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Using the equation of I. M. Lifshitz we construct a scattering theory for quasiparticles in a two- 
dimensional lattice space; we use it to study a system such as adsorbed helium on a graphite 
substrate (two-dimensional quantum lattice systems). For well defined values of the density of the 
covering the diffusion coefficient of the quasiparticles experiences anomalous drops caused by the 
suppression of tunnelling processes due to phase transitions in the two-dimensional system of 
adatoms. We evaluate the correction to the free energy of a two-dimensional quantum crystal 
which is caused by the binary interactions between the quasiparticles. We show that there is a 
singularity in the heat capacity at a well defined temperature. 

1. INTRODUCTION 

It is well known that under certain conditions helium 
changes into a quantum-crystal state.' Quantum crystals are 
strongly anharmonic even at absolute zero and therefore 
possess unique properties, in particular, an essentially new 
motion of the atomic particles is possible in them: quantum 
diffusion. lv2 

Experiments show that atoms of the helium isotopes 
adsorbed on a graphite substrate form different phases-gas, 
liquid, solid-with sharply expressed quantum properties, 
and in that case phenomena are observed which have no 
analogy in the three-dimensional ~ a s e . ~ , ~  

The surface of a graphite substrate consists of a network 
of shallow potential wells with a depth of about 20 K. For a 
certain value of the density of covering" (x = 0.58) and at a 
temperature of 3 K a rather steep heat capacity anomaly 
appears which indicates the occurrence of a transition from a 
two-dimensional gas with a disordered arrangement of the 
atoms into a regime of epitaxial ordering in the field of the 
graphite substrate. Due to the repulsion between atoms at 
small separations this ordered state arises at a density of the 
covering such that there is one helium atom for three poten- 
tial wells of the substrate, so that the potential wells on the 
other side of the neighboring ones are occupied (commensur- 
able phase t ran~it ion) .~ 

Measurements have been performed of the NMR relax- 
ation times T,,, in helium monlayers and their dependence 
on the density of the covering was ~ b t a i n e d . ~  For instance, 
measurements performed at a frequency of 1 MHz in a con- 
stant field showed that there are steep drops in the relaxation 
times for covering density values ofx, = 0.98 and x, = 0.58, 
while in the region 0.58 < x  < 0.98 no anomalies were ob- 
served. This indicates that for the valuesx,,, of the density of 
the covering a suppression of tunnelling processes occurs 
which is caused by phase transitions, respectively, into the 
two-dimensional gas phase and into a two-dimensional clas- 
sical solid (completely populated monolayer). It thus seems 
to be established that in the range 0.58 < x  <0.98 the ada- 
toms are in a quantum-crystal state. 

For the calculation of the diffusion coefficient of the 
quasiparticles we need to know the cross-section for their 

mutual scattering,,g5 and there thus arises the necessity to 
construct a scattering theory of the quasiparticles in a two- 
dimensional lattice space. 

In the present paper we use Lifshitz's equations6,' to 
construct a scattering theory which enables us to obtain the 
density dependence of the diffusion coefficient (DC) of the 
quasiparticles. Moreover, this enables us to obtain an expres- 
sion for the contribution of the interacting quasiparticles to 
the free energy of a 2 0  quantum crystal and, hence, to evalu- 
ate the heat capacity of this system. 

2. SCATTERING OF QUASIPARTICLES IN A 20 LATTICE 
SPACE 

Due to the delocalization of the atomic particles in 
quantum crystals it is extraordinarily important to take into 
account there the quasiparticle short-range repulsion in 
scattering processes. As in Refs. 7,8 we choose the interac- 
tion potential in the form 

where R and R' are the two-dimensional integer vectors of 
the lattice sites, a,,, is the Kronecker symbol, and Vo a 
characteristic interaction energy. The case Vo --+ co corre- 
sponds to the case when two quasiparticles cannot simulta- 
neously be at a single lattice site (the case of the so-called 
"impenetrable" potential). 

Let two quasiparticles with energy ~ ( k , )  and ~ ( k , )  be 
scattered by the potential (1). Such a scattering process in 
lattice space is described by the Lifshitz equation which has 
the form 

J(R,-R/)@ (RJ. R,) + J(R/-R,) + (R,, R.)  
R '  R' 

+Vo C b a . , R * b R  R,$(RI. RI-R') =z+(RI, Rz), (2) 
R '  

where J ( R  - R') is the jump integral, z = E + iO, E is the 
scattering energy; $(R,R1) is the two-quasiparticle wave- 
function. 

In the case of a two-dimensional lattice space the solu- 
tion of Eq.(2) corresponding to the scattered wave has the 
form 
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Y ( R )  = r v ,  J exp ( ixR)  dZx 

E (x+q/2) +e (x-q/2) -2 ' 

where q is the quasimomentum of the center of mass of the 
two scattered quasiparticles and 

The quantity lr(q,E ) 1 determines the probability that two 
quasiparticles hit a single lattice site. It follows from (4) that 
as Vo -t w this probability tends to zero. We note that the 
jump integral J (R - R') and the quasiparticle energy ~ ( k )  are 
related through the following equation: 

e (L) =z J ( R )  P. ( 5 )  
R 

We consider an approximate method for evaluating the 
wavefunctions. We note at once that this method enables us 
to take into account the lattice nature of the problem; the 
quasimomentum q of the center of mass which classifies the 
state of the quasiparticles in the lattice occurs in the wave- 
function and in the scattering amplitude as a parameter. 

We consider the function 

rI ( x ,  q)  =& (x+q/2) +E (x-9/21. (6) 
Let the minimum of the function II(x,q) be reached for 
x = ~ " ' ( q )  and be equal to w"'(q) and the maximum for 
x = ~ ' ~ ' ( q )  and be equal to w(2'(q). We expand the function 
II(x,q) in series near the extrema, restricting ourselves to the 
quadratic terms: 

where a is the lattice constant and A the width of the quasi- 
particle band, 

A,, Bi>O. 

We note that the quantity R(q) = w'"(q) - d2'(q) is the width 
of the band of two-quasiparticle states. 

Substituting the expansion (7) into Eq. (3) for the wave- 
function and integrating over x we get 

Y ( R )  = i71vo e&(l)R 

A ( A ~  A* )'I2 

where 

In Eqs. (8) and (9) the Jo(z) and the Ko(z) are zeroth order 
modified Bessel functions of the first and second kinds. It 
follows from (8) and (9) that these wavefunctions correspond 
to scattering if the scattering energy E lies within the bounds 
of the two-quasiparticle band, and they correspond to bound 
states if the scattering energy lies outside the two-quasiparti- 
cle band. 

The quantities 7, (q,E) are evaluated using Eq. (4) and 
the expansions (7): 

The scattering amplitudes are obtained from the wavefunc- 
tions (8) and (9) by the standard method (we give the result 
for the "impenetrable" potential): 

exp i d 4  
x In I (w(Z) -E) /  (w( ' ) -E)  I +in0 (*ETo(")  7 (11) 

and thus we have from (1 1) for the scattering cross section 

It follows from (13) that the scattering cross section has sin- 
gularities near the edges of the two-quasiparticle band. We 
can easily understand this behavior if we recall that Eq. (12) 
was obtained using the quadratic expansions (7). 

3. BOUND STATES IN 2 0  QUANTUM CRYSTALS 

Pitaevskii has shown that in crystals bound states both 
of the same and of different excitations can arise for arbitrar- 
ily weak interactions between them. In particular, in quan- 
tum crystals bound states may be formed even when the in- 
teraction between the quasiparticles is repul~ ive .~ . '~  This is 
explained by the specific motion of the quasiparticles with 
energy bands of vanishing width.2 We shall show here that 
bound states of quasiparticles are formed also in two-dimen- 
sional quantum crystals. 

The equation for determining the binding energy has 
the following form:'' 

where r(q,E ) is given by Eq. (4) and can be evaluated exactly 
in the case of a square lattice of adatoms with as quasiparti- 
cle dispersion law 

E ( k )  =eo+J(cos ak,+cos ak,). (14) 
Using (14) and integrating in (4) we get the following expres- 
sion: 

V O  i 
t - ' (q ,  E ) = l -  

21 ( ~ 1 x 2 )  

where P- ,,,(A ) and Q- ,,,(A ) are Legendre functions of the 
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first and second kind, respectively. After we introduce the 
notation go = ~ d ~ ( ? t , x , ) " ~  and use (15), Eq. (13) becomes 

2go l-goP-r,, (A)  -i- Q-I,, (A)  =O. 
n 

Due to the transcendental nature of Eq. (16) one can study its 
solutions in the case of the so-called averaged impenetrable 
potential, i.e., go - 0." 

Taking the asymptotic expressions for the Legendre 
functions1 we find the following equation: 

We introduce the binding energy S (q) = 2~(q /2)  - E, where 
&(q/2) = E, + J(x1x2); we then have from (17) 

The binding energy is thus exponentially small. The stability 
condition of the bound state consists in requiring that the 
coefficient of the exponential be negative and have the form 

cos (aqi/2) >O, aq,<n ( i=i ,  2 ) .  (19) 

In the opposite case the bound state is unstable (in that case 
one will speak of a virtual bound state). 

The equation to determine the bound state of quasipar- 
ticles within the framework of the approximate scattering 
theory is obtained from Eq. (10) and has the form 

where g, = ci Vdg, (i = 1,2). 
Considering the energy range E < dl ' (q )  we introduce 

the binding energy S,(q) = E - o"'(~); solving Eq. (20) we 
then get 

6, (q) =-52 ( q )  e-'!El,  g,-+O. (21) 

In the range E > w ' ~ ' ( ~ )  Eq. (20) has no solutions. 
In the two cases we thus get results in qualitative agree- 

ment: there are regions in quasimomentum space where ar- 
bitrarily weak interactions between the quasiparticles lead 
to the formation of bound states with an exponentially small 
binding energy. 

4. DIFFUSION COEFFICIENT OF QUASIPARTICLES 

We shall show in this section that the DC of quasiparti- 
cles in a 2 0  quantum crystal for certain well defined values 
of the covering density shows an anomalous behavior which 
qualitatively agrees with the behavior of the NMR relaxa- 
tion times T ,,, ( x )  (see Introduction). We estimate this using 
the following gas-kinetic formula: 

where v is the velocity of the motion of the quasiparticles in a 
band of width A, u -aA/fi and I is the mean free path. 

We introduce the scattering cross-section averaged 
over the two-quasiparticle band by integrating expression 
(12) over the energy E: 

d2)( q )  

1 
o. ( q )  = - oi ( q ,  E )  dE, i=1,2, 

4 A  o",<q, 

where we have used the fact that the scattering energy E as 

function of the quasimomenta changes within the limits 
[ - 2A,2A]. As a result of the integration we then get 

We introduce the quasiparticle mean free path caused by 
binary collisions with a fixed value of the quasimomentum q: 

1(q) =aZlxko ( q )  , (25) 

where xk  is the quasiparticle density. 
The mean free path calculated taking into account 

quasiparticle scattering processes with quasimomenta q, 
varying within the limits of 0 to some value go, where q, is a 
characteristic/quasimomentum for the given system (in 
what follows we change from go to the quasiparticle density) 
is 

401 40" 

where qo = 90 = (40x ,40,). 
Using (24), (25), and (26) we get 

We consider the case of a hexagonal plane lattice of adatoms 
with a quasiparticle dispersion law 

- 
Y3 1 

e (k) =~.+l cos ( a k , )  cos (? nk. ) 
After elementary calculations we then have 

113 
a ( i 1  ( q )  = 2 e o ~ 2 1  I sin (-ay,) 4 sin (aoqu) I , 

13 1 
Q ( q )  =411 sin (T aq,) sin (-i- aq. ) . 

Substituting (29) into (27) and integrating over q leads to the 
following result: 

O<aqoi<sl, (30) 

where A = zJ, z = 3,and F (  0, , l a )  is an incomplete elliptic 
integral of the first kind, 

- 
Y 3  1 p,=  arcsin (1-  sin aqoi) ' I z ,  aq,,= -aq,,, 4 aq,,= --aq,,. 4 

A study of expression (30) as function of the quasimomen- 
tum leads to the following results: when ago, = 7~/2 + 0 (or 
ago, = ~ / 2  + 0) we have D = 0 and at those points there 
exist single-sided derivatives of the function D (qol,qo,) which 
differ in sign. 

In the range of quasimomentum values ago, > 7~ the in- 
tegration leads to the following result: 

where pi = arcsin(1 + sinago, )'I2, i = 3,4, qO3 = qO1, 

904 = 902. 
The study of expression (3 1) leads to the conclusion that 
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D (q,,,q,,) increases to a well defined value for aq,, = a - 0 
and then falls discontinuously to zero; the signs of the single- 
sided derivatives are in that case positive. 

Bearing in mind that the gas kinetic approximation of 
the DC and of the scattering cross section are inversely pro- 
portional to each other, it follows from Eqs. (30) and (3 I )  that 
the anomalous behavior of the DC of the quasiparticles 
arises because the scattering cross section ceases to be analy- 
tical in certain regions of quasimomentum space. 

For a further study of this problem we change from the 
characteristic quasimomentum to the densities x k .  We in- 
troduce the quasimomentum k,  of a quasiparticle: 
k, = (Nk / S  ) ' I 2  where Nk is the number of quasiparticles on 
the substrate of area S. We rewrite this expression in the 
following form: k,  = x;'~(N,/S ) ' I 2 ,  xk = Nk /N,  where No is 
the number of potential wells on the substrate of area S. 

Bearing in mind that ( N , / s ) " ~ - T / ~ ' ,  where a' is the 
lattice constants of the 2 0  lattice of the substrate, a = 2a1, a 
is the lattice constant of the 2 0  quantum crystal, we find that 
ak,=:2a~; '~ and that the maximum value of the characteris- 
tic quasimomentum q, will be equal to 4ax;". 

To continue we take into account that the quasimomen- 
tum q, is defined up to a reciprocal lattice period. In particu- 
lar, for a hexagonal plane lattice these periods are 

where f and f are unit vectors along the appropriate coordi- 
nate axes. 

Bearing in mind that (aq,, )2 + (aqo,)2 = ( ~ q , ) ~  we can 
obtain values for the quasiparticle density corresponding to 
values of the quasimomentum q, for which u(q,) displays a 
nonanalytic behavior. For instance, when aq,, = aq,, = n-/ 
2 we have 

(aq0,-biz) '+ ( ~ q ~ , - b ~ , ) ~ = 1 6 n ~ ~ ~ ,  (32) 

whence we find x$' = 0.08 and the corresponding value of 
the density of the covering is x ,  = 1 - x"' = 0.92. Com- 
pletely analogously we have for aq,, = aq,, = a 

(ago,-b,,) '+ (aqOy-b2y)2=16n2xk, (33) 
from which it follows that xf' = 0.48, x ,  = 0.52. The values 
obtained for the covering densities x, , ,  agree with adequate 
accuracy with the values for which drops were observed in 
the NMR relaxation times T ,,, ( x ,  = 0.98, x ,  = 0.58). 

The nonanalytical behavior of the scattering cross sec- 
tion is thus caused by phase transitions in the adatom sys- 
tem: a) into a 2 0  classical solid, namely, a completely popu- 
lated monolayer (x, = 0.92), b) into a 2 0  gas state 
(x,  = 0.52). Moreover, it follows from (32) and (33) that near 
the phase transition points quasiparticles scattering is ac- 
companied by Umklapp processes and the quasimomentum 
conservation law takes the following form: 

near the completion of the monolayer, and 

kl+kz=kl'+kz'+bz (35) 

close to the disordered phase (the 2 0  gas). 
One obtains the qualitative behavior of the DC as a 

function of the density from (30) and ( 3 1 )  by substituting 

FIG. 1 .  Qualitative behavior of the DC as function of the covering density 
x (region where the 2 0  quantum crystal exists is x ,  <x ix , ,  x ,  = 0.52, 
x, = 0.92). 

aq,, = ago, - XY. If we use the expression forbi the density 
dependence near the values xf*'' then takes the following 
form: 

or, changing to the covering density x,  we have (see Fig. 1 ) :  

The critical index of the DC for a phase transition "in 
terms of the covering density" in the 2 0  system is thus equal 
to one half. 

5. THERMODYNAMICS OF A TWO-DIMENSIONAL QUANTUM 
CRYSTAL 

The strong interaction between the quasiparticles in 
quantum crystals (in particular, a short range repulsion 
which we approximate by the impenetrable potential) does 
not allow us to apply the virial expansion method when eval- 
uating thermodynamic quantities. 

Using the method of I. M. Lifshitz12 an exact expression 
was found in Ref. 13 for the contribution to the free energy of 
strongly interacting quasiparticles: 

where V ( E , Q )  is the two-quasiparticle density of states given 
by the expression 

and d is the dimensionality of the problem. 
In the impenetrable potential case Eq. (38) simplifies 

somewhat: 
+ m 

From Eq. (39) and the expansions (7) we get for the density of 
states: 

where c ,  and c, are defined in (10). 
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To begin with we consider the low temperature region 
when the excited states are close to the bottom of the two- 
quasiparticle band: E - u"'(~) .  We then have from (40) and 
(41) 

Integrating over the energies in (42) is elementary and thus 

o'l' ( q )   IF^?^^ R (8) erp  [ -  l ] d 2 q .  

In the case of a square lattice of adatoms with a dispersion 
relation given by Eq. (14) one can integrate the expression in 
(43) exactly. We then have for w(') (q)  and n ( q )  

Substituting this into (43) and integrating over q leads to the 
following expression: 

AF=-2ne-'o'T I o ( P ) I ~ ( P ) ~  P=4JIT7 ( 4 5 )  

where I, ( p ) is a modified Bessel function of order n. Using 
the asymptotic behavior of the Bessel function" in the tem- 
perature range T 4 4J we get for the free energy: 

AF=-2T exp [- ( g o - 2 J ) / T ] ,  (46) 
and for the heat capacity 

whence it follows that as T +  0 the heat capacity tends to 
zero exponentially. This is a consequence of the fact that an 
energy equal to E, - Wis necessary to produce a single qua- 
siparticle. We now consider the temperature range T -  J. To 
do this we write Eq. (42) in the following form: 

.& m 

where 
o ( q )  =11'2Q ( q )  , h ( q )  ='I,[ 0'" ( q )  +o'Z' ( q )  I .  

For planar square and hexagonal lattices a"' = 2.5, f J p  (q )  
(see (29) and (45))  so thatA (q)  = 2e0 and&, % W, we have thus 
E,/T ) 1 .  We substitute y = z / T  in (48) and then 

+or 

By introducing the 8-function in the integrands in (48) and 
(49) we have taken into account that they are defined in the 
region Izl <w, while in the range / z /  )w they must be put 
equal to zero as follows from the form (41) of the density of 
states. The integrand in (49) is a slowly varying function of 
the quasimomentum q and can thus be replaced by its value 

at some q, such that @(go) -J,  q; -ro is the average 
distance between the quasiparticles. Hence in what follows 
we shall put w = w(A) .  

Differentiating expression (49) twice with respect to the 
temperature and retaining terms with a nonintegrable singu- 
larity we find 

+a 

where for ease of writing we introduced the notation e, ( a /  
T ,  y )  for the integrand in (49).  

To explain the nature of the singularity in (5 )  for T -  J 
we put in the arguments of the 8- and 6-functions w ( A ) /  
T -  1. Further taking into account that both terms in (50) are 
of the same order of magnitude we get for the heat capacity 
the following expression: 

(,, (A) e-ze/*(A) 

ACv 
IT-o(A)  (InP(o(A)-TI ' 

The heat capacity of interacting quasiparticles thus shows 
for T - w ( A )  an anomalous behavior given by Eq. (5 1 ) .  Such a 
behavior of the heat capacity is characteristic for a phase 
transition from the quantum crystal phase to a phase where 
tunnelling processes are suppressed. 

The authors consider it a pleasant duty to express their 
gratitude to A. F. Andreev for discussing this work and for 
valuable advice. 

"Wemust take for the covering density the ratiox = N/No where N,is the 
number of potential wells on a substrate of a certain area and N the 
number of adatoms on it. 

2'Notwithstanding the condition Vo + m ,  since the impenetrable poten- 
tial (1) is a function ofa discrete variable, we can consider it a small quanti- 
ty when averaged over the volume of the crystal. 
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