-3 

This condition is satisfied, for example, in type-I11 solar 
W(k) 

flares, when the electron velocity v, is of the order of c/3. 
When condition (1) is satisfied, long-wave Langmuir oscilla- 
tions with k,r, = v,/v,< (1 /3 ) (m/~ ) ' / *  are excited in the 
plasma. In this wave-vector range there are no effective n i f i  
mechanisms that would restrict the oscillation amplitude, krd ( ~ / m )  fi 
other than modulation instability; this is therefore impor- 
tant even when the threshold is only just exceeded. FIG. 1. Growth rate of beam instability and schematic distribution of 

Let us begin with the one-dimensional problem. Since oscillation energy in k-space for y,, % y, . 
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To determine the remaining two parameters, it is suffi- 
cient to have the energy-momentum balance equation 

j 7 .  ( k )  k W k  dk=v., kWk  dk. 

In a previous paper by one of the present  author^,^ these 
equations were obtained as the consistency conditions for 
(2), and were analyzed for solutions consisting of a set of 
solitons. However, it will be shown below that the results do 
not depend on the details of the spectral distribution. 

Let us suppose that the growth-rate width Sk - Avkdv, 
is much smaller than the width Ak of the spectrum. Expand- 
ing W, into a series around zero growth rate 

we find from (5) that 

veiW= (k-k,) yb ( k )  dkw' ( k ~ ) ,  
p-ko=W(ko) lW' (ko) . 

Since W1(k0) = W(ko)/Ak, we see that, as the intensity of os- 
cillations increases and, consequently, the spectrum width 
increases, the peak of the spectrum shifts to the right: 

The energy flux into the plasma is then given by 

It is clear that the broadening of the spectrum produces an 
appreciable reduction in absorption, and the instability can 
be stabilized even by weak linear damping. (We recall that 
there is no collapse in the one-dimensional problem.) 

We note further that the energy flux into the plasma 
does not depend on the dissipation mechanism. Finally, the 
level of the oscillations is described by 

We must now examine the range of validity of our re- 
sults. First of all, the growth rate of the modulation instabil- 
ity y,, -a, W/n Tmust exceed the beam value. Using (lo), 
we obtain 

This condition leads thus to a restriction on the minimum 
velocity spread in the beam, and does not depend on density. 

Moreover, the level of turbulence must be sufficiently 
low: W/n T < m/M or y, /vei < m/M (Skrd )2. Effective exci- 
tation of ion-acoustic oscillations begins when this condition 
is violated. Furthermore, the characteristic group velocity of 
the oscillations must not be close to the thermal velocity 
since, otherwise, intensive interaction between the oscilla- 
tions and ions will begin.' 

We note further that it is shown in Ref. 8 that solitons 
are accelerated and retarded when the pump is off and on, 
respectively. They should therefore bunch near k = k,, 
which is in conflict with the above shift of the spectrum to- 
ward greater k. However, this process is due to the emission 
of sound by solitons. We, however, are considering here the 
static approximation in which sound is not generated. 

2. In deriving the above estimates for turbulence param- 
eters, we have actually introduced the assumption that the 
oscillation spectrum was smooth and stationary on average. 
Since it was not clear to what extent this assumptions was 
valid, we carried out a number of numerical calculations. 

We note that the problem involves three appreciably 
different time scales vei - ' > yb - ' > y;: and two spatial 
scales Sk -' > Ak -'. The necessity for allowing the smallest 
of these means that, although the problem is one-dimension- 
al, the calculations become nontrivial because the solutions 
must be stable over long time intervals. 

We have solved numerically the dynamic equation (2) 
with periodic and stochastic initial conditions. The number 
of points on the sampling interval was 5 12 and the computa- 
tion time was k 30yb - '. To solve (2), we used a conservative 
difference scheme of the second order of accuracy in space 
and time, which has integral conservation laws for (2). 

The resulting turbulence consists largely of a set of soli- 
tons that scatter each other, and is essentially nonstationary. 
However, the average turbulence parameters reach station- 
ary values relatively rapidly. The turbulence spectrum aver- 
aged over several y, -' is also stationary. 

Figure 2 shows the time-averaged distribution of the 
oscillations. It is clear that the numerical results are in good 
agreement with the qualitative representation of Fig. 1. 

For a quantitative verification, we investigated the level 
of turbulence as a function of beam width [formula (lo)]. 
Figure 3 shows that the quadratic dependence of Won Sk 
which follows from (10) is in fact satisfactorily confirmed, 
and the numerical coefficient in (10) turns out to be close to 
unity: W/nT=: yb (Skrd)2/vei. In this case, the beam-insta- 
bility growth rate was taken in the form of a cubic parabola. 

The character of the spectrum changes sharply (Fig. 4) 
when condition (1 1) is violated. It can be said that it consists 
of a quasimonochromatic wave, whose wave vector corre- 
sponds to the maximum growth rate, and a smooth broad 
spectrum. It was precisely this shape of the spectrum that 
was proposed in Ref. 1. 

FIG. 2. Average distribution of oscillations in k-space for y,, > y,, ob- 
tained as a result of numerical calculations with y, = 3vei, 
Skr, = 0.06 ( r n / ~ ) ' / ' .  The computation time was 36y; '. 
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FIG. 5. Oscillation energy density W, the energy of resonant waves W,, 

FIG. 3. Steady oscillation energy density as a function of the instability and the energy flux into the as functions Of the beam growth 

growth rate y, = 7vei. The first two points correspond to yb > y,, . rate: 6krd = 0.01 ( r n / ~ ) " ~ .  

The energy flux into the plasma and the level of turbu- 
lence can be estimated as follows. Let the oscillation energy 
in the region of growth rate W, be much smaller than the 
total oscillation energy W. In equilibrium, the energy flux 
into the resonant oscillation Q = y, Wo is compensated by 
outflow over the spectrum due to modulation instability 
Q = y,, W,. When W> Wo, the growth rate of the modula- 
tion instability is determined by the wide spectrum 
y,,, = wp W/nT. The liberated energy is finally absorbed 
by collisions, Q = vei W, so that we have 

The energy flux into the plasma is given by 

Q=ybveinT/oP. (13) 

It follows that, as the growth-rate width is reduced (at a 
constant value of the growth rate), the energy flux decreases 
and then reaches the constant value given by (13) for 
(Skr, )2 - Y,, /ap . Numerical calculations have confirmed 
this (see Fig. 3). 

Figure 5 shows Q, Wand W, as functions of the growth 
rate when its width is small. It is clear that (12) and (13) are 
confirmed quite well by the numerical calculations. 

3. So far, we have assumed a one-dimensional turbu- 
lence. However, it is well-known that, in isotropic plasma, 
solitons, and consequently the entire turbulence, are unsta- 
ble against transverse perturbations. It would appear that 
the turbulence can be made one-dimensional by placing the 
plasma in a magnetic field. However, when w, > w, , the 
dispersion relation for the Langmuir oscillations is 

It is clear that these oscillations can decay into oscillations 
propagating at a large angle to the magnetic field, so that it is 
only in systems with small transverse dimensions, for which 
they decay instability can be suppressed by effectively ex- 

FIG. 4. Distribution of the oscillations in k-space for y,, < y,, 
y, = 4vei, 6krd = 0.025 ( m / ~ ) " ~ .  

tending the oscillations beyond the walls of the chamber, 
that the one-dimensional turbulence can be produced. This 
was done in the well-known experiments reported in Ref. 9. 
When w, < wp , the dispersion relation for the Langmuir os- 
cillations is 

It is clear that the onset of transverse modulation leads to an 
increase in frequency, and is energetically unprofitable. 
However, the question remains open for long-wave k, (k 
perturbations such that S o  - (w$/w,)(k :/k i)(y. 

The equation describing the evolution of oscillations 
(14) has the following form in the static limit: 

We shall confine our attention to the case where instability 
results in the excitation of a narrow packet of oscillations 
with Ak < k, = wp /v,. We can then transform in (15) to the 
equation for the envelopes which, in terms of the dimension- 
less variables, is 

iYd+'/z (1+oR2/op2 ( k O r d l 2 )  hlY+i/ZYrr-kl Y 12y=0. 

This differs from the usual Schrodinger equation, in which 
one-dimensional solitons are unstable against transverse 
perturbations,'0 only by the stretching of the transverse co- 
ordinates (relative to the magnetic field). It may therefore be 
considered that the magnetic field does not influence the 
instability itself and its maximum growth rate. The magnetic 
field only leads to an increase in the transverse dimensions of 
the perturbations. The increase in the characteristic trans- 
verse dimensions during the development of modulation in- 
stability in a weak magnetic field has already been men- 
tioned in Ref. 11. The dimensions of the unstable 
perturbations should exceed those of a soliton by the factor 
w,/w, kord . Since k,r, < (1/3)(m/M )'I2 in a strong magnet- 
ic field w, 5 wp , this ratio is of the order of 100, and one- 
dimensional turbulence can be observed in specially de- 
signed laboratory experiments. 

4. We must now consider beam relaxation in isotropic 
plasmas. As before, we shall confine our attention to the case 
where kr, < (m/M )'I2. Let us suppose that the broadening of 
the spectrum by modulation instability exceeds the growth- 
rate width both in the longitudinal and transverse directions. 
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In the three-dimensional case, the development of mo- 
dulation instability leads to the collapse of Langmuir oscilla- 
tions. The turbulence spectrum due to collapses falls rapidly 
with increasing k. Thus, in the inertial interval, we have 
Wk , so that the collapsing cavitons do not contri- 
bute to the energy balance ( 5 ) ,  and the energy flux into the 
plasma can be estimated as in Sec. 2. If we now introduce the 
longitudinal and transverse growth-rate widths Sk ,, ,Sk,, we 
can write 

We shall suppose that the collapse is subsonic, so that, 
provided the condition2 

vei>veff-o9 ( WInT)  Y2 (Mlm)  '" 

is satisfied, absorption is governed by collisions, and 

WInT- (yb/vei) " (6kn6klrd2). (17) 

The condition for the validity of our analysis, 
y,, > yb, now becomes more stringent: 

than in the one-dimensional case: 

vtilop< (6kllrd)'.  

When v,, > vei , absorption is determined by the collapse: 

The turbulence spectra become modified when the instabil- 
ity growth rate becomes greater than y,, . 

The spectra now consist of a quasimonochromatic wave 
with energy W,, a wide spectrum W, and a rapidly falling tail 
due to the collapsing cavitons. When v,, < vei and dissipa- 
tion is determined by collisions, we have, as in the one-di- 
mensional case, 

so that (12) and (13) are valid. When energy dissipation is 
determined by collapse, the level of turbulence can be found 
from the condition y, = y,, , and is given by 

The oscillation intensity in the region of the growth rate can 
be found from the energy balance 

The energy flux into the plasma turns out to be 

We note once again that our results are valid only for W/ 
nT<m/M or for yb/u, <m/M, i.e., we have the limiting 
relation Q-w, nT(m/M)'. Intense ion-acoustic oscillations 
are excited as the beam density increases, and the physical 
picture becomes very much more involved. 

The authors are indebted to S. L. Musher for useful 
discussions. 
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