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The sufficient conditions for the generalization of the known Bunkin-Fedorov equation beyond 
the scope of the Born approximation are considered. These conditions are obtained directly by 
calculating the scattering amplitude in the second Born approximation. An eikonal approxima- 
tion is developed for scattering in.a wave field. The amplitude obtained satisfies the optical 
theorem and permits solving the problem of scattering by two centers in a bichromatic field. 
Scattering by a truncated Coulomb potential is specifically considered. 

INTRODUCTION 

The problem of potential scattering in the presence of a 
strong electromagnetic wave arises when multiphoton sti- 
mulated bremsstrahlung (SB) is considered in the analysis of 
the heating of the electron component of a weakly ionized 
plasma by absorption of laser radiation.' Interest attaches to 
the dependence of the cross section of the process on the 
intensity F, frequency w, and polarization vector A of the 
wave. 

To solve this problem, use was made of the Born ap- 
proximation in terms of the scattering potential with exact 
wave functions of the electron in the wave,' and of a low- 
frequency approximation.' The differential cross section for 
scattering with emission (absorption) ofs photons is of e form 

Here (duldfl), is the differential cross section for scattering 
by a potential in the absence of a field, and J, is a Bessel 
function. Equation (I. 1) is exact in the Born approximation, 
while the attempts made in Ref. 2 to extend the region of 
validity of (I. 1) are not convincing. 

It is shown in the present paper that the condition liw/ 
E~ (1 for validity of the low-temperature approximation is 
necessary but not sufficient to be able to use (I. 1) beyond the 
validity region of the Born approximation. We note that the 
method used in Refs. 3 and 4 to derive Eq. (I. l), wherein the 
field is taken into account exactly in some parts of the equa- 
tion and by perturbation theory in others, is untenable. The 
question of finding for (I. 1) a validity region other than that 
for the Born approximation will be considered in Sec. 1. 

It follows from the analysis that for (I. 1) to be valid in 

scattering condition, and 6 is the scattering angle. At s<s,, 
the restrictions on the field intensity and on the frequency 
are independent. The condition on the frequency is equiva- 
lent to a requirement that the collision be instantaneous, and 
the restriction on the field intensity means smallness of the 
displacement produced by the field during the characteristic 
scattering time T compared with the effective radius of the 
potential. 

In the case s-s,,, the conditions take the form 

It follows from (1.2') that in this case there can not be an 
arbitrarily low frequency. The reason is the need to take into 
account the quantum character of the SB, due to absorption 
(emission) of a fixed number of photons of the order of s,, . 

If the conditions for the validity of the Born approxima- 
tion are violated, but the electron energy is high enough, the 
eikonal approximation can be used. A formal solution for 
this case is given in Ref. 5, but this result is difficult to use 
directly (see Sec. 2). In Sec. 2 we obtain another expression 
for the scattering amplitude, in which a limiting transition is 
possible to known approximations, and these can be com- 
pared and analyzed (Sec. 3). We note that in the case of scat- 
tering in a field the eikonal approximation does not reduce to 
the first Born approximation. 

In Sec. 4 we consider in detail the case of a truncated 
Coulomb potential. The scattering amplitudes obtained in 
Secs. 1 and 2 satisfy the optical theorem, and permit also the 
solution to be generalized to include scattering, in the pres- 
ence of a laser wave, by two scattering centers and to include 
scattering in a bichromatic field. This is done in the eikonal 
approximation in Sec. 5. 

the second Born approximation it suffices to require satisfac- ,. IN A 
tion of the conditions 

The Schrodinger equation for the scattering of an elec- 
O T ~ I ,  SY= (S/S~,) ( U F ~ V )  eF~'/2mcKR1 tron - e by a potential UIr) in the presence of a monochro- 

where matic fieldkith a ~amil tbnian HF -is of the form 

=uFIs,,,u, vF=eF/meo, 

sm,,- (eF/m,oZ) 2qi sin (8/2), 

R is the effective radius of the potential, T is the characteris- The field is described in the second-quantization representa- 
tic time determined by the form of the potential and by the tion 
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HF=fio (a+a+ ' I z ) ,  H,I n>=ho (n+'/,) In>, 

where a and a+ are the operators of creation and annihila- 
tion of photons with a given frequency w and with a polariza- 
tion vector A. The vector-potential operator is 

Vis the normalization volume, and In) is the state vector of a 
field with n phonons. 

It is known that at U = 0 Eq. (1.1) has an exact solution 
that can be written in the form 

Yq, ,(r) = (2n)-": exp (iqr-(p,(z/2) ~ ( p , )  In), 
(1.2) 

e (2n;o , ) ' ' 1  . 
D(p) =exp ( - p ' ~ + ~ a ' ) ,  p,=- (h'q)7 

me@ 

The operatorg ( p)  is the shift operator and its properties are 
known (Ref. 6, Chaps. I and VI). 

The states of an electron in a quantized field are charac- 
terized by a momentum fiq. The subscript n means that the 
field had contained n photons in the absence of the interac- 
tion. It is easy to prove that the functions (1.2) are orthonor- 
mal: 

and constitute a complete system, as follows from the equa- 
lity 

Equation (1.1) is the stationary Schrodinger equation, 
therefore continuous-spectrum problems can be analyzed by 
using the formalism of the stationary theory of scattering. 
The amplitude of the transition from the state li), character- 
ized by the numbers (q, ,n) into a state I f )  with (qf ,n + s), 
i.e., the scattering process q,-+qf with absorption or emis- 
sion of s electromagnetic-field quanta, is written in the form 

(an)  a 2m, 
.-- 

4n ti2 
< f  1 F (Ei+iO) 1 i), 

where 
T (E+iO) =U+U(E-H+IO) -'U, 

E,=&,+nfio+ A~=e,,=ti~q,~/2m,+ (n+s) f i a + A ~ ,  

2ntio e2 ( qh' l 2  A&=------ A 0  
ha+-- ,  

V me204 2 

and H is the total Hamiltonian from (1.1). 
We consider first the Born approximation, and analyze 

next the general case. The scattering amplitude in the first 
Born approximation is defined by the expression 

x ( -v ' " )  -S~;:s (v)  , 

where v1'2eiY =p i  - pf, pi =pq,, pf =pqf. 
In the derivation we used the known expression for the 

shift operator and its matrix element (Ref. 6, Chap. VI, as 
well as the Appendix). In a quantized field, the SB is deter- 
mined by Laguerre polynomials. In the classical-field limit 
(n-+m, V+w, n/V finite), using the asymptotic expression 
for the Laguerre polynomial 

Lna(z )  e - z 'Zza ' z~Ja[2  (nz) '"] [ (n+a)  !in!]'/: (1.7) 

Eq. (1.6) is reduced to the known Bunkin-Fedorov formula': 

If:'' (qi, q,) 1 '= 1 f a B  (qit qi) 1 2Js2(Xj i ) ,  I 1  a\ 

where F is the field-strength vector. We obtain for the differ- 
ential cross section the expression (I. I), in which (da/dn), is 
determined in the Born approximation. 

We consider now the scattering amplitude in the second 
Born approximation. 

where Go is defined by the spectral representation 

Substituting (1.10) in (1.9), summing over m, and going to the 
limit of the classical field we obtained (the calculation details 
are given in the Appendix) 

The interpretation of the result is the following: the in- 
cident electron, with momentum fiq, acquires as a result of 
the first interaction with the potential a momentum fiq; in 
this case an (s + k )-photon SB is possible due to the momen- 
tum transfer fi(q - qi), and is described by a Bessel function. 
This is followed by free motion, with this momentum, until a 
second interaction causes the electron to acquire the final 
momentum fiqf; this is accompanied by a k-photon SB due to 
the momentum change fi(qf - q). Integration with respect to 
q and summation over k mean that in the interval between 
the interactions the electron can have an arbitrary momen- 
tum, and when momentum is transferred an arbitrary k-pho- 
ton SB is possible. 

The scattering amplitude with allowance for the second 
Born approximation satisfies the optical theorem: the total 
cross section is determined by the imaginary part of the scat- 
tering amplitude through zero angle 

The result follows from (1.11) and (1.8): 
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We consider now those approximations that enable us 
to obtain Eq. (1.1) in the second Born approximation. We 
note here that in (1.11) the integrand is singular. It is more 
convenient to start with Eq. (A.2) of the Appendix, in which 
there is no singularity: 

c4 

where 

The characteristic interval of integration with respect to t in  
(1.13) is estimated at 

r- f iL/ '&n,~~,  qiRa1; 

E-hu/R, qiRB1. 

The argument of the Bessel function determines the maxi- 
mum possible number of absorbed or emitted photons: 

s-- (eF/m,02) 2qi sin (0 /2) ,  qiR<l, 

S-- (eF/m,wZ) R-', qiR>l, 

expanding (f (t ))'I2 and y(t )in powers of the small parameter 
or( 1 we can verify that to go from (1.13) to (I. 1) it suffices to 
require satisfaction of the conditions 

w ~ c < I ,  sy<Ea/ii=I, EFaZ/m,<R. (1.2) 

The conditions (1.2) were analyzed in the Introduction. It is 
of interest to compare the conditions for the generalization 
of the Bunkin-Fedorov equation with the conditions for va- 
lidity of perturbation theory in the field, the latter conditions 
defined by the inequalities 

(eF/m,w2) 2qi sin (012) < 1 ,  qiR< 1 ,  

(eF/m,oZ) R-'< I ,  qiRB 1. 

The conditions (1.14) are more stringent than (1.2). In the 
case of scattering by atomic potentials, perturbation theory 
cannot be used at F-02,  whereas the condition (1.2) is violat- 
ed at F-ov, i.e., the Bunkin-Fedorov formula can be gener- 
alized at a field intensity w2 < F <  o v  outside the framework 
of the validity of perturbation theory in the potential (all the 
quantities here are in atomic units). 

Let us analyze now the general case. The Green's func- 
tion of the Hamiltonian H from (1.1) can be sought in the 
form of a generalized expansion: 

The Green's function satisfies the equation 

(E-H) G (r, r'; E )  =G (r-r'). (1.16) 

Substituting (1.15) in (1.16) and using the orthonormality of 
the functions Y,,, we can obtain the following system of 
equations for the functions g,,,,,, : 

Note that in a formal integration of the equations with re- 
spect to the potential Uwhen the conditions (1.2) are satisfied 
we can neglect the virtual SB due to momentum transfer in 
multiple scattering in any nth order of the expansion. This 
enables us to sum in (1.17) over m", assuming completeness 
of the system. In other words, in place of the matrix equation 
in g,,, we have a system of unrelated equations: 

[E-fi'q2/2m,- ( m f  i /2)fiw]gm,~(q, q f ;  E )  

- J dqUU (q-q") g m m  (qrr ,  qf : E)  =5 (q-q')  ti.,,,^. 

The solution can be expressed in terms of the Green's func- 
tiong(q,ql;E) of an electron in a potential Uin the absence of 
a field: 

gmmf  (q,  q'; E )  =6mm,gm (q ,  q'; E )  

Substituting this result in ( I S ) ,  and carrying out calculations 
similar to those in the Appendix, we can obtain in the classi- 
cal-field limit the following amplitude: 

where t (E + iO) is the matrix for scattering by the potential U 
in the absence of a field. For the differential cross section we 
obtain expression (I. 1). Note that "field ejection in the inter- 
mediate s t a t e ~ " ~ , ~  is neglect of the virtual SB due to virtual 
momentum transfer in scattering. 

Let us summarize the conditions whose satisfaction is 
sufficient for (I. 1) to be valid in the general case: 

1) conditions (I.2), which restricts the possible frequen- 
cy and field strength at the specified scattering conditions, 
must be satisfied; 

2) the field-free scattering amplitude can be represented 
as a convergent Born series in powers of the potential. 

2. SCATTERING AMPLITUDE IN THE EIKONAL 
APPROXIMATION 

The starting point in the determination of the scattering 
amplitude in the eikonal approximation is the Schrodinger 
equation (1.1). Since practical interest attaches to the oscilla- 
tor-field states with large occupation numbers, it is conven- 
ient to use for the operators a and a+ the representation7 

which is valid if the number N of photons is large; N is here a 
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c-number. In this representation, Eq. (1.1) takes the form 

(2.1) 
The scalar product for the functions q(r ,p  ) is defined as fol- 
lows: 

2 s  2n 

E has the meaning of the average energy in the Y(r,p ) state. 
We can seek the solution of (2.1) in the form 

fiq2 = (2n) -" exp iqr-i - cp - ------ { 2m.w 
ie (Fq) sin F ( 1 , ~ ) .  
m,02 

A partial differential equation is obtained for the correction 
function. This equation can be solved by discarding, in the 
eikonal approximation, the second derivatives with respect 
to the spatial coordinates: 

The wave function obtained5 does not reflect the periodicity 
of the Hamiltonian as a function of p. In addition, the solu- 
tion of the partial differential equation is accurate only to 
within the form of an arbitrary function, so that it is desir- 
able to obtain directly an expression that reflects the symme- 
try of the Hamiltonian and makes a transition to the limit 
possible not only in the field-free case (as in Ref. 5) but also to 
certain approximations (Born, low-frequency) for scattering 
in a field. 

We seek the solution of (2.1) in the form 
rn 

y (r, 9 )  = e - i n T n  (r-a sin rp) , a=eF/mew2.  (2.4) 
n=-m 

We note the following equality, which is valid for any depen- 
dence of q, on the argument: 

ieA(FV) 
cos cp] 8. (r-a sin rp) =O. (2.5) m,o 

Substituting (2.4) in (2.1) and using (2.5) we get 

Tv is the shift operator. Equation (2.6) can be satisfied by 
stipulating that 

Knowing the solution of (2.7) we can write the general 

solution by using (2.4). We note the following identity: 

e G ( ' ) e ~ p  T i  &) = e r p  ii &I eG(r)e"c, '1, 

Commuting Tv and U(r), we rewrite (2.7) in the form 

Assuming the potential U (r) to be smooth, we obtain 

Equation (2.8) is a Schrodinger equation with a noncentral 
potential (the field-induced noncentrality is significant), and 
can be solved by the eikonal method. The conditions for the 
applicability of the method, in analogy with the scattering in 
the absence of a field, ares 

(e"U),,,~E+nAo=A2qn2/2m,, q,R>I 

(R is the characteristic effective radius of the potential). In 
this approximation, the solution can be written in the form 

I 

i 
Y,-(I)= (2n)-'erp{iq.r + -- J V ( s ,  y, z ' )  

29, 

x exp [S (x, g. 2') ] d ~ '  } (2.10) 

under the condition that the momentum of the incident elec- 
tron is directed along the z axis. We have introduced in (2.10) 
the notation 2m, fiW2U = V. Using (2.4), we obtain the wave 
function of the final state 

m 

Y - (r, cp) = e-z71qY n- (r-a sin cp) . (2.11) 
T i - "  

The wave function of the initial state with momentum fiqi is 

rp (q,, r, cp) = (2n) -" exp (iq,r-iaqi sin cp) . (2.12) 

The scattering amplitude is given by 

(an) 
f (qi, 4) =- 7 ( Y C ,  T.'(r) 9, %) I (2.13) 

and the scalar product is defined in (2.2). Using (2.12), (2.1 I), 
and (2.10) we can represent the scattering amplitude as a sum 
of partial amplitudes corresponding to scattering with ab- 
sorption or emission of s-photons, 

1 dcp 
i s ( o , q . ) = - n 1 2 r r J 2 b  -- dzV(b.z)exp(i@(z,h.p)) ,  

- (2.14) 
@=scp+q,a sin cp+X-i,b; 
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r-a, 8111 lp 

1 
~ ( q . .  b ,  cp,  2 )  =- - J dz'V (b-a,  sin cp,  z') 

2q6 - m  

X e x p { F ( b - a ,  sin cp ,  z') 1, - 
q,=q,-qi, h2q,2=hzqi2+2m,stio. 

Using the properties of the shift operator, we can integrate in 
(2.14) with respect to z in analogy with the field-free case. As 
a result we have 

Zn 

X exp (iscp+iy,a sin cp+q), 

q ( b ,  cp) =K[eix - I ,  -a,  sin c p ]  . 

The expression forx from (2.15) can be called the eikonal for 
the scattering problem in the presence of an electromagnetic 
wave. 

We write the differential cross section for a process with 
emission or absorption of s-photons in the form 

do/dQ= (q./q2) l fS l2 .  
Since an essential role is played in the eikonal approximation 
by a small scattering angle, we have for the solid-angle ele- 
ment dfl  = dyq; Z$sdijs, where y is the azimuthal angle. The 
cross section of the process is determined by the expression 

zn 

2n 

B (q , )  = J 2 exp (iscp+ii.a sin c p )  
0 

We consider now the limiting cases for the scattering 
amplitude. 

3. FIRST EIKONAL APPROXIMATION 

Assume that the eikonal is a small quantity, i.e., 

( eTU)  9n,R~fi2q,"4m,. 

The scattering amplitude then takes the form 
2n 

x axp (iG,a sin c p )  

(3.1) 
where (2.9) was used; the potential is assumed to be smooth. 

In the first eikonal approximation the SB is determined 
by a Bessel function whose argument depends on the ratio of 
the oscillations in the wave to the characteristic dimension of 

the potential and to the electron wavelength as determined 
by the momentum transfer. 

It can be seen from (3.1) that the SB is determined by 
two parameters 

el?& x=- el? dU xi =.----U-'-- 
m,02 ' m,u2 d r  ' 

whereas in the Born approximation the SB is determined by 
the one parameter X. 

Let Xl(l, X >  X,(Rg, > 1); the dependence of the scat- 
tering amplitude on the field characteristics can then be fac- 
torized. If the "rotation" qi-+a takes place at X <  1, the 
field-oscillator excitation probability has a power-law small- 
ness, and at X > 1 the most probable is excitation of an oscil- 
lator with s 5 X. At X( 1 and X, > X, for example, at small 
momentum transfers the SB is determined by the parameter 
X,. For scattering in a C0,-laser field by potentials with 
atomic effective radii, the parameterx, becomes of the order 
of unity at intensities F 2  a.u. At lower intensities, the 
passage through the region of the potential will be adiabatic, 
i.e., there will be no photon absorption or emission in the 
course of the collision. I t  is therefore important to take the 
parameter X, into account in the case of scattering in strong 
fields and at small momentum transfers. 

4. PERTURBATION THEORY IN THE PARAMETER XI 

Under the conditions X, ( 1 or 19 1 ( 1, when perturba- 
tion theory can be used, the eikonal can be represented as a 
sum of two terms: 

+ m  

where 
+m 

is the eikonal for scattering in the absence of a field. The 
scattering amplitude is reduced to the form 

iq, - 
1. (qi ,  y.) =- - J. (q.a) d2b exp {-iq,b) 

2x 

FIG. 1.  Scattering q- in a linearly polarized field of intensity 
F =  (Fsin6, Fcos 6 ) .  
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TABLE I. Differential cross section (in a.u.) for scattering at X, = 0.1; 
s =  1. 

To use (4.1) in the calculation one must know the ei- 
konal of the potential and of its derivatives. In the case of a 
smooth potential the conditions for the validity of perturba- 
tion theory are written, using (2.9) in the form: 

We consider now scattering by a truncated Coulomb 
potential 

In calculation with 
the amplltudc 
from (4.2) 

0,69 
0,67 
0,219 
0,107 
0.061 
0,0395 

d in the LF approximation 

U (r)  = 
-Ze2/r r<Ro. 

7" 
10" 
15" 
20" 
25" 
30" 

The geometry of the scattering process is shown in Fig. 1. 
The scattering amplitude amplitude in first order in the pa- 
rameterx, = eF/m,  w2ao, where a, is the Born radius, takes 
the form 

The calculation was carried out at the following values of the 
quantities contained in the formula: 

275,26 
66,09 
13,22 
4 2  
1,742 
0,852 

Table I lists the cross sections for the case when the param- 
eter X ,  is equal to 0.1. The results illustrate the statement 
that the low-frequency (LF) approximation calls for refine- 
ment for scattering in strong fields and at small momentum 
transfers. 

4,0,01 
0,66.0,01 
0,53~0,01 
0,38.0,01 
0,28~0,01 
0,21.0,01 

5. OPTICAL THEOREM, TWO SCATTERING CENTERS, 
BlCHROMATlC FIELD 

The optical theorem for scattering in the presence of an 
electromagnetic wave takes the form 

i.e., the total cross section with absorption and emission of 
an arbitrary number of photons is determined by the imagi- 
nary part of the amplitude of elastic scattering through zero 
angle. We shall show that the scattering amplitude (2.15) 
agrees with the optical theorem. We introduced below the 
notation R (p ) = exp(ix(q,b,p )) - 1. 

By definition, we have 

Xexp {is (rp-9') f @,a (sin rp-sin cp ' )  -iG, (b-b') ) R (cp) R' (cp ' )  
21 

We have used here for the solid angle the eikonal-approxi- 
mation expression dflf = q;'d 'e, the definition of the 
two-dimensional 8-function, and the equality 

On the other hand, 

Comparison of these expressions shows that the amplitude 
obtained satisfies the optical theorem. 

The scattering amplitude (2.15) allows us to consider, in 
the eikonal approximation, scattering by two scattering 
centers, U(r) and U( ( r  - cl). We then have 

=i - % z 5 d 2 i .  exp{-iscp-i&a sin rp+iij.b) f ' ~  (48, q ~ )  

We express the amplitudef; for scattering by two centers in 
terms of the amplitude for scattering by one center: 

The momentum-transfer vector is perpendicular to the 
direction of the incident electron. The difference from the 
case of field-free scattering lies in the appearance of the sum 
over m, which corresponds to reradiation of the photons on 
scattering from two centers. 

In the eikonal approximation we can obtain the ampli- 
tude of scattering in a bichromatic field. The Schrodinger 
equation for an electron in the field of two monochromatic 
waves of frequencies w ,  and w, is 

We seek the solution in the form 
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We can then obtain for the function Y,, (r) the equation 

In analogy with the case of a monochromatic field, the scat- 
tering amplitude can be represented as a sum of partial am- 
plitudes with absorption of s quanta of frequency w, and s' 
quanta of frequency a,: 

2 ;1 

~ e x ~ { - i s ~ ~ - i s ' ~ ~ + i ~ , , ~  (a ,  sin cpi+az sin az )  -iq,,cb), 
+ m 

x ( q S I . ,  bl ( p l y  92) =- 1 d r ~  (b,  z ) exp{F i+8z ) ,  (5.1) 
2988, -_ 

Under conditions when the first eikonal approximation 
is valid, Eq. (5.1) reduces to 

+s 

from which it follows that absorption of quanta of different 
frequencies is determined by the Bessel functions that corre- 
spond to these frequencies. The analysis of the result is simi- 
lar to that in Sec. 3. 

The authors thank M. V. Fedorov for a discussion of the 
main results. 

APPENDIX 

We shall use below the relations 

exp (-iwta+a) I m>=exp(-iotm) I m),  

m 

Substituting (1.10) in (1.9) we have 

Using (A. 1) we can convolute the sum over m. We use next 
the fact that 

e-io!o*uD (-,) =D(pe-iot) e-iola+a 

the property of the shift operator 

D (P) D ('a) =exp ( (pa*-P,,a) / 2 ) D  (@+a) ,  

the expression for the matrix element 

( n f s  (D ( p )  I n>= [ (n+s) l/n!]'l'e-v/2e~s(-v")-B~n~a (Y) ,  

p=v'"e'~ 

and a transition to the classical-field limit by using (1.7); we 
obtain ultimately 

m 

i 
xexp{g; (ei-eq+ie) f} exp ( iy  ( t )  s )  I ,  [ 2  (nv ( t )  ) "1, (A.2) 

After using the summation formula9 

I,( [xZ+ y2-2xy COS @ - 

we obtain Eq. (1.1 1) of the text, where 

Xin= (qj-q) eFlm,oZ, X,,= (q,-q) eF/meoZ 

'F. V. Bunkin, A. E. Kazakov, and M. V. Fedorov, Usp. Fiz. Nauk 107, 
559 (1972) [Sov. Phys. Usp. 15,416 (1973)l. 

2N. M. Kroll and K. M. Watson, Phys. Rev. A 8, 804 (1973). 
3C. Leone, P. Cavaliere, and G. Ferrante, J. Phys. B17, 1027 (1984). 
4L. Rosenberg, Phys. Rev. A 18,2727 (1983). 
5B. A. Zon, J. Phys. B81, 86 (1975). 
6A. M. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reac- 
tions, and Decay in Nonrelativistic Quantum Mechanics, Wiley, 1969. 

'J. Bilaynicki-Bimla and Z. Bialynicki-Birula, Phys. Rev. A 14, 1104 
(1976). 
'L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic 
Theory, Pergamon, 1974. 

9A. Erdelyi, ed. Higher Transcendental Functions, Vol. 2, McGraw, 
1953. 

Translated by J. G. Adashko 

655 Sov. Phys. JETP 61 (4), April 1985 A. F. Klinskikh and L. P. Rapoport 655 




