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The transition with respect to the anisotropy coefficient 7 = (C,, - C12)/2C4, from ordinary to 
generalized Rayleigh waves is investigated for cubic symmetry crystals. The necessary and suffi- 
cient conditions for such transitions are found. Attention is drawn to the fact that a change in the 
geometry of the cross section of the isofrequency surface for long-wave sound oscillations affects 
the physical characteristics of the surface waves. The generalized Rayleigh waves in strongly 
anisotropic crystals are also analyzed. 

Rayleigh waves are the basic types of surface sound 
waves in solids. The amplitude of the vibrations in such 
waves falls off exponentially into the bulk of the crystal. The 
decrease in the amplitude takes place monotonically (ordi- 
nary Rayleigh waves) or nonmonotonically, with oscilla- 
tions (generalized Rayleigh waves).' Although these and 
other types of Rayleigh waves in anisotropic matter have 
been studied for a long time, and in great detail, the actual 
transition from ordinary to generalized waves still remains 
unclear. This is connected with the fact that, owing to the 
complexity of the dispersion equations, numerical calcula- 
tions have been used in most studies. l4 The present work is 
devoted to the analysis of the conditions for the transition 
from ordinary to generalized Rayleigh waves, and to the 
study of the connection of the basic characteristics of surface 
waves with the geometry of isofrequency long-wavelength 
surface acoustic waves. It is found that the shape of the iso- 
frequency phonon surface (its local geometry) affects the 
physical characteristics of the surface waves in a manner 
similar to the way in which the singularities of the Fermi 
surface appear in the electron properties of  metal^,^ includ- 
ing the surface properties6 In contrast to the situation in- 
volving the electron properties, many of which are essential- 
ly determined by the shape of the Fermi surface, few 
examples are known of acoustical properties being deter- 
mined by the shape of the isofrequency surfaces of crystals. 

TRANSITION FROM ORDINARY TO GENERALIZED 
RAYLEIGH WAVES 

It is known that generalized Rayleigh waves can propa- 
gate only in anisotropic crystals, since the damping of the 
amplitude of a surface wave in an isotropic solid always takes 
place mon~tonically.~ As will be shown below, the basic fea- 
tures of the phenomena we are considering can be illustrated 
by the example of a cubic crystal, which is described by three 
independent elastic moduli, instead of two for the isotropic 
solid. We shall analyze the symmetric directions of wave 
propagation and only such slices of the surface for which the 
sagittal plane is a plane of mirror symmetry of the crystal. 
The Rayleigh wave in this case is a double mode, and the 
characteristic equation of bulk oscillations is a biquadratic. 

We consider the double-mode Rayleigh wave, propa- 

gating in the [I001 direction on the (001) boundary of a cubic 
crystal. The displacements in such a wave have the form 

U,= ( A  ieT~hz+AZeT~k7) e i k ( x - V t ) ,  

(1) 

where Vis the velocity and k is the wave number of the wave. 
In the expression (I),  y,, y, are the roots of the biquadratic 
characteristic equation (2), which is obtained from the bulk 
equations of motion: 

C,,C,,y'-y"[c,, (C4,-pV" +c,, (C1,-pV2) - (C12+C4,) 2 l  
t (CLL-pVZ) (CiI-pVZ) =O (2) 

for displacements of the form ui = ui 'elk(" - + Yh (the x, y, 
z axes coincide with the crystallographic axes; i = x, z, and 
the z axis is directed along the external normal; C, ,, C12,C4, 
are the elastic moduli). The quantities r, and r2 are the 
eigenvectors of the bulk equations of motion (r = u, /u, ), 
corresponding to the eigenvectors y,, y2, and have the fol- 
lowing form (i = 1, 2): 

The ratios between A ,  and A,  are found from the boundary 
conditions uzz = uzx = 0 on the surface z = 0: 

Using (3)  and (4), we can write the dispersion relation for the 
surface wave in the following form: 

This equation is equivalent to two equations. At y, # y, Eq. 
(5) coincides with the Stoneley equation2 for the velocity of a 
surface wave in a cubic crystal of the specified geonetry. The 
solution of the Stoneley equation is shown in Fig. 1 as a 
function of the anisotropy parameter (factor) 

cii-ci2 

q=T (6 )  

in the case C,, + C,, > 0 and at fixed values of { = C, ,/ 
C,, > 1 (curve I, V,, = (c,,/~)"~). Examples are known in 
which 7 varies continuously (for example, as a function of 
the temperatures). Curve I, as a function of 7,  describes both 

639 Sov. Phys. JETP 61 (3), March 1985 0038-5646/85/030639-06$04.00 @ 1985 American Institute of Physics 639 



0 l]c 7 0  ' 7 * 
FIG. 1. Dependence of the velocity of Rayleigh waves on the anisotropy 

0 A kx 

parameter   curve^); solution of the equation = y, corresponding to the FIG. 2. Convex (I) and nonconvex (11) cross sections relative to the direc- surface wave (curve 11); plane (Wl),  direction of the wave [lW]. tion k,  . 

the ordinary Rayleigh wave (y, and y, are real) and the gen- 
eralized wave-when y, and y, are complex and have the 
form y,, , = y' + iy". The transition from one wave to the 
other takes place at y, = y,. This condition means that the 
point of transition (in the anisotropy parameter 7) is deter- 
mined by the simultaneous solution of the Stoneley equa- 
tion' and the equation obtained from the condition y, = y,. 
The condition that the roots of the characteristic equation (2) 
be equal leads to the following expressions: 

The only root of Eq. (7) corresponding to the surface wave 
possesses the following properties. In the case 
C,, - C,, = 2C4,, i.e., on an isotropic solid (7 = I), the 
equation has a zero root (V, = 0); in the case 
(C,, + C,,)' = Cl ,(C1 - C,,), which corresponds to 
7 = vc < 1, the root Vo is identical with the bulk transverse 
velocity V,, . 

Thus, the desired solution exists in the inerval 
yc < 77< 1. Curve 11 in Fig. 1 represents this solution. In such 
a "wave," as is seen from (I), (3), and (4), the total displace- 
ments u, and u, are equal to zero. We note that the analo- 
gous root, corresponding to the "wave" with Vo = 0, is also 
in the Rayleigh equation for an isotropic solid9 (7 = 1 on 
curve). In the case 7, < 7 < 1, such a wave corresponds to the 
nonzero velocity V,. The existence of a general root of the 
two equations (5) (the presence of the point intersection 7, of 
the curves I and 11 ) is the necessary and sufficient condition 
for transition from ordinary to generalized Rayleigh waves. 
In Fig. 1, the region 7 < 7, corresponds to the generalized 
Rayleigh wave, 7 > vO, to the ordinary. At the point of inter- 
section, 7 = vO, as also in all branches of 11, the total dis- 
placement u in the double-mode Rayleigh wave vanishes. 

The resulting transition criterion, according to the an- 
isotropy parameter (6), from ordinary to generalized Ray- 
leigh waves can be transferred to the case of surface wave 
propagation in an arbitrary direction in the plane of mirror 
symmetry of the crystal. Here the surface wave is a triple 
mode; however, the characteristic equation remains bicubic, 
as also for the high-symmetry directions. This circumstance 

allows us to speak of a transition from ordinary to general- 
ized (in displacements in the sagittal plane) surface waves in 
terms of the other continuous variable, the angle of rotation 
of the propagation of the wave in such a plane. Such a transi- 
tion was obtained numerically for Ni in the (1 10) plane at an 
angle of 63" relative to [OOl], and also in the (001) plane in 
W.' For cuts intermediate between (100) and (1 lo), the char- 
acteristic equation of the bulk oscillations is not bicubic (or 
biquadratic), and therefore the ordinary Rayleigh waves do 
not generally exist at 7 # 1. 

The point 7, possesses still another interesting proper- 
ty. Analysis carried out in the limit where the transverse 
velocities VT, and VT2 are small in comparison with the lon- 
gitudinal, shows that at this point, the velocity of the Ray- 
leigh wave for these cases is identical with the velocity of the 
bulk transverse wave polarized perpendicular to the sagittal 
plane. 

ANALYSIS OF THE FEATURES OF THE ISOFREQUENCY 
SURFACE 

The appearance in the crystal of the generalized Ray- 
leigh wave can be connected with the shape of the isofre- 
quency phonon surface. It is well known that for various 
relations between the elastic moduli allowed by the condi- 
tions of elastic stability, the corresponding cross sections of 
the isofrequency surface can be either convex of noncon- 
vex.'' For analysis of the Rayleigh wave, the properties of 
the cross section in the k, k, plane (xz is the sagittal plane) of 
the isofrequency surface of the bulk transverse mode, polar- 
ized in the sagittal plane, are important. In this cross section, 
there is interest in its local geometry near the direction of the 
wave vector of the surface wave. In the case of a convex cross 
section relative to the given direction of k, the lines perpen- 
dicular to this direction have two (equivalent) points of inter- 
section with the cross section, and in the case of concave 
cross sections, more than two. 

Naturally, it makes sense to introduce the concepts of 
convexity and nonconvexity only for the high-symmetry di- 
rections (of the type [loo], [110]). We now consider the prop- 
erties of the cross section of the isofrequency surface of mode 
VT, , near the k, direction. An example of part of the cross 
section2) of the isofrequency surface of a cubic crystal is 
shown in Fig. 2. The curve I corresponds to a convex cross 
section, relative to the [I001 direction, while curve 11 corre- 
sponds to the nonconvex. The entire analysis of the proper- 
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ties of the cross sections of isofrequency surfaces in the k ,  k ,  A t  

plane can be carried out on the basis of Eq. (2). The condition 2 A , 
for the k, k ,  cross section to be concave relative to the [I001 
direction has the form 

(C,,+C,*) 2-cii (Cil--CLL) 
'0, (8) 

cii-CL, 
while the condition for nonconvexity relative to the [I101 
direction is 

We can obtain the connection of the critical value of the Dl- 
anisotropy parameter v,, corresponding to the transition j/4 8 / ~  9/8 4/j 7 - .  - 
from convex to nonconvex cross section of the isofrequency 

FIG. 3. Values of the parameters 7, { at which the corresponding cross 
surface of mode Vwith the parameter l=  C1 1 1 ~ 4 4  from ( 6 ) j  sections are convex or nonconvex-solid lines; boundaries of transition 
(8) and (9). For the [loo] direction, from ordinary to generalized Rayleigh waves-dashed lines (see text). The 

values of the elastic moduli for nickel, diamond and aluminum were taken 

'3 (10) 
from Ref. 1. 

r c <  ; 
.L 

while for the [I101 direction, 

We note that crystals for which {< 1 (i.e., C4, <C,,) and 
2vc - {> 1 (i.e., C,, + C4, < 0), do not occur in nature. Re- 
gions of convexity and nonconvexity of the cross section of 
the isofrequency surface of mode VT, in the k ,  k, plane rela- 
tive to the [OOl] and [I101 directions of a cubic crystal are 
shown in Fig. 3 in the variables {, 7. The region 1 corre- 
sponds to nonconvexity relative to the [OOl] direction, re- 
gion 2-relative to the [I 101 direction, region 3-to a cross 
section that is convex relative to both directions, and region 
&to nonphysical relations between the elastic parameters 
of the crystal. For most cubic crystals, the anisotropy pa- 
rameter 7 is smaller than 0.75 in region l )  (Na, Pb, Ni, Cu, 
Ag, Fe, Ge, Si, Au, GaAs, MgO, LiF, ZnS, ZnSb, . . . ). At 
7 = 1 (isotropic case), all the isofrequency surfaces have the 
shape of concentric spheres, and an arbitrary cross section is 
circular. 

The value of 7, determined by the expression (10) is 
identical with the value of 7, in curve II of Fig. 1. It then 
follows (this can established directly) that the transition 
from ordinary to generalized Rayleigh waves takes place 
when the isofrequency surface is still convex. Therefore, the 
nonconvexity of the isofrequency surface of a bulk trans- 
verse mode, polarized in the sagittal plane, is a sufficient 
condition for the existence of a generalized Rayleigh wave 
(without its being the necessary condition). The boundaries 
between the regions in which generalized and ordinary Ray- 
leigh waves exist are indicated in Fig. 3 by the dashed lines. 
Region l', which includes region 1, corresponds to general- 
ized Rayleigh waves along [loo] on the (001) surface, and 
region 2', which includes the region 2, to generalized Ray- 
leigh waves along [ l i ~ ]  on the (1 10) plane. Thus, for exam- 
ple, for crystals of Al, diamond and Ni, the Rayleigh wave on 
the (001) plane along [loo] is a generalized At the 
same time, the corresponding cross section of the isofre- 
quency surface of mode V,, (see Fig. 3) for A1 and diamond 
is convex, while for Ni (and also for most cubic crystals) it is 

nonconvex. We note that in crystals with an anisotropy pa- 
rameter close to unity (for example, W, 7 -- 1.005), the isofre- 
quency surfaces of both transverse modes are convex in all 
symmetric directions. Nevertheless, even in such crystals, 
directions exist (in the plane of mirror symmetry), that are 
different from symmetric, in which the Rayleigh wave is a 
generalized one (but displaced in the sagittal plane)'. Only 
when the anisotropy parameter is strictly equal to unity is 
the Rayleigh wave an ordinary one in an arbitrary geometry 
of the cubic crystal. 

The nonconvexity of the corresponding cross section of 
the isofrequency surface as a sufficient condition for the exis- 
tence of a generalized Rayleigh wave has a graphic geomet- 
ric interpretation. In Fig. 2, the line AB corresponds to a 
surface wave of a given frequency, traveling along [I001 with 
wave number OA on the (001) boundary. The curve OC for a 
nonconvex isofrequency surface (curve 11) is equal to yVk  in 
the wave, i.e., it determines the period of oscillation of the 
amplitude of the generalized Rayleigh wave as a function of 
depth. 

GENERALIZED RAYLEIGH WAVES IN STRONGLY 
ANISOTROPIC CRYSTALS 

In the preceding section, we analyzed the condition of 
transition from ordinary to generalized Rayleigh waves and 
the connection of this transition with the singularities of the 
isofrequency surfaces of the bulk transverse wave. As was 
pointed out, this transition and the change in the local geom- 
etry also take place at values of 7 close to unity. We now 
analyze the situation of a strongly anisotropic cubic crystal, 
with an anisotropy parameter 7 = (C,, - C12)/2C4,, greatly 
different from unity. Many alkali metals belong to such a 
group (Li, K, Na, . . . ) and also compounds that are close to 
a structural phase transition, connected with the soft trans- 
verse velocity VT2 = (Cll - ~ , ~ ) / 2 , 0 ) ~ ' ~  (for example, A-15 
compounds Nb,, Sn, V,, Ge), in which 7< 1, and also piezoe- 
lectric crystals with a piezoeffect in the paraphase (KDP, 
Rochelle salt) near the piezoelectric transition, when the soft 
velocity VT, = (C44/p)112 (7% 1) occurs). In both cases (74 1 
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4. Cross section in the k x  k z  plane of the isofrequency surface of the FIG. 5 .  Cross section in the k,  k, plane of the isofrequency surface of the 
transverse bulk mode V,, in the case 741. transverse bulk mode V,, in the case v>l .  

and 77~1)  the nonconvexity of the isofrequency surface is 
most sharply expressed, while the period of the oscillations 
of the amplitude of the generalized Rayleigh wave is finite 
with depth and comparable with the wavelength. At the 
same time, close to the point of transition from ordinary to 
generalized Rayleigh waves, the period of the oscillations 
greatly exceeds the wavelength and the penetration depth 
(y" < y'). We shall first consider the surface wave on the (001) 
boundary, traveling along the [loo] direction in a crystal 
with 774 1. The presence of the small parameter 77 allows us to 
carry out the entire calculation analytically (the numerical 
calculation for the Nb,Sn crystal was given in Ref. 9). To 
within linear terms in 77 this wave has the following charac- 
teristics: 

p1"=211C~,[ 1-'/,11 (1SCA4/C1,) 1, 

71 2=*[1-1/2q (l+C4+/C,,) ]i+'I2q ( l+Cb4/C,l) .  (12) 

It is seen from (12) that in the case 
77-0 yl, , -f + i, V+ VT2 fl. The limiting relations can be 
interpreted geometrically with the help of the topology of 
the isofrequency surface. The cross section in the k, k, 
plane of the isofrequency surface is perpendicular to the bulk 
wave, polarized in the sagittal plane, is shown in Fig. 4 in the 
case 774 1 (see note 2). The line A 'Din this plot corresponds to 
a surface wave with the wave number OD. As is seen from 
(12), as 7-0 the value of the separation of the surface wave 
from the spectrum of bulk transverse waves decreases-the 
line A 'D actually touches the corresponding cross section at 
the point A. The parameters of this cross section are the 
following: OB = OC = w/V,,  , OA = w / V T 2 ,  i.e., in the limit 
77-4, this cross section is extended along the bisector of the 
coordinate angle, actually coinciding with it (OABOB). 
Therefore, in the limit we have OD = OA /d, which corre- 
sponds to V =  VT, fl. Moreover, from the condition 
OE = OD, we obtain y,, , = + i, i.e., the period of the oscilla- 
tions (yV)-  ' (with increasing depth) tends to the wavelength, 
while the penetration depth significantly exceeds the wave- 
length y' < 779 1. For strongly anisotropic crystals, the in- 
crease in the penetration depth in comparison with the wave- 
length is a natural result of the Thus, as the 
parameter 7 from 77, < 1 decreases to the limiting value de- 
termined by the condition of elastic stability (77 = O), the pe- 
riod of the oscillation (y")-' decreases from a maximum, 
equal to infinity at 77 = 770, to a minimum, equal to the wave- 

length at 77 = 0. 
A similar consideration of the generalized Rayleigh 

wave can be carried out for another type of strongly aniso- 
tropic crystal, with 77) 1. In such a crystal, we consider the 
surface wave traveling along [lo71 on a boundary of type 
(101). The corresponding cross section is shown in Fig. 5 (see 
note 2). The parameters of this cross section OB = OCand OA 
are the same as in Fig. 4, with, however, the opposite relation 
between them: OA<OB, i.e., the cross section is taken along 
the coordinate axes. The line B 'D corresponds to a surface 
wave with wave number OD. To the conditions OD = OB /fl 
and OD = DB corresponds V = VT, fl and y,, , = + i. The 
same characteristics of the generalized Rayleigh wave we are 
considering are obtained from analytical considerations to 
lowest order in 1/77 As also in the previous case, ( ~ ( 1 ,  
boundary (OOl), direction of the wave [100'], in the present 
case (7% 1, boundary (101), direction of the wave [lei]), the 
minimum period of the oscillations of the wave amplitude 
with depth is equal to the wavelength (as 77-a). At a struc- 
tural phase transition, which is associated with the destruc- 
tion of the elastic stability of the crystal, the penetration 
depth of the Rayleigh wave is a rnaxim~m, '~  while the period 
of oscillation of the amplitude of the generalized wave is a 
minimum. 

We have analyzed the transition under the change in the 
anisotropy parameter 77 of a cubic crystal from ordinary to 
generalized Rayleigh (two-partial) waves, and we have cal- 
culated the necessary and sufficient conditions for the transi- 
tion. At the transition point, the displacement in the wave 
vanishes. This same property is also possessed by oscillations 
on all branches of surface "waves," corresponding to the 
condition y, = y,, and complement the branch of surface 
Rayleigh waves. This branch exists in the interval of values 
of 77 and vc to 1, while 77, can be either greater than or less 
than unity. The existence of the point of intersection 77, of 
the branch corresponding to the Rayleigh wave branch is the 
necessary and sufficient condition for the transition from 
ordinary to generlized Rayleigh waves. The value of 77, lies 
in the interval between 77 = 7, and 77 = 1. In the case 7, < 1, 
the generalized Rayleigh waves exist at 77 < 77, in the case in 
which 90 > 1, at values 77 > 770. The point 77 = 77, corresponds 
to a change in the local geometry in one of the symmetric 
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directions of the isofrequency surface of the branch of bulk 
transverse oscillations polarized in the sagittal plane. At this 
point, the cross section of the isofrequency surface in the 
k, k, plane (xz is the sagittal plane) become nonconvex rela- 
tive to the direction of propagation of the wave. The noncon- 
vexity of the cross section of the isofrequency surface rela- 
tive to the direction of propagation of the wave is a sufficient 
condition for the existence of generalized Rayleigh waves. 

The root V, = 0, which corresponds to the condition 
y, = y,, is also in the Rayleigh equation for an isotropic sol- 
id. Since the total displacement in such a "wave" is equal to 
zero, this "wave" never appears at the boundary between a 
solid and a vacuum. For its appearance, a second medium is 
necessary-in the simplest case, such a medium can be a 
liquid (or gas). It is well knownI4 that on the boundary 
between an isotropic solid and a rarefied medium, for exam- 
ple, a gas (p,/p<l, V,/V,(l), in addition to the damped 
Rayleigh wave there also exists an undamped surface wave. 
It is characteristic for this wave that longitudinal and trans- 
verse components of the wave actually penetrate to the same 
depth, close to a wavelength into the interior of the solid 
(y, z y, z 1). In anisotropic crystals with V, > V, > 0 (V, is 
the velocity of the Rayleigh wave on the boundary with a 
vacuum), a similar choice of parameters of the liquid can also 
assure the existence of undamped surface waves, in which 
y, z y, and the velocity of the wave is finite. 

Still another example of the appearance of such a 
"wave" in an isotropic solid is a system consisting of a layer 
with high density and high rigidity on the isotropic sub- 
strate. As shown in Ref. 15, in such a system there exists a 
surface wave with a quadratic dispersion law, similar to the 
dispersion law of the bending wave in a thin free film. This 
wave is the slowest of all the elastic waves, including acoustic 
surface waves. As in the case of a surface wave on the bound- 
ary of an isotropic solid with a liquid of low density and 
sound velocity, longitudinal and transverse oscillations pen- 
etrate close to a wavelength into the isotropic substrate. The 
displacements in such a wave are small, and are proportional 
to the small value of its velocity (frequency). 

In strongly anisotropic crystals with an anisotropy pa- 
rameter very different from unity, the nonconvexity of the 
corresponding cross sections of the isofrequency surfaces of 
the transverse modes is very clearly delineated. In such crys- 
tals, the analysis of the basic characteristics of the general- 
ized Rayleigh waves in terms of the shape ofthe cross section 
of the isofrequency surface is found to be useful. For specific 
cases, such surface wave properties as the velocity aiid peri- 
od ofoscillations as a function depth, found analytically, can 
be interpreted physically with the help of geometric analysis 
of the corresponding cross sections. 

APPENDIX 

Equation (5) in the limit of small transverse velocities 

(the region 6) 1 in Fig. 3) has the form 

6 4 q 3 A + 1 6 q 2  ( 3 h 2 - 5 1 + 2 A 1 - )  + 4 q  (3A3-13A2+9A+1 
-8 1' +8A1 ' )  -tA4-8A3+10A2-3-8A5'~+16A112-8A~h=0, 

(A.1) 

and the corresponding Stoneley equation is 

We have introduced the following notation in (A.l) and 
(A.2): 

as well as the conditions (C,  , - Cl,)/C,, (1, C,,/C,, 4 1. 
The wave is propagated on the (001) plane in the [I001 

direction. 
The root of the Stoneley equation corresponding to 

positive values of 7 is equal to 

( I - A )  (A+AIh)  
q s t  = ,  

4 A  9 ('4.3) 

while Eq. (A. 1) has the follcwing roots: 

Thus Eq. (A.l) contains a doubly degenerate root of the 
Stoneley equation and an additional root corresponding to 
the condition y, = y,. 

From (A.3) and (A.4), we can find the point of intersec- 
tion of the branch of Rayleigh waves with the branch corre- 
sponding to y, = y,: 7, = 8/9, A, = 1/9. The value 7, at 
which the transition from convex to nonconvex cross section 
the isofrequency surface of mode VT, takes place is found 
from the condition A = 0: 7, = 3/4. 

For propagation of the wave along the [I101 direction 
on the (1 10) plane, in the limit of small transverse velocities 
V,, and VT2, we obtain the following values of the param- 
eters of interest: 7, = 4/3, 7" = 9/8. 

The Stoneley equation (A.2) at 7 = 0 has a triply degen- 
erate root A = 1. At 74 1 this equation has a single solution 
(A = 1 - 27), which describes the surface wave, and two 
complex-conjugate roots. 

At 7 = 1, we have A zz 1/11, while the other two roots 
are complex. At 7) 1, there is a single real root (A = 1/167,), 
and two complex roots. 

Thus, for all possible values of the anisotropy parameter 
7 (in every case, in the limit of small transverse velocities, 
{) 1) the Stoneley equation (A.2) has a single real solution, 
corresponding to a surface Rayleigh wave (ordinary or gen- 
eralized). 

"For a cubic crystal, these conditions are the following3: 
>'The remaining part of the cross section is obtained by reflection of the 

reduced coordinates relative to the axes. 
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