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Uniform asymptotic expressions for the quasienergies and intensities of the quasienergy state 
satellites of two-level quantum systems are obtained on the basis of the theory of nonadiabatic 
transitions. The evolution of the optical spectra of a two-level system is described, in a unified 
manner, for fields ranging in strength from weak ones, where perturbation theory can be used, for 
fields that induce multiphoton resonances, and finally for ultrastrong fields in which the very 
concept of resonance becomes meaningless. 

The most adequate description of the interaction of mo- 
nochromatic electromagnetic radiation of sufficiently high 
intensity with quantum systems is in terms of quasienergy.' 
The concept of quasienergy states makes it possible to estab- 
lish the most general laws of the behavior of quantum sys- 
tems in a strong field and the structure of their optical spec- 
tra on the sole basis of symmetry considerations. Specific 
calculation for strong fields, on the other hand, with the 
exception of several exactly solvable cases, encounter con- 
siderable difficulties. Even in the simplest two-level model of 
a system in a periodic field, the available analytic results 
were obtained within the frameworks of various limiting 
cases. Use was made of the resonance approximation (the 
"rotating wave" approximation), wherein the antiresonant 
interaction terms are discarded (see, e.g., Ref. 2). The qua- 
sienergy and the transition probabilities in a low-frequency 
field were calculated successfully3-8 in an adiabatic approxi- 
mation based on the presence of the small parameter 
A- ' = w/wo4 1 (where w, and w are respectively the natural 
frequency of the quantum system and the field frequency). 
The intensities of the satellites of quasienergy states and the 
optical spectra for such a situation were considered in Refs. 8 
and 9 by using adiabatic perturbation theory. The results of 
these references comprise a substantial advance beyond the 
framework of perturbation theory and of the pure resonance 
approximation, the use of which is limited by the condition 
Aq241( q = 2dl2FO/fi w,, dl* is the dipole moment of the 
transition and F, is the field intensity. The results of Refs. 3- 
8 are valid only for field strengthslimited by the condition q/ 
A(1. The quasienergy of a two-level system was obtained in 
Refs. 3 and 10 by expansion in the reciprocal constant of the 
coupling to the field, an expansion restricted by the condi- 
tion q/A) 1. Since the regions of applicability of these ap- 
proximations do not overlap, numerical approximate-dia- 
gonalization methods, based on the Floquet-Lyapunov 
theory ,3,1 '-I3 are used to obtain results that are valid in a 
wide range of field strengths. These results, however, are 
inevitably dependent on the specific parameters used in the 
calculations. Moreover, the difficulties of the numerical 
methods increase with increasing field strength and reso- 
nance order (with increasing q and A). 

The question of the quasienergy and intensities of the 
satellites of the quasienergy states of a two-level system in a 
strong field has attracted additional interest in view of the 
successful development and perfection of the technique, pro- 
posed1' in 1961 for the measurement of oscillating electric 
fields in a plasma by means of the satellites of forbidden lines 
of atoms and ions.'"16 In this method one measures the in- 
tensities of the satellites of atomic emission lines correspond- 
ing to a dipole-forbidden transition between the atom levels 
1 and 0. Radiation at the frequency f = wlo + nu (o,, is the 
frequency of the transition 1 + 0, n = 5 1, + 3, . . . ,) is 
observed because of the mixing of the state 1 with the other 
nearby excited state 2, which is dipole-coupled with 1. In 
relatively weak fields, only the first satellites with n = + 1 
are observed, and it is the proportionality of their intensities 
to the squared field intensity which is used to measure the 
intensity in this diagnostics method. The most thoroughly 
investigated in experiment are the plasma satellites of the 
helium lines. A typical example is the pair of close-lying lev- 
els 4lD, 4'F (a, = 5.43 cm- '). The4'D - 2lP transition cor- 
responds to the allowed He1 line (A = 4922 A), while the 
transition 4'F - 2'P is forbidden in the absence of electric 
fields and is used to observe plasma satellites. Such a two- 
level scheme (the 4 ' 0  and 4'1; levels intermixed by an alter- 
nating electric field) was used to calculate the intensities of 
the first two satellites both in weak fields by perturbation 
theory,17 and in relatively strong low-frequency fields on the 
basis of the adiabatic appro~imation.~ 

Oscillating fields in a plasma reach in contemporary 
experiments quite high values and an appreciable number of 
satellites is observed. Their positions and intensities are es- 
sentially nonlinear functions ofthe field strength. It was pro- 
posed in Refs. 9, 12, and 18 to use these nonlinearities for 
quasilocal measurements of the fields. We note that in these 
experiments 9, 12, and 18 the electric-field frequencies were 
substantially lower than the distances between the levels 
mixed by the field, and this favored the use of the adiabatic 
approximation for the theoretical estimates. 

The problem of calculating the intensities and positions 
of the emission lines (i.e., of the quasienergy states and of 
their satellites) becomes thus important also for the diagnos- 
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tics of oscillating electric fields in a plasma. These methods 
are possibly also of interest for estimating at a distance the 
electromagnetic fields in astronomy.'4.19,20 

In the present paper we obtain, by successive applica- 
tion of nonadiabatic-transition-theory methods, expressions 
for the quasienergies and intensities of satellites of quasien- 
ergy states of two-level systems in a low-frequency field 
(A> 1) of arbitrary strength. The expressions derived cover as 
particular cases, within the range of their validity, the results 
obtained within the framework of all the approximations 
described These expressions enable us to track in a 
unified manner the continuous evolution of the spectra from 
the weak-field region, where perturbation theory holds, 
through the region of fields that induce multiphonon reso- 
nance, to ultrastrong fields where the very concept of reso- 
nance becomes meaningless. 

QUASIENERGY AND OPTICAL SPECTRA 

We consider a two-level (states 11) and 12)) quantum 
systems with level energies + 1/23 w,, acted upon by a low- 
frequency (o(o,) electromagnetic field of intensity 
F = F, sin a t .  The probability amplitudes a, and a, of find- 
ing the system in the states 11) and (2) satisfy the system of 
equations 

i ~ i ~ = - ' / ~ A a , + ' / , ~ q a ,  sin T ,  

i Q ~ = ' l ~ A a , + ~ / , A ~ a ,  sin r ,  ?=at. 
(1) 

Since we consider a low-frequency field (A> 1), it is natural to 
use an adiabatic basis, i.e., transform from the states 11) and 
(2) to the states 

cp ,  ( t )  = 11) cos ( ~ 1 2 )  - ( 2 )  sin ( ~ / 2 ) ,  
(2) . . 

r p 2  ( 7 )  = 11) sin ( ~ 1 2 )  + 12) cos ( ~ / 2 ) ,  tg x=q sin t ,  

which are at each instant of time instantaneous eigenvalues 
of the system Hamiltonian 

H ( z )  r p ~ , ~  ( r )  =rQ ( 7 )  vi,z ( r ) ,  
A ~ ( r ) = - ( I S q ~ s i n ~  r) '" .  
2 

In matrix notation we have 

H ( 7 )  = - ' / ~ A o ~ + ~ / ~ A ~ o ~  sin r ,  (5) 

where a, and vZ are Pauli matrices. The wave function of 
the system can be represented in the form 

where in the adiabatic approximation b1 and b, are constant 
coefficients. In the general case these coefficients depend on 
the time in accordance with the following equations: 

b, ( r )  =a, ( z )  cos ( ~ 1 2 )  -a2 sin ( ~ 1 2 ) ~  

(7) 
b, ( r )  =a, ( r )  sin ( ~ 1 2 )  +a2 cos ( ~ 1 2 ) .  

The function q, (7) corresponding to a definite quasienergy 
satisfies the relation1 

Besides being invariant to translation of r by 277, the Hamil- 
tonian (5) is invariant to translation of r by 77 with simulta- 
neous reversal of the signs of the off-diagonal matrix element 
("screw" ~ ~ m m e t r y ~ , ~ ~ ) ,  which leads to the property 

y , ( r + n )  =+a, exp ( - in&)  Y e ( r ) ,  (9) 

which obviously agrees with (8). 
According to (6) and (8), in the adiabatic approximation 

there are two values of the quasienergy 

&=+[(S+L) 2n 2 (mod 

corresponding to the values b, = 0, b, = const and 
b, = const, b, = 0 in Eq. (6). The quasienergy in (10) is mea- 
sured in units of 3 w and account is taken of the fact that it is 
determined accurate to an arbitrary integer. The adiabatic 
approximation is based on the slow variation of q,(r),  q,(r), 
n(r) .  The condition A> 1 is generally speaking not sufficient 
for this purpose. The adiabatic approximation is inapplica- 
ble not only in asymptotically strong fields q> 1 but also in 
relatively weak fields in the vicinities of multiphoton reson- 
ances (S equal to an odd multiple of T), when the values of E 

[see (lo)] become degenerate. In the general case the coeffi- 
cients bl(r) and b,(r) become thus functions of the time, and 
to determine the quasienergy and the eigenvectors corre- 
sponding to it we must know the matrix that describes the 
coefficients b ,,, (r + 277) and b ,,, (7) or, in accordaye with 
the additional symmetry (9) the half-period matrix F: 

According to (6), (9), and (1 1) the value of E is completely 
determined by the condition that the system of equations 

[ P i ,  b, ( r )  +P,,b, ( r )  ] exp ( i i l ,S)  =-texp ( - i n & )  b, (T) , 

(12) 
[Palb1 ( r )  +P2,b2 ( z )  ] exp (-ii/ ,S) = r e x p  ( - ine)  b, ( 7 )  

be solvable, meaning: 
sin n e = r T  sin (S/2-(p) , 

T=IP,,] = I  PZ2I, cp=-arg P,,=arg F,,.  
(13) 

The signs in (13) correspond to the signs in (2). In the deriva- 
tion of (13) we used the fact that the matrix F is unimodular. 
The problem of determining E was thus rekuced to a calcula- 
tion or estimate of the matrix elements ofF. To this end it is 
convenient to transform to the quantities 

A 

which satisfy the second-order equations 
A2 2~ 

fl, + -[ ( l + q 2 s i n 2 i )  t i - c o s  r ]  x,,,=o. 
4 A 

Equations (15) contain the large parameter A which allows 
us to solve them in a quasiclassical approximation. The cor- 
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responding quasiclassical solutions are obtained in standard 
fashion by expanding the WKB phase in powers of A-I. We 
obtain 

xWK%b, MS (y /2+nl4)  e x p { i  1 ~ ( r )  d r }  

x Y B = b i  sin (x /2+n/4)  n p  { i  J 8 ( r )  d r  } 
-6, cos (y /2+n/4)  exp{  -i j R ( T )  dr }. 

These WKB solutions correspond to the functions obtained 
in the quasiclassical approximation [see (2)], and the solu- 
tions (19  are in the general case insufficient to determine the 
matrix F. The WKB approximation for Eqs. (15) fails in the 
vicinities of the branch points 7, of the quasiclassical "mo- 
mentum" o ( ~ )  (of the zeros of the expression 1 + q2 sin 27) 
located in the complex r plane: 

Tk=&i Arsh (q- ' )  + ~ n ,  x=O, + I ,  +-2 . . . . (17) 

At A)l, the regions where the WKB approximation does 
not hold are strongly localized (in accord with the value of A) 
in the vicinities of the points 7,. The dimensions of these 
regions can be estimated as 

I ~ - 7 ~ 1  - ~ - ~ / ~ ( l + q ~ )  -'Ie, Arsh q - i ~ A - 2 / 3 ( l + q 2 ) - ' / B ,  (18) 

and 

In the case (18) the regions where the WKB approximation 
fails are isolated from one another, while in case (19) these 
regions contain pairs of complex-conjugate branch points 
that repeat with a period T. At A>l and at arbitrary q (at 
arbitrary field strength 4) the regions where the WKB ap- 
proximation fails, corresponding to half-periods of the field 
( I T  - rk I (T), never overlap. With increasing field strength 
(with increasing q) the localization of the regions where the 
WKB approximation fails improves. This feature (the not 
more than pairwise coalescence of the indicated regions) per- 
mits the use of the well known results of the theory of nona- 
diabatic transitionszz2nd yields, by the adjoint-equation 
methodz3 the matrix F by joining the WKB solutions (16) 
with the standard solutions of Eqs. (15) near 7,. We can 
obtain by the same token for the matrix an asymptotic esti- 
mate that is valid for arbitrary q: 

Pii=P22*=T ( 6 )  exp (-icp ( 6 ) ) ,  

P i ,=-~ , ,*=exp( -6- i~) ,  T ( 6 )  = (1-e-2a)'"; 
(20) 

6=-i JP ( r )  dr= 
A D(" 

IS. ( l+q2) '"  2  ' (21) 

Here r(x) is the gamma function, 

a n d F ( ~ / 2 ,  k ), E ( ~ / 2 ,  k ) arecompleteellipticintegralsoffirst 
and second order. 

Equations ( 12) and (20) yield fore an expression valid, at 
the accuracy -A- ' assumed and for arbitrary field strength 

sin ne=F (1-e-2d)'i2 sin [S/2-cp(6) 1. (22) 

In relatively weak fields ( 6 ~ 1 )  the function p, (S )z - ?r/ 

1s + 0 and expression (22) becomes equal to the result of 
Ref. 6, which is devoted to this case. Far from the reson- 
ances, whereS = (2K + l ) ~ ,  the difference between T (6) and 
unity can be neglected and (22) becomes equal to expression 
(10) obtained in the adiabatic approximation. Near the re- 
sonances it is necessary to take into account not only the 
difference between T(6) and unity (see Ref. 6), but also the 
fact that q, (S ) #O. The former leads to a splitting of the qua- 
sienergy in the resonance r e g i ~ n , ~  and the latter to a shift of 
the resonance position relative to that calculated in the adia- 
batic approximation. Allowance for the small quantity p, (6 ) 
in the vicinity of the resonance at S) 1 is essential not only for 
its correct description, since p, (6) has only a power-law 
smallness (in the parameter 1/S ) whereas the splitting is ex- 
ponentially small [ a exp( - S )]. 

In very strong fields (64  1) the function q, (S ) -+ - ~ / 4  
like 

Here $(z) is the digamma function [25] and $(I) ~0 .5772 .  In 
this case S ~ a A / 4 q ,  Sz 2Aq, i.e., 

As the field increases, E oscillates thus and tends to zero as 
q -+ 03. The vanishing of e in asymptotically strong fields is 
natural, for in this case the dynamics of the system is dictat- 
ed by an external force and turns out to be periodic with a 
period 2?r/w. The result (24) can be obtained directly from (1) 
by expansion in the small parameter A/q  (see, e.g., Refs. 3 
and 10). 

Figure 1 shows the field dependence of e in a wide range 
of the field parameters. At 441 the e( q) dependence is ex- 
pressed by the quadratic Stark effect. At q- 1, field-induced 
multiphonon resonances are observed, and their exact posi- 
tions and splittings are determined by the parameter S [see 
Eq. (22)l. With increasing q the resonances broaden and E(  q) 
takes the asymptotic form (24). Equation (22) gives thus a 
unified, uniform asymptotic estimate of the quasienergy at 
an arbitrary low-frequency field strength. We note that non- 
uniform asymptotic estimates of the quasienergy (with over- 
lapping validity regions) were obtained in Ref. 26 for the 
cases of relatively weak and of sufficiently strong fields (see 
also Ref. 2 1). 

The wave function of a system with given e can be repre- 
sented as a sum of the contributions from the satellites: 
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(D (t) =c+Y+(t)+c-Y-(r) ,  (30) 

FIG. 1. Dependence of the quasienergy of a two-level system on the field 
intensity at A = 4.098. The thick lines (solid and dashed) show the qua- 
sienergy branches referred to the first Brillouin zone. 

where the Fourier components of the periodic part of Y E  (7) 

are 

Using (9), we obtain 

1 
Pne = -(l&cos nn) 1 ( I  I Y.(r ) )  erp{ist+inr)dr. (28) 2n o 

X 

1 
Qne = -(lrcos nn) 1 ( 2  / Y.(r) ) erp{irr+inr)dr. (29) 2n o 

The signs f ( f ) in (28) and (29) correspond to the signs in 
(22). According to (28) and (29), the projection of the quasien- 
ergy wave function (25) on the state 1 or 2 contain either only 
even or only odd satellites. 

The quasienergy and the satellites of quasienergy states 
manifest themselves directly in the optical spectra of a quan- 
tum system. Consider, in particular, the emission spectra of 
a two-level (levels 1 and 2) system in a low-frequency field, 
due to photon emission and to a transition to the ground 
state 0. We assume the transitions 1-2 and 2-0 to be di- 
pole-allowed, and the transition 1-0 forbidden. This situa- 
tion is in accord with the technique of determining the alter- 
nating low-frequency electric field in a plasma by measuring 
the satellites of forbidden helium  line^.^.'^ The wave func- 
tion of an atom situated in a strong low-frequency field that 
mixes the states 1 and 2 can be represented in the form 

where Y, (7) are the quasienergetic functions (25) corre- 
sponding to the two values E = f E, in accord with (22), and 

The constants c * are determined essentially by the manner 
in which the interaction of the atom with the field is initiat- 
ed. Thus, for example, if the strong field is produced in the 
course of the experiment in a spatially bounded region, the 
rate of application of the field to each atom that enters the 
interaction region at a definite velocity depends on the spa- 
tial gradient of the field. If the characteristic field-growth 
time t * exceeds appreciably (Swo)-', (where Swo is the char- 
acteristic detuning from resonance in the transition region), 
the field can be regarded as turned-on adiabatically. The 
system is then in one of the quasienergetic states, which goes 
over into the specified initial state (1 or 2) when the field is 
turned off. If, however, t. ((SoO)-', the switching regimes 
should be regarded as instantaneous and @(r) is a superposi- 
tion of Y * (r). The coefficients c * are then determined by 
the condition that at the instant ro of the start of the interac- 
tion the atom be in the state 1 or 2. We note that in sufficient- 
ly strong fields the distinction between the turning-on re- 
gimes is not trivial, since multiphoton effects of different 
orders can be induced as the atom enters into the region of a 
growing field (see Fig. 1). The turning-on can be regarded as 
adiabatic only if f i / t ,  is considerably smaller than all the 
quasienergetic splittings in the resonance, and as instantan- 
eous in the opposite case. In the general case either condition 
can be satisfied only for some of the resonances, and the 
determination of the coefficients c ,  calls for a separate 
analysis for each specific manner of field growth. 

We proceed now to calculate the line intensities I (f)  of 
the emission by atoms in a state @(r). The intensity of emis- 
sion with transition to the level 0 is obtained by using stan- 
dard perturbation theory 

where Eo is the energy corresponding to the state 0. It fol- 
lows from (3 1) that the system emission spectrum consists of 
two overlapping sets of equivalent lines corresponding to 
different quasienergies. If the interaction is applied adiabati- 
cally, one of the sets (c- = 0 or c+ = 0) is observed. Near 
multiphoton resonance ( I & , /  ~ 0 . 5 ) ,  the conditions for sud- 
den switching-on (1 - 2 /)at .  ( 1 can be realized. In this 
case the optical spectra of the system constitutes a set of 
equidistant lines each split into two components. The com- 
ponent intensities are comparable, and the distance between 
them is (1 - 21~~ l )w .  

Indeed, by using, e.g., the initial condition @(ro) = 11) 
and Eqs. (6) and (3 I), we get 

668 Sov. Phys. JETP 61 (4), April 1985 I. Sh. Averbukh and N. F. Perel'man 668 



x (TO) --a, s in  - bl ( * & a )  
2 e x p { i j ~ ( ~ ) d ~ ) ] ,  IJ a+=-- b2 ( k c o )  , (32) 

where according to (12), (20), and (22) 

bl= { l + e - Z 6 [ T ( 6 )  cos (5'12-(F) I f ? ]  -'} - I., 

b2=+e'S/2 {1+e-26 [ T  ( t i )  cos (S,'2-v) F R ]  -'}-", (33) 
R= [cos2 (S /2-(p)  i e - ' % i n 2  (S/2-(C) ] '. 

In accordance with (33), the line intensities in the regime 
considered depend generally speaking on ro (on the phase of 
the strong field at the switching instant). For not too strong 
fields ( q( 1), however, Ic , I ceases to depend on T,, as can be 
seen from (32). Near the multiphoton resonance (E,Z f 0.5), 
it follows from (32) and (33) that the coefficients are 
/b,( f E,)/ = lb2( + E ~ ) I  = 1/V2 andlc, I = 1/v'2. Accord- 
ing to (3 I), near each line with fixed n there is located a line 
separated from it by a distance (1 - 2 I E , ~ )  and corresponding 
to m = n f sign E,. It is easy to verify that 
1 Q */ z / Q ;+ti,, I, so that at resonance the lines of the 
nth doublet are equal in intensity. Away from resonance (on 
account of a change of w or of Fo), one of the doublet lines is 
much stronger than the other. These features constitute a 
generalization of the Autler-Townes effect (in optical double 
resonance), known in nonlinear spectroscopy, to include the 
case of multiphoton resonances in strong fields. The picture 
of the spectrum is now obtained (asymptotic estimates of Q ", 
are given below) outside the framework of the resonance ap- 
proximation (with allowance for "antiresonant" reradia- 
tions of photons in strong fields) and describes the doublet 
structure for the entire aggregate of the quasienergetic satel- 
lites. 

ASYMPTOTIC ESTIMATES OF THE QUASIENERGETIC- 
STATE SATELLITE INTENSITIES 

Using Eqs. (6), (28), and (29) we obtain 

Pne='/,  ( l k c o s  n n )  [ A  ( p )  +B ( p )  1,  

QnE='/, ( I T C O S  n z )  [-C ( p )  +a ( p ) ]  , (34) 

wherep = E + n and 

1 '('I exP[ i 1 R ( r )  dr+ipr ] , A ( p )  = --j d r b I  ( r )  cos - 
X 0  2 0 

(35) 

1 
'(') exp[ - i J  Q(,) d r + i p ]  . B ( p )  = drbz  ( r )  s in  -1- 

0 0 

(36) 
II 7 

1 x(.) 
ID ( p )  = ; J drb ,  (') cos - e x p  [ -i J Q ( r )  dr+ipr]  . 

2 
0 

Since a(r) contains the large parameter A, it is natural to 
estimate the integrals (35)-(38) by the saddle-point method. 
By way of example we consider the asymptotic estimate of 
L9 (estimates of A ,  B, and C are obtained similarly). The 
saddle points in the integral (38) are given by the equation 

For a unique determination of the branch of the square root 
in (39), we draw cuts from the branch points r, and rg ,  as 
shown in Fig. 2, and assume the square root to be positive on 
the real axis. The solutions of (39) are 

.t,=ii Arch  ptn/2+nr, P>'/,A ( l + q 2 )  'la, (40) 

%,==ti A r s h  p+nr, O<pc l / ,A ,  (42) 

A t p  < 0 the saddle points lie on the second sheet of the Rie- 
mann surface (on which the square root in (39) is negative on 
the real axis) at points determined by Eqs. (40)-(42), respec- 
tively. The disposition of the saddle points corresponding to 
cases (40)-(42) is shown in Fig. 1. As p is decreased right 
down to p = 1/2A(l + q2)"2 the saddle points (see Fig. 2a) 
approach the real axis, merge at the points T = * n/2 + nr, 
and then diverge from these positions along the real axis (see 
Fig. 2b). With further decrease of p the saddle points ap- 
proach the values T = nr  and again coalesce pairwise at 
p = A/2. At p < A/2 the saddle points diverge from the 

Rez FIG. 2. Arrangement of the branch points of Sl(r) and of the 
saddle points r, on the complex r plane. The wavy lines indi- 
cate the cuts. 
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points 7 = Tr along the imaginary axis (see Fig. 2c). If the 
saddle points are far enough from one another, the satellite 
amplitudes can be estimated by summing the independent 
contributions of each of the isolated saddle points, as was 
done in Ref. 8. Using, however, the fact that not more than 
two saddle points coalesce simultaneously, a uniform 
asymptotic estimate valid for a continuous variation ofp (for 
an arbitrary number n of satellites) can be obtained. It is 
convenient to use for this purpose the cubic-transformation 
method.27 Consider, for example the case when saddle 
points coalesce at r = ~ / 2  as they approach each other along 
the imaginary axis. We introduce in the integrand a new 
variable w that maps r = ~ ( 0 ) :  

The mapping (43) sets in correspondence the points r = IT/ 

2 f i arccosh p with the points + iQ,, and is mutually sin- 
gle-valued. The integral (38) is transformed into 

W ( X 1  

If the correspondence (43) is correctly chosen, dr/dw is finite 
everywhere in the region that makes the principal contribu- 
tion to (38), including at the saddle points themselves, where 

Recognizing that the cosine in (45) also takes on equal values 
at both saddle points and that b,[r(w)] is a constant, since the 
saddle points essential for the calculation of the integral are 
far from those branch points of f2 near which the WKB ap- 
proximation fails, we easily obtain 

Here Ai(Q ) is an Airy function. For Q, we get 

'I3Qi3=p Arch P - - ~ / ~ A  (1+q2)lh{F ( q 1 ,  k )  - E ( $ i ,  k ) )  

HereF ($,, k ), E ($,, k )are incomplete elliptic integral softhe 
first and second kind, respectively. A similar estimate yields 

B ( p )  =-ib, [2Ql-' ( 2 p - A ) ]  " ' K ( p )  ,4i' ( Q I Z )  

x exp ( i p n / 2 - i S / 4 ) .  (49) 

The values ofA and Care (exponentially) much smaller than 

those of B and g ,  since at A%l the respective integrands 
oscillate very strongly on the real axis and have no saddle 
points near this axis. Estimates of B and 9 obtained by a 
similar method for other arrangements of the saddle points 
[see (41), (42)] are given in the Appendix. 

We have thus obtained for the satellite amplitudes a 
uniform asymptotic estimate valid as the parameterp varies 
over a wide range. At the points p = 1/2A(l + q2)112 and 
p = A/2 the corresponding estimates on the left and right, 
naturally, coalesce. Expressions (47), (49), (A. I), and (A.2) 
yield an estimate in fields of any strength. On the other hand 
expressions (A.4), (AS), (A.8), and (A.9) may be wrong in 
sufficiently strong fields, when the branch points of fl(r), 
near which the WKB approximation fails, approach the real 
axis and "crawl" on the saddle points clamped between 
them. In this case the main contribution to the integrals in 
(36) and (38) is made by the regions near the points 0 and T. 

Since the dimensions of these regions are - l/Aq( 1, to de- 
terminex ,,, in this case we can use in Eqs. (1) an approxima- 
tion linear in r ,  analogous to the linear-terms approximation 
in the Landau-Zener theory [22], Taking the Fourier trans- 
forms of the resultant equations, we obtain equations for the 
quantities of direct interest to us: 

2n 

1 
Xi,.  ( p )  = - Xi , ,  (r) exp ( i p r )  d r ,  

2no 
(50) 

The general solution of Eqs. (51) is expressed in terms of 
parabolic-cylinder functionsz4: 

X i  ( p )  =G,Div ( z )  +G2Div-l ( - i z )  , (52) 

Only two of the four coefficients G,, G,, G,, and G, are lin- 
early independent, in view of the relation 

obtainable from (1) by a linear approximation and a Fourier 
transformation. Choosing G, and G, to be the independent 
ones and using the relations 

D,+l ( z )  -zD, ( z )  +nD,-, ( z )  =0, 
( d l d z )  D,(z)+'l,zD,(z) -nD,-,(z) =0, 

we get 

We obtain the coefficients G, and G, from the condition that 
X ,,, ( p)  coincide with the corresponding quantities calculat- 
ed below by the saddle-point method using the asymptotic 
expressions (16). This is possible, since the region Ir((1 
where the linear approximation is valid is considerably larg- 
er than the region 17.1 - l/Aq( 1 where the WKB approxima- 
tion fails and the asymptotic expression (16) cannot be used. 
Within the framework of the linear approximation, when 
X ,,, are calculated with the aid of (16), the main contribution 
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is made by the saddle points T, = 2p/Aq. We obtain 

The coefficient b2(7-) is express$ in terms ~f b1(7+) and 
b2(r+) with the aid of the matrix F ;  ', where Fo is a matrix 
similar to (20), from which it differs only in that the signs of 
the off-diagonal elements and of the corresponding factors 
e*" are reversed. At p)A/2 (i.e., z2/4)v) but p(1/2 
A(l + q2)'12, we identify (52) with (55) by using the asympto- 
tic forms of the parabolic-cylinder functions.24 We obtain 

6 6 6 n  
Xexp {-i(% - - In--I---ne -- )}  e-36/4b1,  

2x sr. 4 2 

The sought quantity Q E, is thus equal to 

When the adiabatic approximation is valid, v = 6 / T )  1, Eqs. 
(47)-(49), (A. 1)-(A. lo), and (57), whose validity regions over- 
lap considerably, provide an asymptotic estimate of the sat- 
ellite intensities for fields of arbitrary strength. 

DISTRIBUTION OF SATELLITE INTENSITIES AND 
QUALITATIVE STRUCTURE OF THE OPTICAL SPECTRA IN 
VARIOUS LIMITING CASES 

We consider some limiting cases that follow from the 
expressions derived above. 

Atp- 1/2A(l + q2)1'2 (Q 5 1)andp- 1/2A(Q,,, 5 1) 
Eqs. (47), (A. I), (A.4), and (A.8) describe the intensity distri- 
butions of the satellites that appear in the optical spectra of 
the system considered in the region of their maximum val- 
ues. Asp moves farther away from values corresponding to 
the optical-band maxima, the asymptotic expressions for 
Airy functions can be used. Thus, for example at Q ,,, ) 1 and 
p > 1/2A(1 + q2)'12 we have 

and at 1/2A < p  < 1/2A(l + q2)112 

2 p S A  '" a (P) = ( -) 3-c 

Similar estimates for the intensities of the satellites of a two- 
level system were obtained in Ref. 8. At 0 < p  < A/2 we get 
the estimate 

Expressions such as (58) or (60) go over to the perturbation- 
theory result as q -+ 0. For example, using at q( 1 the asymp- 
totic values of the elliptic integrals contained in the defini- 
tion (48), we readily obtain from (58) 

Thus, as q-+ 0 expression (61) yields the sought power-law 
dependence of the satellite intensity on the field strength. 
The pulsating dependence of these intensities on q and p at 
1/2A < p  < 1/2A(l + q2)'12, which follows from (59), cannot 
be obtained by perturbation theory. 

The physical cause of the pulsations is the following. 
Consider the instantaneous arrangement of the system levels 
in the adiabatic approximation (see Fig. 3). In accord with 
the foregoing, the system radiates at the frequencies 
f = IEol/fi + (E + n)w (n is an integer) shown by the hori- 
zontal lines in Fig. 3. If the swing (1/2A[(l + q2)'I2 - l]fi m )  
of the instantaneous position of the adiabatic energy greatly 
exceeds f i  w, emission at the frequency of a satellite with a 
specified number n takes place mainly at those instants of 
time when the instantaneous position of the adiabatic-ener- 
gy level coincides with the satellite position, as marked by 
the intersection points in Fig. 3, which coincide with the 
saddle points. Since this situation takes place twice during 
the half-cycle of the field for the considered range ofp(l/2 
A < p  < 1/2A(l + q2)'I2), the corresponding contributions to 
the emission intensity interfere. The phase factor responsible 
for this interference is, obviously, 

T, 

and this leads directly to pulsating dependences of the type 
(59). The contribution from each region near the points 7, 

FIG. 3. Time dependence of the adiabatic level of the system. The hori- 
zontal lines show the positions of the satellites. 

671 SOV. Phys. JETP 61 (4), April 1985 I. Sh. Averbukh and N. F. Perel'man 671 



and T, is proportional to the time that the system stays in the 
vicinity of these points. Since the system stays longest near 
the adiabatic-energy extrema 1/2Afiw and 1/2 
A(l + q2)112fi w, maximum emission intensities should be 
observed at the frequencies of the satellites corresponding to 
these energies, in agreement with the results above. At p < 
1/26 and p >  1/2A(l + q2)If2, the instantaneous adbbatic 
energy coincides nowhere with the position of a satellite, and 
this causes the intensities of the corresponding satellites to 
be exponentially small. 

We note that the foregoing qualitative picture of the 
spectrum is deduced essentially only from the periodicity 
and smoothness of the perturbation, so that the mechanism 
for the onset of a pulsating and exponentially decreasing de- 
pendence of the satellites on n and q is universal for arbitrary 
(including degenerate) two-level systems in strong periodic 
fields of arbitrary form. 

Figure 4 shows for p >  0 the numerically calculated 
1 Q 1 ,, which is in full agreement with the qualitative picture 
described above. The intensities of the satellites near the 
right-hand and left-hand maxima were calculated from (47), 
(A. 1) and from (A.4), (A.8) respectively. In the central part of 
the band, at the chosen parameters, the results of different 
formulas, which have overlapping validity ranges, agree 
within not worse than a few percent. 

We consider now the asymptotic forms of the obtained 
expressions in very strong ( q + w ) fields. In the region of 
the maximum atp- 1/2A(l + q2)'/'zAq/2 we easily obtain 
with the aid of (47) and (A. 1) 

I Q n e J 2 = 2 " ~ ( A q )  - ' / S A ~ ~  [2' /$(Aq) ( p - A q / 2 ) ]  . (62) 

As expected, (62) agrees with the asymptotic form (n - Aq/ 
2% 1) of the exact solutions IQ ', 1'- J2, (Aq/2) (where J,  (x) is 
a Bessel function) for the satellite intensities of a doubly de- 
generate level in a strong external field.28-30 At p-A/2 in 
sufficiently strong fields it is necessary to use Eq. (57), from 
which follows as q -+ CQ (i.e., at v = A/4q( 1) that 

which also agrees, naturally, with the asymptotic form (Aq/ 
2%n, Aq/2) 1) of the exact solution for the case of a degener- 
ate level. 

The results of this paper provide thus a rather complete 

FIG. 4. Satellite intensities (A = 20, q = 3, E = 0.242, 
n > O ) .  The figure shows the envelopes (solid and 
dashed curves) calculated from relations (47), (A. 1)  and 
(A.4), ( A . 4  respectively. 

description of the quasienergetic states and optical spectra of 
two-level quantum system in low-frequency fields of arbi- 
trary strength. When using these results one must, however, 
recognize that the separation of the two-level system from 
the complete spectrum is itself valid only so long as the ma- 
trix elements of the interaction between the separated pair 
and the other levels of the atoms are substantially smaller 
than the energy distances to these levels. Thus, in cited ex- 
ample of the He I line (A = 4922 ..&) the separation of the level 
pair 4lD,4lF is based on the fact that the energy distance to 
level 4'P closest to them exceeds fi w, by an order of magni- 
tude. In fields on the order of several times ten kV/cm and 
higher, however, it becomes important to take the 4'P level 
into account3' and the two-level approximation no longer 
holds. 

We note in conclusion that the results above can be used 
also to investigate the behavior of two-level systems in qua- .- 

siresonant bichromatic fields, as well as to consider multi- 
photon interband transitions in crystals. 

The authors thank V. A. Kovarskii and V. N. Krainov 
for interest in the work and for a valuable discussion of its 
results. 

APPENDIX 

The case 1/2A < p  < 1/2A(l + q2)"2. At 
arcsin p 

A I -2- d.c(l+y2sin'.c)"-p arcsin p/  W 1  

we have 

.B ( p )  = bZ[2QZ(2p+A)  I " K  (p) exp( ip5 -iT s \  Ai(-Q,'), 

X e x p  i p - -  ( " ,  
Here 

'PI 

A 
= - ( l + q 2 )  "E ($2, k') -plpz, 

2 
$=arc cos p, k ' = q ( f + q z )  -I". (A.3) 
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If, however, 
n / 2  

we have 

where 
arcs ln lp  

2 - QsS= - - 
3 

A J d r  (l+q2 sin2 r )  * + p  arcsin p 
2 0 

A 1 
= - 7;-(l+q2)'iZE (I).,, k') + p  arcsin p+ -[K(p) 12, 

The regions where (A. I), (A.2) and (A.4), (A.5) are valid 
overlap considerably. The results of these equations agree 
when the saddle points can be considered separately (Q,) 1, 
Q 3 ~ 1 1 . ~  

The case 0 <p < 1/2A. At 
Arsh(q-1) 

I $ J d ~ ( I - ' q ~ s h ~ z ) " - ~ [ ~ r s h  p-Arsh(q-l) ] ( D l ,  
Arsh p 

(A.7) 

we have 

2 
- Qk3= !- J &(I-q2 s h ' ~ ) ' ~ - p  Arsh p 
3 0 

(A2/4-p2) ( l f  q2) '1% 
$,=arcsin [ ',&AZ (l+q2) -p2 I - 

(A. 10) 

At p < 0 similar estimates hold also for A and C. The 
values ofB and 9 are in this case negligibly small compared 
with A and C. 
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