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The method of semiclassical trajectories is generalized to the anisotropic case and used to find 
effective boundary conditions on the Ginzburg-Landau equations at an interface of an anisotropic 
superconductor with vacuum. Diffusive, specular, and the most general electron reflection laws 
at the surface are considered. In each case the boundary conditions turn out to be conditions of the 
third kind with a coefficient the same sign, which indicates a weakening of the order in a surface 
layer. The absolute value of this coefficient depends on the orientation of the crystallographic 
axes. In order of magnitude, it is equal to the anisotropy parameter of the energy gap divided by 
the size of a Cooper pair. 

Soon after Bardeen, Cooper, and Schrieffer's derivation 
of a microscopic theory of superconductivity,' Gor'kov 
showed3 that the phenomenological equations which had 
been proposed previously by Ginzburg and Landau2 for a 
superconductor near the transition temperature follow from 
the microscopic theory. Gor'kov also determined the micro- 
scopic meaning of the parameters of the Ginzburg-Landau 
theory. Boundary conditions on the Ginzburg-Landau 
equations were found from the microscopic theory by De 
Gennes4 and Za i t~ev .~  An anisotropic version of the pheno- 
menological equations was proposed by G i n ~ b u r ~ . ~  Their 
microscopic derivation was continued by Gor'kov and Me- 
lik-Barkhudarov.' The boundary conditions on these equa- 
tions, however, have not yet been examined. As we will see 
below, these boundary conditions turn out to be nontrivial. 

1. INITIAL EQUATIONS 

In order to find the boundary conditions on the Ginz- 
burg-Landau equations, we must first derive an equation for 
the order parameter at T = Tc . The most convenient way to 
this is to work from Gor'kov's system of equations. The cor- 
responding equation for an anisotropic superconductor can 
then be written in the following form in the momentum rep- 
resentation': 

measure of the inhomogeneity. In inhomogeneous problems, 
the order parameter changes significantly only over dis- 
tances on the order of the correlation radius {,, - v/Tc ; these 
distances are much larger than the interatomic distances. 
We take Fourier transforms of the sum of the momenta 
which characterizes the inhomogeneity. The remaining inte- 
grals over differences between momenta converge rapidly as 
we move away from the Fermi surface. In those integrals, we 
use the change of variables d (p, - p,) = dp = d(du/v (du is 
an element of the Fermi surface, v is the corresponding Fer- 
mi velocity, and { is the energy reckoned from the Fermi 
level), and we integrate over d{. As a result we find the fol- 
lowing equation for the order parameter: 

Here the vectors p determined the corresponding point on 
the Fermi surface: 

In the particular case of a homogeneous superconductor, in 
x - ~ '  P '  P the absence of a field, we would have 

( l s l )  ma(rl ,  p f ;  r, p )  = ( ~ n ) ~ ( ~ v ) ~ ~ ( o ~ - o ) ~ ( o - o , , )  
Here A*(pl, p,) is the superconducting order parameter in 
the momentum representation, V(ql, q,; p,, p,) is a dimen- x exp (-21 o 1 I r-r'I /v)/(r-r') ' .  (1.4) 
sionless matrix element of the electron interaction energy, Here a and u' are the points on the Fermi surface corre- 
the functions G, (p,q) are the temperature Green's functions sponding to the vectors p and p'; all is that point on the Fermi 
of the electrons in the normal state, w = .nT (2n + I), and the surface where the Fermi velocity vector is parallel to the 
summation over integer values of n is cut off at iw 1 on the vector w(r - r'); and (Ev)-' is the Gaussian curvature of the 
order of the Debye energy. Fermi surface at this point, which relates the element of solid 

In homogeneous problems we would have A*(p,, angle in velocity space to the corresponding element on the 
p,) = A*(pl)S(pl + p,), SO that the sum of the momenta is a Fermi surface, i.e., do = ( E ~ ) - ~ d a .  
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2. BOUNDARY CONDITIONS FOR DIFFUSE REFLECTION 

We consider a semi-infinite anisotropic superconductor 
filling the half-space z > 0 and bounded by vacuum. We as- 
sume that electrons are reflected diffusely from the interface. 
Since the motion of the electrons near the Fermi surface is 
semiclassical, we use the method of semiclassical trajectories 
proposed in Ref. 8, generalizing it to the present case, that of 
an anisotropic superconductor. As can be seen from (1.4), 
the function @, (r', p'; r, p) is related by a 2 1w 1 Laplace trans- 
form to the probability that an electron on the Fermi surface 
which leaves the point r with a momentum p and moves at 
the Fermi velocity v will, after a given time, reach the point r' 
with a momentum p'. In the absence of a boundary, we must 
take into account in the calculation of @, , along with the 
trajectory which directly connects the point r and r', those 
trajectories which contain a reflection from the boundary of 
the superconductor. The diffuse reflection law means that an 
electron colliding with a boundary completely "forgets" its 
previous momentum and velocity. The probability for reflec- 
tion with a given momentum and a given velocity is propor- 
tional to v, du/u-when there is a complete "memory loss," 
this is the only possible reflection law which conserves the 
direction distribution of the electrons after their reflection 
from the surface. 

Assuming that all quantities depend only on the coordi- 
nate z, we find 

For brevity we are using 

where v is the electron state density at the Fermi level. 
The first term in brackets on the right side of (2.1) corre- 

sponds to trajectories which connect the points z and z' di- 
rectly; the second term corresponds to trajectories which 
contain a diffuse reflection from the boundary. The integral 
in the denominator in the second term, which is to be carried 
out over the Fermi half-surface with v, > 0, is extended to 
the entire surface by virtue of the symmetry of the Fermi 
surface with respect to inversion. 

We expand the electron scattering function U (p, p') in 
eigenfunctions of the integral equation 

where the prime on the average means that the integration is 
to be carried out over da1(p'). In the weak-coupling approxi- 
mation, as Pokrovskii has shown,9 it is sufficient to retain 
only the leading term of this expansion, which corresponds 
to the minimum eigenvalueil,. Because of the latitude which 
remains in the choice of the numerical value of the constant 
of the electron interaction, we normalize the corresponding 
eigenfunction by ( p  t(p)) = 1. The ordering parameter is 
then A*(z, p) = T(z)po(p), and the equation for T(z) becomes 

In the absence of an anisotropy of the energy gap we 
would have po(p) = 1, and Eq. (2.4) would have the exact 
solution Y(z) = const, from which we find the standard 
boundary condition nVW = 0. In the general case with z)go 
we can ignore the second term in (2.5) and find the asympto- 
tic form of the solution of Eq. (2.4) at T = T, far from the 
boundary, Yo(z) = 1 + az. The coefficient a ,  which deter- 
mines the effective boundary condition, is calculated in the 
Appendix. If the anisotropy is slight, as it usually is in a real 
superconductor, we would have 

From the Cauchy inequality we have a > 0; i.e., a diffuse 
surface slightly weakens the order in the surface layer of an 
anisotropic superconductor. This effect is similar in a sense 
to that of nonmagnetic impurities.1° 

Taking the gradiant invariance into account, we can 
write the boundary condition on the Ginzburg-Landau 
equation in the following form for an anisotropic supercon- 
ductor in a magnetic field: 

The coefficient a can be expressed in terms of the parameters 
of the Ginzburg-Landau theory 

as follows: 

3. BOUNDARY CONDITIONS FOR SPECULAR REFLECTION 

The result derived in the preceding section suggests that 
we examine the opposite limiting case, that of specular re- 
flection of electrons from the surface, for which the projec- 
tion of the momentum onto thez = 0 plane is conserved. The 
corresponding kernel of the integral equation could be found 
from the definition of its w components in terms of the 
Green's functions in the normal state, (1.3). However, it is 
simpler to again use the method of semiclassical trajectories; 
the ultimate result does not depend on the approach taken. 

The w components of the kernel of integral equation 
(2.4) found in this manner differ from the w components of 
(2.5) because of the second term, which now describes specu- 
lar reflection: 
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(3.1) 
Here the Fermi momenta p and p' are related by the condi- 
tion that their projections onto the reflection surface are 
equal; the z projections of the corresponding Fermi veloc- 
ities, v and v', are oppositely directed. Expression (3.1) is 
symmetric with respect to z and z' by virtue of the relation 
IuZ Ida/u = 1 U: ida'/vf . By analogy with the preceding sec- 
tion, we can find the coefficient which determines the 
boundary condition (2.7): 

It follows from this expression that we have a> 1, as in the 
case of diffuse reflection. 

4. ARBITRARY REFLECTION LAW 

In the most general case, the reflection law can be de- 
scribed by the phenomenological correlation function R (p, 
p'), which determines the probability that an electron with 
momentum p will go into a state with momentum p' as a 
result of reflection. To make the function R (p, p') symmetric 
with respect to its arguments, we incorporate in it the prob- 
ability for the incidence of an electron with a momentum p 
on the surface, which is proportional to the projection of its 
Fermi velocity 1 u, I. To avoid complicating the equations be- 
low with the condition that the integration be carried out 
over half of the Fermi surface, because the incident electrons 
are moving in one direction, while the reflected electrons are 
moving in the other direction, we make use of the symmetry 
with respect to inversion and set R ( - p, p') = R (p, 
- p') = R (p, p'). The condition for conservation of the elec- 

tron distribution after reflection requires 

( p  p ) = u v l ;  ( R ( p ,  p ' )> '=lu , I ( lu21) - ' .  

(4.1) 
For diffuse reflection we would have 

while for specular reflection R contains a S-function which 
conserves the projection of the momentum onto the reflect- 
ing surface. 

By the method of semiclassical trajectories we find the 
second term, corrected for reflection, of the w component 
(2.5) of the kernel of integral equation (2.4): 

Using the method outlined in the Appendix, we then find the 
coefficient which determines the boundary conditions (2.7): 

As in the limiting cases discussed above, the coefficient 
a satisfies the condition a>O; it depends on the orientation 
of the crystallographic axes with respect to the surface and 
on the reflection law. It vanishes only in the case of specular 
reflection, when the reflecting surface coincides with a sym- 
metry plane of the reciprocal lattice. The coefficient a is 
equal in order of magnitude to the anisotropy parameter of 
the energy gap divided by the size 6, of a Cooper pair. 

APPENDIX 

To find the coefficient a ,  which determines the asymp- 
totic behavior of the solution of Eq. (2.4) at large z, we use a 
variational principle analogous to that used in calculating 
phase shifts in a scattering problem. We set 

Y ( z ) = Y o ( z ) + ~ ( z ) = l + a z + ~ ( z ) ,  (A. 1) 

where x(z)+O as z+w. This function satisfies the inhomo- 
geneous integral equation 

h 

where K is an integral opeator corresponding to Eq. (2.4), 
including its left side; i.e., KY = 0. Here is should be noted 
that 

Equation (A.2) follows from a variational principle for 
the functional 

h 

where we have taken into account the fact that operator K is 
self-adjoint. 

On the other hand, the value of this functional for the 
exact solution of Eq. (A.2) is 

J=- ( Y o ~ Y ! o ) = -  ( 1 ~ 1 ) - a [  ( z K ~ ) +  ( ~ K z )  1 -aZ( .ZKZ) ,  

(-4.5) 
where, for a diffuse reflection law, we would have 

(A.6) 
Equating (A.4) and (A.5), we find a quadratic equation 
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for a, which determines a as a functional of ~ ( z ) .  Using a 
reasonable trial function, e.g., ~ ( z )  = exp( - Pz), we find a 
by the variational method. 

h 

In the case of a slight anisotropy, (1K 1) is small in units 
off,, and a is found to be 

and to depend on the trial function only in the next higher 
order in the anisotropy parameter. Using (A.6) and the anal- 
ogous expressions for the specular and general reflection 
laws, we can thus find expressions (2.6), (3.2), and (4.3) for a.  
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