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The photoionization of an atom accompanied by the resonant excitation of an autoionizing state 
is analyzed. The time evolution of the total ionization probability, the dependence of this prob- 
ability on the frequency of the resonant radiation, and the energy spectrum of the photoelectrons 
are studied. It is found that the energy of the final state of the system may become localized either 
at E-Ea, where Ea is the energy of the autoionizing state, or at E-Ea + h, where h is the 
photon energy of the resonant radiation. The energy spectrum of the photoelectrons correspond- 
ing to the region E-E, + h is basically similar to the spectrum of electrons during atom 
photoionization accompanied by the resonant excitation of a bound state. The spectrum of photo- 
electrons corresponding to the region E-Ea is strongly affected by an interference between 
different pathways for the decay of the ground state in the resonant field, with the result that the 
spectrum acquires a characteristic Fano structure. The interference also influences the widths of 
both spectral curves, the ratio of the numbers of electrons in the two energy regions, and other 
characteristics of the ionization process. The additional presence of a noninterfering pathway for 
photoionization of the autoionizing state leads to finite widths and heights of the spectral curves 
and prevents a complete "confluence of coherences." 

1. INTRODUCTION 

The behavior of autoionizing states of atoms in a strong 
electromagnetic field has been the subject of a fair number of 
recent papers. '-I2 The quasienergy spectrum and the decay 
of a system containing an autoionizing state coupled by a 
resonant field to another state of this system were studied in 
Refs. 2 and 12. The spectra of the absorption of probing 
radiation by such a system (autoianization resonances) were 
studied in Refs. 1 and 4-6. The spectrum of photoelectrons 
formed during the photoionization of an atom accompanied 
by the resonant excitation of an autoionizing state was stud- 
ied in Ref. 3. The effect of the spontaneous decay of an au- 
toionizing state in a resonant electromagnetic field on the 
energy distribution of the photoelectrons and on the sponta- 
neous-emission spectrum was studied in Refs. 7-1 1 and 13. 

This research is of interest in its own right and also in 
connection with experiments on the two-electron ionization 
of alkaline earth atoms.'"16 Two-electron excited states, in- 
cluding autoionizing states, may serve as intermediate states 
in two-electron ionization. In a typical situation, a strong 
external electromagnetic field (up to 10'' W/cm2) is at reso- 
nance with transitions between certain autoionizing states or 
between an autoionizing state and discrete atomic levels. 

In the present paper we analyze the photoionization of 
an atom accompanied by resonant excitation of an autoion- 
izing state. We study the time evolution of the total ioniza- 
tion probability, its dispersive dependence on the frequency 
of the resonant radiation, and the energy spectrum of the 
photoelectrons. This process has much in common with or- 
dinary ionization involving a resonance with a discrete inter- 
mediate level," but there are also some qualitative differ- 
ences. Specifically, the levels of autoionizing states differ 

from discrete levels in that they lie above the first ionization 
threshold of the atom and can decay spontaneously by virtue 
of an interelectron configuration interaction. For the same 
reason, photoelectrons arise not only at energies E-Ea 
+ h - Ef, where Ea and Ef are the energies of the au- 

toionizing state and of the final state of the ion, and h is the 
energy of the photon of the electromagnetic field, but also at 
energies E-Ea - Ef. Furthermore, in this case there are 
several pathways for the decay of the system to given states 
of the continuum, E-Ea . An important role may be played 
here by interference between the corresponding transitions, 
while there would be no such interference in ordinary reso- 
nant ionization. 

The photoelectron spectrum studied in Ref. 3 did not 
contain the energy region E-Ea + h - Ef, since the di- 
rect photoionization of the autoionizing state itself was not 
considered there. As we show below, under certain condi- 
tions this energy region may hold most of the photoelec- 
trons. In addition, the existence of an ionization pathway for 
the decay of the autoionizing state reduces the role of inter- 
ference phenomena and thus also influences the electron 
spectrum in the region E-Ea - Ef. For the same reasons, 
as we show below, the results derived in Ref. 3 are not cor- 
rect. 

2.STATEMENT OF THE PROBLEM; GENERAL EXPRESSIONS 

We assume that an electromagnetic field of frequency 
w zEa - E, (we are setting f i  = 1) acts on an atom that is 
initially in a state p1 with an energy El .  This field causes 
Rabi oscillations in the El,  E, level system, and it also causes 
ionization of the atom from each of these states. The au- 
toionizing state itself decays by virtue of an interelectron 
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FIG. 1. Scheme of the pertinent transitions. 

configuration interaction. Figure 1 shows the transitions 
considered. 

States with a given energy E are always degenerate (for 
example, in the orbital quantum number L ). We partition the 
set of degenerate continuum states into three subgroups as 
follows: Subgroup E consists of those states of the contin- 
uum to which the autoionizing state can decay and to which 
a dipole transition from the discrete level El can also be in- 
duced by the external field. Subgroup E " consists of those 
states of the continuum of energy E which are not dipole- 
coupled to the level El but to which the autoionizing state Ea 
does decay. Subgroup E m  consists of those states of the con- 
tinuum (with the same energy) which are coupled exclusively 
with the discrete El and which are not populated during the 
autoionization decay of the autoionizing state. A partition- 
ing of this sort is obviously possible in all cases. Let us as- 
sume, for example, that the initial state El has an orbital 
quantum number L = 1 (a P state), while the autoionizing 
state Ea coupled with it by the resonant field is a D state 
(L = 2). If the orbital quantum number is conserved during 
the autoionization decay, autoionizing state Ea decays only 
to D states of the continuum; i.e., the state of continuum E 
have L = 2. During ionization of state E l ,  on the other hand, 
both the D states of continuum E and the S states of contin- 
uum E" are populated. In this case, there is no autoioniza- 
tion decay of the state Ea to theS states of continuum E ", so 
that the amplitudes for transitions to E and E " do not inter- 
fere with each other. In precisely the same way, states of the 
continuum E" may appear to which there is an autoioniza- 
tion decay of Ea but which are not populated from state El 
by the electromagnetic field, e.g., in cases in which L is not a 
good quantum number. In certain special situations there 
may be no states in continua E " and E '" in the partitioning 
described above. One such situation is that in which L is a 
good quantum number, El is an S level, and Ea is a P level. 
The amplitudes for the transitions by the different pathways 
E,-+Ea -+E and E,+E to given states of the continuum in- 
terfere with each other. Accordingly, in addition to the "in- 
terfering" transitions there are "noninterfering" transitions, 
including the transitions El-+Ea -+E ", E,+E ", and the ion- 
ization transition upward from the autoionizing state in- 
volving the absorption of a photon, Ea -+E ' z E a  + w. 

To find the probability for ionizing the system we need 
to solve the Schrodinger equation for the atomic wave func- 
tion Y(t ), which we take to be a superposition of the wave 
functions of the unperturbed atomic states 

Pl@a @E ,PE, $41," ,Q)E with the respective energies 
E,,Ea ,E,E1,E ",E ": 

Y ( t )  =aiple-LE~t+aacpae-lEaf+ JaflEe-"tdE 

We assume that the field is turned on instantaneously at the 
time t = 0; i.e., we assume that the time required to turn the 
field on satisfies At&t,l/flR , l /y  * [see expression (7) be- 
low]. We adopt the initial conditions 

a, ( 0 )  = I ,  a, ( 0 )  =0,  aE ( 0 )  =0,  

a,. ( 0 )  =0, a E P r  ( 0 )  =0, a,.,. ( 0 )  = O .  
(2) 

In the resonant approximation we find for the amplitudes 
a,(b ), ..., a, ffl (t ) a system of linear first-order differential 
equations that can be solved by Laplace transforms, among 
other methods. The procedure for solving equations of this 
sort is described in detail in Refs. 4 for some other transition 
schemes, and we will not reproduce it here. As a result, we 
find the following expressions for the probability amplitudes 
for finding the system in the continuum states: 

exp ( - i t [E,-E+ e /2+  '/, Re Q - i y ( - ) / 2 ] )  -1 
X {  E . - E + ~ I ~ + ~ / ,  ~e ?-iY(-)b 

6'2) exp ( - i t [E ,+o-E'+e /2-1 /2  Re Q - i y ( + ) / 2 ] )  -A 
E,+ o--E'+e/2,-'/, Re Q - i y ( + ) / 2  

exp ( - i t [Ea+o--E'+ e/2+'/* Re Q - i y ( - ) / 2 ] )  - 1  
+bd-' 

En+ o-E'+e /2f112  Re f i - iy ( - ) /2  1 
The amplitudes a,. (t ) and a, rfl (t ) are given by expressions 
similar to that for a,. (t ), in which we must omit w and use the 
substitutions ri -+ra ',E 'LE " for a, .. (t ) and 
ri -+r; , E 'LE ",b b* -b \* for a, ,,I (t ). 

In (3) we have used the notation 

r a = 2 n  I WaEJ21E=E0, 

for the interfering and noninterfering, respectively, parts of 
the total autoionization width Fa = T a  + rb of the level Ea 
caused by the decay of the autoionizing state to states of the 
continua E and E' under the influence of the interelectron 
interaction operator W. In addition, 

ri=2nl viE121E=E,+o, rit=2nl v i E V , , l 2 1 E r r , = E , + r n ,  
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are the ionization widths of the levgs due to the electromag- 
netic field; the operator V = - Id8' represents the interac- 
tion of the atom with the field (in the dipole approximation); 
the operator d represents the dipole moment of the atom; and 
8' is the electric field amplitude of the electromagnetic wave. 
The total ionization width ?;, = I?, + r; of level El also 
consists of an interfering part (r,) and a noninterfering part 
( r , ' ) .  The ionization width of the autoionization state, r i ,  is 
due to the transitions Ea -+Ea + o. We see from (5) that, 
generally speaking, the ionization widths r , , r I f , r i  are of 
the same order of magnitude: 

Here gat and Eat are characteristic values of the intra-atom- 
ic electric field and the intra-atomic energy. As usual, we 
consider the case 8' 4 g a t ,  so that we may ignore transitions 
between states of the continuum." It can be seen from (6) 
that the ionization widths are small in comparison with Eat. 
The quantity E is the deviation from resonance, 
E = El  + w - Ea ,  where the level energies El and Ea have 
been corrected for the dynamic Stark effect in the fields i7 
(Ref. 4). The quantities + ReO(&) and y( * ' (E) determine the 
positions and widths, respectively, of two quasienergy levels 
of the two-level system p1,p2 in the resonant field w :  

a ( E )  (r(2)-r(L) )2/4-r,,2, 
b ( ~ )  =& (r(2)-r(i)) -rjria, 

(7) 

y ( * )  ( E )  = (I'(')+r(2))/2f Im 52 ( E ) ,  

Re ( E )  =2-lh (a (8 )  + [a2 ( E )  +b2(~)]'h)1h sign b ( E ) ,  

Im Q ( E )  =2-lb(-a(&)+ [a2(~)+b2(e)]"')'", 
where 

is the field-induced width, which determines the frequency 
of the Rabi oscillations in the two-level system, 
nR = (E' + r3/4)'/'. It is easy to show that the condition 
0, ) I R e n ( ~ ) (  holds. 

The quantity 

rfa= ( r ~ ~ ) ' ~  (9)  

is a cross width which describes the-transition El+Ea 
through states of the continuum, i.e., by the pathway 
El+E+Ea, and which thus contains only the interfering 
parts of the width Fa and TI. The ratio 

q=rj/4r,.- ( ~ , , / r ~ )  (10) 
is the Fano parameter,'' which is independent of the field 8' 
and which is large, q )  1, under typical conditions. 

The widths r"' and F2'are the total widths of the isolat- 
ed atomic levels E, and Ea in the field 8': 

r = + r i f + r  rc2)=r,+r,'+ri+r,,. (1 1) 
These widths also include the natural widths of these levels, 

r4, and r, , which describe the spontaneous decay of these 
levels. 

Finally, b ',*) and b b* are given by: 

(12) 
This system has two characteristic decay constants, 

y ( + )  and y(-', which are generally not the same as the 
widths of the isolated levels, r"' and I"'). As was shown in 
Refs. (4) and (12), only in the limit IE~+co, i.e., in the case 
(E()rf,  q r a  [or for a field g 4 ,  i.e., in the case 
r14rrl , r f  4(rrl Fa )'/2], does the mixing of the states pl 
and pa by the resonant field become inconsequential, so that 
we would have y'+)+r'2', y'-)-+r"'' (with r(2) > P I ) ) .  It was 
also shown in Refs. (4) and (12) that y'+' + y'-) = r"' + F2' 
and that y'+'> y'-' for arbitrary E. The difference between 
the widths y'-' and y'+', on the one hand, and I"" and T"', 
on the other, results from an interference between the ampli- 
tude for the transitions El-+Ea +E and El+E. This inter- 
ference becomes most apparent at a certain deviation 
E = at which the functions y'+' and y'-' have a maxi- 
mum and a minimum, respectively: 

& . =-q (f"2'-r'" 
min ) 1 

ymox-y(+) =i/2[r(i)+r(2)* ( (r(2)-r(i))2+4r,r,,) 1 1 1 2 .  
(13) 

min 

In the formation of the decay width of one of the quasienergy 
states, y'-', in the region (E - I 5 q r a  , the interference 
of the amplitudes for the transitions El-+Ea -+E and El+E 
is destructive and results in a decrease in the decay rate of 
this state and its width. In contrast, in the formation of the 
width of the other state, y'+', in the same region of the devi- 
ation E, the interference of the amplitudes increases the 
width and the decay rate of this state. In a field which is not 
too strong, such that 

we have ( z q r a  )To, and the probability per unit time 
for a decay of the state p, by the pathway El+Ea +E, esti- 
mated as the probability for resonant ionization, '' is equal to 
the probability (r,) for the direct decay El+E of the state p,:  

It is easy to see from (13) that y'-'(y'+'. If the noninterfering 
parts of the widths are zero, 

r,'=rlf=0, 
we find from ( 13) 

This case occurs when, for example, El is an Sstate and Ea is 
a P state. 

We assume below that condition (1 5) holds, and we also 
ignore the spontaneous widths. These assumptions do not 
qualitatively change the results; they are made exclusively to 
simplify the equations.We might note that if we adopted the 
typical value 10-8Ea, for the spontaneous widths, we would 
find ionization widths exceeding the spontaneous widths 
even at 8' 2 10-48'a, - 5 x lo5 V/cm. 
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Under conditions (14) and with I E  - 1 (qr,, we can 
easily find the following expansions for Re a(&) and *)(E) 
from (7): 

Re Q ( E )  =-qra (l+I'irl/I?a2) + (1-2ri/ra) 

In stronger fields, with Tf )qT,, the interference 
between pathways is inconsequential, and the widths of the 
two quasienergy states are identical in order of magnitude 
for arbitrary values of E: y'-'- y(+' 2 r, (Refs. 4 and 12). 

The total probability for the ionization of an atom by 
the time t, 

w(t)=J l a . ( t ) I z d ~ + J  l ~ ~ , ( t ) l ~ d ~ ~ = ~ , ( t ) + ~ , ( t ) .  (18) 

can easily be found from expression (3): 

wi(t) = j jaE(t) I ~ ~ E  

The function Wl(t )is the probability for ionization accompa- 
nied by a transition of the system to the energy region 
E z E ,  , while the function W2(t ) is the probability for ioniza- 
tion accompanied by a transition of the system to the energy 
E z E ,  + w .  The function W,(t ) is completely analogous in 
form to function (23) of Ref. (17), which describes the prob- 
ability for the ionization of an atom accompanied by a reso- 
nance in a discrete level. In the present case, however, be- 
cause of the presence of several decay pathways, the 
positions and widths of the quasienergy levels, Re f l  and 
y(+', are more complicated functions of the field and the 
frequency. 

In the following section of this paper we analyze the 
time evolution of the photoionization probabilities W,,, (t ) 
and their dispersive dependence on the radiation frequency 
w for various pulselengths of the electromagnetic field. 

3. IONIZATION PROBABILITY AS A FUNCTION OFTHE PULSE 
LENGTH AND FREQUENCY OF THE RADIATION 

We first assume that the pulse length of the radiation is 
very short: 

\Re Qlt<l ,  y(+It<l. (20) 

From these conditions we find fl, t(1 for both weak fields 
(rj (I?, ) and strong fields (rj )r, ). From (19) we easily find 

As in the case of a resonance in a discrete level [expression 
(28) of Ref. 171, the function W2 is proportional tot  at small 
values oft, since El+Ea +E ' zE, + w is a two-step transi- 
tion. The probability W,, on the other hand, is proportional 
to the pulse length t, because of the direct decay pathway 
E l + E z E a .  

We now examine, for this range of pulse lenths, the dis- 
persive dependence of the rate of absorption of radiation en- 
ergy, d W,/dt, on the frequency w during transitions of the 
system of states EzE,. From (19) we easily find that for 
weak fields, with I'f (Fa,  we have 

This is an expression of the Fano typela with a characteristic 
width r = r, . The derivative d Wl/dt has a maximum at the 
point E = E, = ra /8q(ra, (d Wl/dt ),,, = d Wl(cl)/ 
dt = 8q2r l ) r l  and a minimum (due to the interference of 
different pathways for the decay of the state El) at the point 
E = E~ = - 2qra ; here Ic2 1 ) T, and (d Wl/ 
dt)mi, = d W , ( ~ ~ ) / d t z r , / 2 .  Asymptotically, we have d Wl/ 
dt-l?, as E-+W ( I E ~  Bqr,). In contrast with the standard 
Fano formula, however, we have ~ + ( d  Wl/dt ),, #O, and 
the interference minimum is not deep (Fig. 2). 

Using (21) and (22) we can easily show that over the 
entire range of frequency deviations allowed [by (20)], 
Icltgl, photoelectrons are formed primarily at energies 
EzE, -Ef, W2(Wl. 

In stronger fields satisfying the condition Tf)T, we 
have 

dWi rl -=-[ at 2 I +  (23) 

The function (23) is of the form of the sum of Fano distribu- 
tions with a width r = rf and a constant r,/2; the maxi- 
mum and the minimum are now reached at the respective 
points 

~~=r,2/8qr,, &~=-2qrar 

FIG. 2. Qualitative behavior of the energy absorption rate T,-'d W,/dt as 
a function of E,  the frequency deviation from resonance [expressions (22), 
(23), (27), (30), and (31)]. The characteristic width ofthe curve is r = T, in 
weak fields, T f  <r,, and r = rf in stronger fields, rf >To. 
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We again have (d Wl/dt ),, = d W,(~,)/dt = r1/2, and as- 
ymptotically we have dWl/dt+T, as &-+GO (i.e., 
I E I  ) r f ,  q r a  ). The position of the maximum is shifted to the 
right by a factor (Tf /ra )2) 1 in comparison with the case of a 
weak field, while the minimum remains at the same place. If 
the field satisfies the condition q r a  ) r f ,  we have (dW,/ 
dt ),,, = d W1(~,)dt=:8q2(ra / r f ) ' r1 ) r l ;  i.e., themaximum 
of the function d Wl/dt is still strongly pronounced, but it is 
lower than in the case of a weak field by a factor (ra /rf )2( 1. 
For very strong fields, with q r a  / r f ,  the maximum of the 
function d Wl/dt is barely noticeable: 

Furthermore, W2(&)/ W1(&)(Ti /rl 5 1; i.e., W2( Wl over 
the entire time interval in (20). At a longer pulse length t, at 
which several Rabi oscillations can occur in the El,Ea level 
system, we have 

Both probabilities Wl and W2 are proportional to t: 

W ,  ( t )  = ( IC(+) l2+ lC( - ' I2 ) t ,  
(25) 

For weak fields, when rf (r , ,  conditions (24) can hold 
simultaneously only for a large deviation from resonance: 
lei t) 1, I&l)r,. Here d Wl/dt is given by (22), in whch we 
must omit the width r, in the denominator, and 

dW21dt=I'il?f2 (1+1 /4q2)  /8e2.  (26) 

For stronger fields, with rf ) r a ,  d Wl/dt is given by 
(23), wile d W2/dt is a Lorentzian curve: 

It is easy to see that in moderately strong fields, 
Tf (qr,, we have d Wl/dt>d W2/dt for arbitrary values of 
the deviation from resonance, E. At rf )q ra ,  however, near 
the point E = - q r a ,  the ionization rate at energies 
E-Ea + w may become comparable to the ionization rate 
at energies E- Ea if ri and ri are approximately equal. 

We now assume that the pulse length is such that one of 
the quasienergy states manages to decay: 

The two inequalities can hold simultaneously only in fields 
that are not too strong, r f ( q r a ,  for which we have 
y'-'(y'+'. From (19) we easily find 

dWi 
dt (Re Q ( E )  + ~ - k 2 q r ~ ) ~  

The case of weak fields, rf (r, , corresponds to the for- 
mulation of the problem in Fano's perturbation-theory cal- 
culation18 of the absorption coefficient for weak radiation 

near an autoionization resonance. The expression for d W,/ 
dt becomes, in lowest order in the field, the ordinary Fano 
formula, l7  

which describes an asymmetric absorption line under the 
condition I?, t) 1 [corresponding to the first of inequalities 
(28)l. The curve has a width r = T, and a zero interference 
minimum at E = e2 = - q r a  . When we go to next order in 
the field, however, an additional positive term proportional 
to the width Ti appears in the numerator of the expression 
for dW,/dt, so that the interference minimum is not zero. 
The maximum value of the function d Wl/dt as a function of 
E is 4r1q2)r1 and is reached at E = E, = r,/4q. 

In stronger fields, at q r ,  )rf ) r a ,  we have 

dW, I?, (Q ,  sign ( b )  +e+2qI',) '+ ( (b1 / 2 Q R - r o / 2 ) 2  -=- 
d t  4 e2+I'f2/4 (31) 

The function d W,/dt has a maximum and a minimum as a 
function of E at the points E = r;/8qra and 
E = E  - - - qr ,  =:emin respectively, given in (13); here 

in the limit E+CC (i.e., I E I ) ~ ~ , ) .  The curve of dW,/dt as a 
function of E is again a Fano curve with a deep minimum. Its 
width is now determined by the field-induced width Tf, and 
the maximum is smaller than in the case of a weak field, (30), 
by a factor (rf /ra )2. The curve of d Wl/dt as a function of 
the deviation from resonance, E, is qualitatively a Fano curve 
(Fig. 2). Its characteristic width r is equal to the width of the 
autoionizing state, r a ,  in the case of weak fields, rf (Fa 
[Eqs. (22) and (30)], and r is equal to the field-induced width 
rf for stronger fields, with rf >ra [Eqs. (23), (27), and (3 I)]. 
The curve of dW2/dt as a function of E is Lorentzian. It is 
easy to see that at the point of the maximum we have 

The relation between d W,/dt and d W2/dt and that between 
the ionization probabilities Wand W2, however, at values of 
E near the point E = emin is more complicated. Using expan- 
sion (17), we find the following from (19) under the condition 
I &  - Emin I (4ra : 

E ~ - E , , , ~ ~ + Q ~ ~ .  (32) 
The ratio of the decay rates to the states with the ener- 

gies E z Ea and E =: E, + w is 
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At I E  - c, l>q(~,  r i ) ' I 2  the function f (E) is much 
greater than unity. At (E  - ~ , ( ( q ( r ,  ri) 'I2,  the function f (E)  

is much smaller than unity, and the ionization rate is sup- 
pressed in the region EzE, by an interference of the decay 
channels of the state El .  Conditions (28) can be rewritten in 
this case as l / r ,  (t(r, /r i  TI. 

From (32) we find 

W ,  ( t )  - r , l r , ~  W ,  ( t )  for r i tKl ,  

W 1  ( t )  - W ,  ( t )  -r1lr, for Tit-I, 
(34) 

W ,  ( t )  W ,  ( t )  for leTitKr.lrl. 

At the boundary of the range of applicability of (34), with 
t i ,  we have W 2 z l  and 1 At 
I E  - ~ , / ) q ( r ,  ri)'" the restrictions on the pulse length are 
more stringent: 

The effect of the interference of pathways is now negli- 
gible, and we have Wl(t )) W,(t ) over the entire allowed time 
interval. At the boundary of the range of applicability, at 
t z ( q r a ) 2 / T 1 ( ~  - E,)~, we now have, on the contrary, W, z 1 
and W241. For a very long radiation pulse length, at which 
the conditions for the decay ofboth of the quasienergy states 
are satisfied, 

y(+'t>>l, y'-'t>>l, (35) 

the atom decays completely during the pulse: Wl + W2 = 1. 
The only question remaining to be studied is the relation 
between the probabilities W, and Wl. From (19) we easily 
find 

- - r i r f2( i+i /4q2)  (I?(')+ I?(')) (36) 

16y+) ( E ' )  y ( - )  ( E )  [ (Re Q (E) ) '+Vp (1'(1)+1'(2)) ' 1  ' 

Analysis of this expression shows that the function 
W2(&) is a Lorentzian curve with a scale width rf in strong 
fields, Tf)qra, for which the widths of the quasienergy 
states, y'+' and y'-', are approximately equal for any value of 
E (the deviation from resonance) vary only slightly with E 

(Ref. 12), and (Re z = E~ + r:/4. The probability 

It is also easy to show that in weaker fields, rf (qr,, 
the probability ( W,) for ionization of the system in the energy 
region E- E, + w is small for any E except in a small neigh- 
borhood ofs,,,, . In this region of deviations we can write (36) 
in the following form, using expansion (17): 

From this expression we find 

At I E  - E,I (q(ra ri ) l I2  the ionization of the atom occurs for 
the most part at energies EzE, + w ,  while the ionization in 
the region EzE, is suppressed by the destructive interfer- 
ence of the different pathways for the decay of the state El.  
At le - %q(Ta ri) 'I2,  on the other hand, the interference 
is insignificant, and we have W,) W2. These conclusions 
were drawn qualitatively above from (32) for the upper 
boundary of the interval of times determined by (28). 

4. PHOTOELECTRON SPECTRUM 

Let us examine the energy spectrum of the photoelec- 
trons resulting from the ionization of the atom by radiation 
pulses of substantial duration satisfying condition (35). If, 
during the decay of an autoionizing state, an ion is in a strict- 
ly definite state (e.g., the ground state), with energy Ef, as we 
will assume below, then the probability W (E ) for finding the 
system in a state of the continuum with the energy E is at the 
same time the probability for finding a photoelectron with an 
energy E - Ef. For brevity, we will refer to the function 
W(E)  as the "photoelectron distribution function." This 
function can be written as the sum 

W(E)=IYi(E)+Wz(E),  (38) 
ratio W2/ Wl is equal in order of magnitude to the ratio of the where Wl(E ) and W2(E ) are the photoelectron distribution 
ionization widths, r i / r , ,  in the case I E )  5 Tf, while it is W2/ functions localized in the energy regions - (E, - Ef) and 
W141 at 14>rf .  - (E, + w - Ef ). From (3) we easily find 

I 
In terms of its behavior as a function of the energy (the the electron distribution function found in Ref. 17 for the 

product of two Lorentzians), the function W,(E ) is similar to ionization of an atom accompanied by the resonant excita- 
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tion of a bound state. This function has two peaks, with 
widths y'+'and y'-', which agree with the widths of quasien- 
ergy states of the system. 

As for the function Wl(E ), we note that it is the product 
of a Lorentzian distribution of width y'+' and a function 
@(E) of the Fano type, (17), with a width y'-': 

@ ( E )  = 
(E-E,+qr,) 2 f  '/41',2 

E 
(40) 

( E-E. - - -'I, ~e R) ' +li,y(-)' 
2 

A minimum is caused in the function @(E ) by the destructive 
interference of the amplitudes for the transitions E1+E and 
El-+E, +E. However, in contrast with the ordinary Fano 
function, the minimum is not zero in this case, because of the 
existence of an ionizational pathway for the decay of the 
autoionization state. 

We restrict the analysis below to a study of the func- 
tions W,,, (E ) in moderately strong fields, satisfying condi- 
tion (14), Tf<qra ,  and we restrict the analysis to the region 
of deviations of the electromagnetic field from resonance sa- 
tisfying )E  - 1 g q r a ,  in which the interference phenom- 
ena are most obvious. Using expansions (17), we find the 
following expression for the denominator of the function 
WI(E 1: 

It is clear that the position of the maximum E of the 
broad peak of the function W,(E), which has a width 
y'+'- r a ,  does not depend on E: E if,) = E, + q r , .  Before 
we study the behavior of the function W,(E ) near the narrow 
peak of width y'-', we find the extrema of the Fano function 
@(E). Their positions are given by 

We thus see that in the region 

;F-E,,,~,,~ Kmin (q ra ,  qra(I'i/I'i)l'z), (43) 
for which y'-'(&)gri [see (l7)], the function @(E ) has a maxi- 
mum @,,, and an interference minimum @,, at the points 
E ;;,-,! and E :in : 

The minimum distance between the points E qn and E h;,? is 
reached at E - E, = + ri /2; this minimum is 
ri ) y( - ) (~ )  #O. The point E ;-,) is on the remote wing of the 
Lorentz distribution with width y'+): IE h;,! - E ;:J I 
z q r ,  ) y'+'. Near the point E h;a!, the Lorentz function var- 
ies slowly, so that the point E h;,! in (44) is also a maximum of 

the function Wl(E ). The value of this maximum is W,(E i-,) ) 
= r/2rq2r: @max. 

The positions of all of the extrema of the function Wl(E ) 
are determined by the real roots of the fifth-degree equation 
d Wl/dE = 0. To find the roots of this equation which do not 
coincide with E ;id, we assume that for any value of& satisfy- 
ing condition (43) the distance from these roots to E ;,+ is 
much greater than the corresponding widths y'+'. This as- 
sumption is justified by the result. We can then ignore the 
widths y(+' and y'-' in the denominator of the function 
Wl(E) in (41), and we find the following third-degree equa- 
tion: 

(E-E,+ql',) 3-k[r,2/2- ( € - € a )  qr ,]  

(E-E,+qr,) --'/,~i2qI'a=0. (45) 

Analysis of the Cardano formula, which determines the 
solutions of this equation, shows that under the condition 
E - E, < q(ri/ qTa) ' /3r i  it has a single real root, while at 
E - E, > j(ri/ q r ,  )'l3ri > 0 it has three different real roots. 
Under the strong inequality 

I E - E , ,  I ( ~ - ~ / q r . ) ' l ~ ~  (46) 

the function Wl(E ) has a minimum at the point Emin = E :in 
which is determined by (44). If& - E, > 0, then Wl(E )has two 
other extrema, E( , , , at which a maximum and a minimum, 
respectively, are reached: 

E, , , -Ea-qI ' ,~  ( ( E - E , ) Q ~ . ) ' ~ ~ .  (47) 
Under the strong inequality inverse to (46), the function 
Wl(E ) has a single minimum Emin, given by 

@ (Em<,,) =I. (48) 

It is easy to show that, in accordance with the assumption 
made in the derivation of Eq. (45), the following conditions 
hold for the roots in (44), (47), and (48): 

Figure 3 shows the Fano function @(E ) and the photo- 
electron distribution function Wl(E ) near the narrow maxi- 
mum E !& . At a deviation from resonance I E  - E,J ) r i ,  we 
have @,, g 1, as can be seen from (44). The minimum of the 
function Wl(E ) at the point E = Emin is seen as a deep dip in a 
region in which there is a smooth variation of this function, 
determined by a Lorentzian function with a width y'+' (the 
dashed line in Fig. 3b). At I E  - E,J ,< Ti ,  on the other hand, 
we have @(Emin ) z 1 [see (44) and (48)], and there is almost no 
dip in the function Wl(E ) at the point E = Em,. As can be 
seen from Fig. 3b, as (E - E,) > 3/4(ri/  q r ,  ) ' I 3 r i  decreases, 
the points E( + , and Emin move counter to each other, merg- 
ing at E - E, = 3/4(ri qTa ) 'I3ri ,  and the interference dip at 
the point Emin disappears. At this value of (E - E,), the W,(E ) 
curve has only a single minimum, E( - , , which moves to the 
point Emin in (48) as (E - E,) decreases further. At this point, 
a new interference minimum (44) forms with increasing 
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FIG. 3. The Fano function T(E)  and the photoelectron distribution func- 
tion W , ( E )  near the narrow peak, E = EL2 = E, - q r ,  
+ ( E  - E ~ ) ,  E - co > 3/4(T i /qT,,)113r, .  The arrows show the directions 

in which the points El + , and Em,, move with decreasing& - E,, until they 
merge at E - c0 = 3/4(Ti/  q r , ) ' I 3 r , .  

I E  - E ~ (  under the condition E - E~ < 0; this minimum be- 
comes deep when condition (46) becomes satisfied. 

The maximum value of the function @(E ), which deter- 
mines the height of the narrow peak in the function Wl(E), 
depends on the deviation from resonance, E: a,, 
= a,, (E). The function @,, (E) has a minimum at E = E, 

and maxima at E = + q ( r a  I'i )'I2 Z E ~  + q( r a  ri )'I2, 
given by, respectively, 

At (E - Eo()q(r4 ri)'I2, the function @,,,(&) falls off as 1/ 
(E - E , ) ~  (Fig. 4). The amplitude of the narrow peak, 
Wl(E ), also depends on E. This behavior of @,,, (E) is due 
to the joint effects of two factors: the interference between 
the different pathways for the decay of the states El and the 
opening up of an ionization pathway for the decay of the 
autoionizing state. In the region (E  - E ~ J  (q(ro ri)'I2, where 
the function a,,, (E) has a dip, most of the photoelectrons lie 
at energies E z E ,  + o - Ef, W2% Wl [expression (37a)], as 
was shown above. The same factors influence the ratio of the 
heights of the peaks in the functions W, (E ) and W2(E ). 

For example, the ratio of the heights of the peaks in the 

FIG. 4. The function @,,(E). The dashed line shows the function 
Qmax(&)jr,  = 0 - ( E  - E ~ ) - ~ .  

function Wl(E) depends on E in the same way as the function 
@ma, (E): 

(50) 
At the same time, for the function W2(E) the narrow 

peak is always higher than the wide peak by a factor (y'+'/ 
y(-')2, 1. The ratio of the heights of the narrow peaks in the 
functions Wl(E ) and W2(E ) also depends strongly on e: 

This ratio is small at I E  - E,J (q(ra  r i ) ' I 2  and large in the 
opposite case. The interference between pathways does not, 
on the other hand, affect the heights of the wide peaks. For 
this reason we always have 

W, (EL:: )/w,(EZ +a) = (r./ri)2~i, (52) 

which corresponds to the ratio of the probabilities for the 
decay of the autoionizing state by the autoionization and 
ionization pathways. 

Let us briefly examine the relationship between these 
results and those of Ref. 3. Rzgzewski and Eberly3 ignored 
the ionization of the autoionization state, i.e., the width r i ,  
and there were no photoelectrons with energies 
E-E, + w - Ef in the spectrum. Actually, as was shown 
above, it is this energy region which holds most of the photo- 
electrons in certain cases [expression (37)l. At ri = 0, the 
width of the narrow maximum on the Wl(E) curve ap- 
proaches zero as (E - in the limit and the 
limiting positions of the points E h,d and EEL are the same 
[see (17) and (44)]. Rzazewski and Eberly3 called these cir- 
cumstances a "confluence of coherences" of the configura- 
tion interaction and the interaction with the external field. It 
should be noted, however, that at Pi = 0 the value of the 
function Wl(E LA) is not defined at E = E,,; it depends on 
the order in which the two limits E+E and are 
taken. It is easy to see from (39)-(41) that at ri = 0 we have 
Wl(E L;,-,! ) - I/(& - cmin )2- oo as (see the dashed 
lines in Fig. 4), while we find Wl(E)l,-,m-xonst as 
E+E id.  Actually, this purely mathematical uncertainty 
has no physical meaning, and it disappears when the ioniza- 
tion with ri is taken into account. It should also be noted 
that the conditions in Ref. 3 for a confluence of coherences, 
in the sense that the narrow peak on the Wl(E) curve can 
contract, can be realized either as the field frequency w is 
varied or as the field strenth 69 is varied. These results show 
that when ionization of the autoionizing state is taken into 
account there is still the possibility of a contraction (to cer- 
tain limits) of the width y'-' of the narrow maximum of the 
Wl(E ) curve as the frequency o is varied at 69 = const [see 
(17)l. This is all that remains of the confluence of coherences. 
On the other hand, as the field strength $5' is varied at 
o = const, the width y'-'(g2) increases monotonically with 
increasing field, as is easily shown through an analysis of (1 3) 
and (17). The only exceptional case is that in which numeri- 
cal factors make the ionization width Ti of the autoionizing 
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state anomalously small in comparison with the ionization 
width rl of the level El. In this case, there is a region on the 
y'-'(g2) curve where the condition dy'-'/dg2 < 0  holds, 
and there is a minimum, dy'-'/dg2 = 0, at w = const. Typi- 
cally, however, the two ionization widths ri and rl are com- 
parable in magnitude, and we have dy'-'/dg2 > 0. 

For these reasons, the results of Ref. 3 are not correct. 

5. CONCLUSION 

Let us summarize the results of this study. 
1) A resonant electromagnetic field gives rise to photo- 

electrons which are localized both at energies -Ea - Ef, 
because of a decay of the autoionizing state through a config- 
uration interaction, and at energies Ea + w - Ef, because of 
the ionization of the autoionizing state by the radiation field. 

2) The general expressions for W2(t ) and W2(E ), the pro- 
babilities for the ionization of an atom in the energy region 
E- E, + o ,  and for the photoelectron distribution function 
are similar to the corresponding expressions for the ioniza- 
tion of an atom accompanied by the resonant excitation of a 
discrete level [expressions (19) and (39)l. On the other hand, 
the positions and widths of the quasienergy states in these 
expressions depend in a more complicated way on the 
strength and frequency of the electromagnetic field. At the 
same time, the interference between different pathways for 
the decay of the ground state (on the one hand) and the pho- 
toionization of the autoionizing state (on the other) strongly 
affect the ionization probability W,(t ) in the region E-Ea . 
For this reason, the photoelectron spectrum Wl(E) has a 
characteristic Fano structure [expression (40)] in this region. 

3) An interference structure of the Fano type is also seen 
in the dispersive dependence on the radiation frequency w 
(or on the deviation from resonance, E )  of the ionization rate 
d Wl/dt 1 in the energy region E-Ea [expressions (22), (23), 
(30), and (3 I)], while the dispersive dependence of d W2/dt is 
Lorentzian. For weak fields, rf (r , ,  the characteristic 
width of these curves is equal to the autoionization width 
I?, , while for stronger fields, r f ) r a ,  the characteristic 
width is equal to the field-induced width r f ,  which deter- 
mines the Rabi frequency. 

4) The interference between different pathways deter- 
mines the E-dependent relations among the ionization rates, 
the numbers of photoelectrons in the regions 
E-Ea + w - Ef and E, - Ef , and the height of the narrow 
peak in the function Wl(E ). In particular, for long radiation 
pulses and moderately strong fields, with rf ( qr , ,  the 
probability is W,(t )) Wl(t ) in the region of the most effective 

interference, J E  - E,~, 14 q ( r a  r i ) ' I 2  [see (37)l. In the same 
region of E, the height of the narrow peak in the function 
W2(E ) is much smaller than the height of the narrow peak in 
the function Wl(E ) [see (5 I)]. 

5)The existence of a noninterfering pathway for the ion- 
ization decay of the autoionizing state is the main reason for 
the finite heights and widths of the narrow peaks in the 
photoelectron distribution functions, i.e., for the absence of 
a complete confluence of coherences. 

It would be worthwhile to carry out an experimental 
study of the spectrum of photoelectrons in a resonant field. 
Such experiments might yield information on the positions 
and widths of the autoionizing states, the transition matrix 
elements, the Fano parameter, etc., which are extremely dif- 
ficult to calculate for complex atoms. 
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