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A model of a disordered granulated metal is analyzed. The granules are assumed to form a lattice 
with the structure of a Cayley tree (a Bethe lattice). A supersymmetry method is used. All the 
calculations reduce to the solution of an integral equation with two real variables. The occurrence 
of a metal-insulator transition is proved. The critical point separating the metallic and insulating 
regions is determined. The dielectric constant is found to increase as the transition point is 
approached from the side of the insulator, but to remain finite, reaching a maximum value at the 
transition point. In the metallic region the diffusion coefficient decreases, reaching a nonzero 
minimum at the transition point, and then vanishing discontinuously. 

1. INTRODUCTION 

There is no longer any doubt that the Anderson transi- 
tion' exists. The behavior of the kinetic coefficients near the 
transition, on the other hand, has generated much debate. 
MottZ argues that the conductivity (T of a metal decreases 
with increasing disorder, to a minimum value omin - e2/fia (a 
is the interatomic distance) at the transition point. With a 
further increase in the impurity concentration, the conduc- 
tivity vanishes discontinuously. This contradicts the view 
that the conductivity vanishes smoothly at the transition 
point, rather than discontinuously. 

The hypothesis of the existence of a renormalization 
group3 has had a major influence on the development of the 
theory of disordered metals. Simple arguments based on this 
hypothesis lead to a power-law decay of the conductivity 
near the transition point. The same result comes from renor- 
malization-group calculations in a space of dimensionality 
2 + E through the use of the (T m0de1.~-~ The development of 
the idea of the renormalization group has undermined faith 
in the existence of a minimum metallic conductivity, and the 
opposite point of view has won general acceptance. 

At the same time, the power-law behavior of physical 
quantities near a transition point in ordinary 3 0  space can by 
no means be regarded as proved, since the analysis in a space 
of dimensionality 2 + E assumes in all cases that E is small. 
Correspondingly, the question of the behavior of the kinetic 
coefficients near the transition point cannot be regarded as 
settled. 

In this paper we examine a Cayley-tree model of a disor- 
dered metal. Abou-Chacra et at.' analyzed the Anderson 
model on a Cayley tree. It was asserted in that paper that a 
transition exists for certain distributions of the random po- 
tential. The behavior of the kinetic coefficients near the tran- 
sition was not discussed. Jonson and Girvin8 carried out a 
numerical study of the equations derived in Ref. 7, and they 
asserted that there exists a minimum metallic conductivity. 
The conclusions reached by Jonson and Girvin8 are contra- 
dicted by the result derived by Shapiro,g who found a power- 

law decay of the conductivity toward the transition point. 
Kunz and Souillardlo have found a power-law increase in a 
scale length in the Anderson model on a Cayley tree. 

The model which we discuss below differs from those 
studied in Refs. 7-10. We assume that the granules of a metal 
with impurities are at the nodes of a Cayley tree. Electrons 
can tunnel from granule to granule. The metal-insulator 
transition occurs when the average distance between levels 
in the granules becomes comparable to the amplitude for 
tunneling between granules. Our calculations are carried out 
by the supersymmetry method developed in Ref. 11. This 
method can be used for calculations at finite frequencies in 
both the conducting and insulating regions. All the calcula- 
tions reduce to the solution of an integral equation with two 
variables. We prove that an Anderson transition exists, and 
we analyze the behavior of the conductivity and of the dielec- 
tric constant. We find that the conductivity decreases with 
decreasing tunneling amplitude, reaches a minimum value 
at the transition point, and then vanishes discontinuously. 
The dielectric constant increases toward the transition point 
but remains finite. These results were reported in summary 
form in Ref. 12. 

2. CHOICE OF MODEL 

Before describing the model we consider just what we 
need to calculate in order to describe the kinetics of electrons 
in a disordered metal. The equations which we give here are 
general, not linked with any specific model. 

The kinetics of noninteracting electrons is described 
completely by a density-density correlation function, which 
is written in the standard form 

K ( r ,  o, e )  =(~,:,(r, 0 )  (GcR(O,r)-G,A(O, r ) ) ) ,  (1) 

where G f(r,  rr)  and G :(r, r') are the retarded and advanced 
Green's functions. The angle brackets in (1) mean an average 
over impurities. 

Knowing correlation function (I) ,  we can evaluate the 
diffusion coefficient in the conducting region and the dielec- 
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tric constant in the localized region. In the conducting re- 
gion the correlation function K is 

K ( k ,  a )  =4nv/ ( D k Z - i w ) ,  (2) 

where D is the diffusion coefficient, k the momentum, and v 
the state density. Expression (2) holds for small values of I kl 
and w. In the localized region, in the limit of low frequencies 
w, the correlation function K (k,w) can be described by the 
following expression13 

K ( k .  o )  = 4 n v A ( k ) / ( - i o ) ,  A  ( 0 )  = I .  (3) 

The momenta k in (3) are arbitrary. At small values of I kl we 
have 

A ( k )  =1-31k2. (4) 

The quantity 7t is the dielectric constant. 
At low frequencies w, expressions (2) and (3 )  can be writ- 

ten in a common form which holds for arbitrary k: 

K ( k ,  a )  =4nvl [ A ,  ( k )  - i o A z ( k )  1, A ,  (0) =0.  A2(O)=l .  

(5) 

The denominator in (5) actually consists of the first terms of , , 

an expansion in w. The conditions at k = 0 follow from the 
conservation of particles. In the conducting region, A,(k) is 
nonzero, but it vanishes in the localized region. Comparing 
(5) with (3), we conclude that the function A,(k) vanishes at 
the transition point, simultaneously for all k. This result 
means that the Anderson transition does not reduce simply 
to a vanishing of the diffusion coefficient and is instead more 
profound in nature. 

Equations (2)-(5) are written in momentum space. It is 
not difficult to write corresponding equations in coordinate 
space. For example, Eq. (2) in the space-time representation 
becomes 

K ( r , ,  r2, t )  = (4nDt)  exp ( - r 2 / 4 D t ) ,  (6) 

where d is the dimensionality of the space, and r = r, - r,. 
We are forced to use the equations in coordinate space in 
those cases in which there is no momentum representation. 
Cayley tree models are an example. 

It is frequently more convenient to calculate the density 
correlation function K at coincident points. Although this 
correlation function embodies less information than does 
K (r, r') at arbitrary r', it does allow us to distinguish between 
the conducting and localized regions. It is not difficult to 
show that the correlation function K can be written in the 
form 

1/B, conducting region, 
= (274' 

, localized region . (64 

Expression (6a) can be derived from (5) by integrating 
over all k. The coefficients B and Z completely characterize 
the diffusion in the conducting region and the polarizability 
in the insulating region. The knowledge ofB and 2 alone is of 
course not sufficient for calculating D and x. However, the 
behavior of D near the transition point should be similar to 
that ofB, and the behavior oflc should be similar to that ofx. 
The idea is that if D vanishes discontinuously at the transi- 
tion point then B should also be discontinuous. If D instead 

vanishes smoothly, in accordance with a power law, for ex- 
ample, then we should find the same behavior for 3. Analo- 
gously, the quantities x and Z should either simultaneously 
increase to infinity as the transition point is approached or 
simultaneously reach finite values. The exponents in the 
power laws may of course be different. 

It is thus sufficient to calculate the density correlation 
function at a single point in order to resolve the question of 
the existence of a minimum metallic conductivity and a max- 
imum dielectric constant. 

We turn now to the formulation of the model for a dis- 
ordered metal which we will be analyzing in the following 
sections of this paper. We consider a system of metal gran- 
ules which are in contact with each other. We assume that 
impurities are distributed within each granule. We write the 
Hamiltonian of the system as 

H= T . ~ ' ~ ~ . ~ + L Z , . +  H,. 

Here the operators ai: (aip) create (annihilate) electrons in 
the ith granule in the statep, and T$q are the amplitudes for 
jumps of electrons. The energies di'(p) are the eigenenergies 
in the isolated granules. The quantities H ,! represent the ran- 
dom potential in the granules. This random potential may 
incorporate ordinary, magnetic, and spin-orbit interactions. 
Expression (7) also applies when the system is in an external 
magnetic field. In this case, the quantities ~(" (p)  should be 
understood as the eigenenergies in the field. 

To study the metal-insulator transition in the case in 
which the amplitudes (Tv) for jumps from one granule to 
another are not very large, it is sufficient to restrict the anal- 
ysis to the case in which the mean free paths in the granules 
are much greater than the interatomic distances. The macro- 
scopic conductivity is determined primarily by the probabil- 
ity for jumps from granule to granule, not by the mean free 
path. If an amplitude Tv exceeds the average distance 
between levels in the individual granules, which is propor- 
tional to (vV,)-I, where is the volume of the ith granule, 
the entire system conducts. In the opposite case, the entire 
system becomes an insulator. 

In the limit of long mean free paths in the granules 
(TE,) 1 ,  where T is the mean free time, and E, is the Fermi 
energy) we can use the supersymmetry method of Refs. 6 and 
1 1  and derive a Lagrangian of the interacting diffusion 
modes for the system under consideration. The metal-insula- 
tor transition falls within the range of applicability of this 
Lagrangian. The Lagrangian of the diffusion modes was 
written in Refs. 1 1  and 14 for isolated granules in order to 
study the statistics of levels. This Lagrangian contains su- 
permatrices Q which have a definite symmetry, which de- 
pends on whether magnetic or spin-orbit interactions oper- 
ate in the system. The presence of a term describing jumps in 
Hamiltonian (7) couples the supermatrices Qi corresponding 
to different granules. The derivation of this additional term 
in the Lagrangian is completely analogous to the derivation 
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of the Josephson energy in super-conductors. 
Assuming that the amplitudes T y  vary only slightly 

along the Fermi surface,we find 

The first term in Eq. (8) describes the interaction of granules; 
the second is the effective Lagrangian of the isolated gran- 
ules; w is the frequency; STr is the supertrace; and Ai is the 
average distance between levels in the granules. In deriving 
Lagrangian (8) we used the condition ?-'>A. The superma- 
trices Q and A in (8) are the 8 x 8 matrices 

The matrices u, v, and 6 depend on whether symmetry with 
respect to time reversal holds and on whether there is central 
symmetry. The corresponding equations are given in the re- 
view in Ref. 11. We will write these equations in the present 
paper where necessary. Here we simply note that - 
uu = uii = 1. 

The supersymmetry method reduces the calculation of 
the density correlation function K (r,rl) to the calculation of 
the following integral: 

where F[Q] is defined by Eq. (8). The superscripts on the 
matrices Q in Eq. (10) specify the blocks which are written 
out explicitly in (9); the subscripts specify the elements with- 
in these blocks. 

The model described by expression (8) is actually a non- 
linear lattice a model. In the continuum limit, this model 
becomes the a model constructed in Ref. 6. The metal-insu- 
lator transition can of course occur only at J- 1, since there 
are no other parameters. The model described by expression 
(8) obviously cannot be solved exactly for arbitrary lattices. 

Despite the formal analogy between Eq. (8) and spin 
models in which a phase transition occurs, the methods or- 
dinarily used in phase-transition theory cannot be used for 
model (8). For example, the self-consistent-field method, 
which involves an average spin, which vanishes above the 
transition point and which is nonvanishing below this point, 
gives us no information of any sort in the present case. The 
reason is (Q ) exists for arbitrary Jand is equal to the matrix 
A. This quantity determines only the state density and is 
unrelated to the Anderson transition. '' It can be shown that 
an expansion in J corresponding to a high-temperature ex- 
pansion in phase-transition theory is also inapplicable here, 
since terms of the type (J/w)" arise even in the first orders of 

the expansion, and these terms grow with decreasing fre- 
quency. We will show below that the reason for this behavior 
is simply that the problem is nonanalytic in J .  In the follow- 
ing sections we will accordingly consider only the one parti- 
cular case in which the granules form a Cayley tree. In this 
case, the problem can be solved exactly. In phase-transition 
theory, an analysis on a Cayley tree always yields a good 
qualitative description of the transition. 

3. REDUCTION TO AN INTEGRAL EQUATION 

We thus assume that the granules form a Cayley tree 
and that the couplings between granules are the branches of 
this tree. We consider the case of an arbitrary branching 
number m (each branch divides into m other branches). Fig- 
ure 1 shows part of the three for the case m = 2. We assume 
that the interaction extends only to-nearest neighbors and 
that all the Jlj are identical, equal to J. 

The structure of the Cayley tree allows us to reduce the 
evaluation of integral (10) over all the nodes to the evaluation 
of a finite integral of the solution of some integral equation. 
To derive this equation we introduce the function 

i 

where 

To show the meaning of Z;, 2; and rI,! in (1 I), we imagine 
that we cut one of the m + 1 branches going into node 0 in 
Fig. 1. These symbols then represent the sums and products 
over all the nodes of the branch which has been cut off. We 
are assuming here that the indices i and j in the sum 2; 
specify the nearest nodes and that the jth node is closer than 
the ith node to the base of the branch. The index j in the sum 
2; can take on the value 0. 

The function Y defined in (1 1) depends only on Q,. Now 
considering the function *(el) at an adjacent node, we can 
easily write the equation 

where 

The integration in Eq. (1 2) is over a supermatrix Q of the type 
in Eq. (9). In the case m = 1, which is the case of a 1D chain 
of granules, Eq. (12) becomes linear. In other cases, it is non- 
linear. Knowing the function Y(Q ) we can immediately find 
the density correlation function i? at coincident points: 

The correlation function for the densities at different 
points can also be written as an integral over a finite number 
of variables: 
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FIG. 1. 

The product and the 3 in Eq. (14) contain the indices 
of nodes on the path between node rand node r' (the points r 
and r' are included). In the sum Xi,, the indices i and j again 
represent nearest neighbors; the jth node is closer to r, and 
the ith node is closer tor'. The "path" between nodes rand r' 
is the broken line along which we can go from node r to r', 
going through each node only once. The length of the path is 
the "distance" between nodes rand r'. The correlation func- 
tion K (r, r') of course depends only on the distance between 
nodes r and r'. If this distance is equal to R, then (14) contains 
an integral over R + 1 matrices Q. In principle, we could 
write a recurrence relation for K (r, r'). 

The problem of evaluating the density correlation func- 
tions on a Cayley tree has thus been reduced to one of finding 
the solutions of an integral equation and of evaluating inte- 
grals of these solutions. Equation (12) is still quite complicat- 
ed, however, since it contains a large number of variables 
(the elements of supermatrix Q ). It is accordingly very useful 
too simplify Eq. (12) further. This simplification can be car- 
ried out by virtue of the symmetry of the original Hamilton- 
ian (8) and of the corresponding kernel in (12), which contain 
only the one matrix A which we have specified. Because of 
this symmetry, the solution Y(Q) can depend only on the 
variables in Eq. (9). This fact is evident from Eqs. (1 1). We 
can accordingly integrate over u' and v' immediately in Eq. 
(12). The result of this integration depends on the symmetry 
of supermatrix Q. This supermatrix takes its simplest form 
when the system contains an external magnetic field or mag- 
netic impurities (model I1 in the classification of Ref. 11). 
The further modifications of (12) below are carried out for 
this case in particular. 

The supermatrices u, u, and pin the case of model I1 are 

Here 7, v*, x, and x* are Grassmann variables; and p, X, 8, 
and 8, are real numbers which satisfy the inequalities 
0<p<2r ,  O<x<2a, 0<8<a,  and 8,>0. The volume element 
dQ is written in terms of these variables as",'4 

1 sin 8  shO1 
d Q  = -- d q  d q ' d i l  dil' d q  dx d 0  d B I .  (16) 2%' (ch 0'-cos 8)' 

Assuming that Y in (12) depends only on the variables 8 
and el, we can carry out the integration over all the other 
variables. The integral cannot be evaluated directly in this 
particular parametrization, since an indeterminate expres- 
sion of the 0- cc, type arises (the integral over 8, and 8 diverges 
at small values of 8 and el, while the integration over the 
Grassmann variables gives us zero). This difficulty can be 
avoided if we initially calculate the derivative of the integral 
with respect top, in which case there is no indeterminacy of 
any sort, and then reconstruct the function itself from its 
derivative. As a result we find 

1 U 

A,-A Y (h) = I i ~ ( h ,  h')  exp[B (A'-A,') I--:; Y7"(h') d h f  dh,' 
- 1  1 hif-h 

+ exp[a(l-hi) I Y m ( l ,  11, (17) 

where 

L (h, hf) ='/,a2 exp [a(x-x!)I [I, (ay,)I, ,  (ay) (xl+x) 

-Il(ayl)~o(a~)~l+I,(cr~)Itl(~~i)yl, 

I"= ( k ,  )",), h'= (I"', ).If) . (18) 

In (1 8), I, and I, are Bessel functions, 

x ,=~~Z.~ ' ,  x=hAf, Y I =  [ (A,'-I) (hi'L-l)] '", 

A,=ch O,, h,'=ch 8,'. 

Setting A and A ,  equal to unity in Eq. (17), we find the 
relation 

Y (I ,  I )  =Y1"(l ,  I ) .  

We thus have 

Y (I, 1) =I. (19) 

For A ,  and A approximately equal to unity, Y(A ) becomes 

Y ( A )  = I+  (A-Al)c,, (194 

where c, is a constant. Direct integration verifies the follow- 
ing important property of the kernel L: 

I m s ~ L ( ~ , I ~ ) - -  dh' dh,' = 1. 
1 1  

h1'-h' 

Using our parametrization, (9), (IS), we can put the cor- 
relation function SE; in Eq. (1 3) in the following form: 

t r  

h=2n2v '  j 5 - Y J Z T  (A) exy [ $  @-A,) ]dh dh.. (21) 
-1 ! 

h,-A 

Expressions (17), (1 8), and (2 1) show that the problem of cal- 
culating the correlation function reduces to one of evaluat- 
ing the integral of the solution of a nonlinear integral equa- 
tion with two variables. The expression for the kernel L in 
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(18) is quite lengthy. In many cases it is convenient to use a 
more compact form of Eqs. (17) and (18): 

I I 

exp [ f ~  ( A f - A , ' )  ] Y1ll ( A ' )  - 1 dn' dn,' 
X 

h l T h f  (27~)"  ' 
(22) 

where 

d 
- esp ( a m f ) - -  e r p  (-an,nir ) I ,  

da 

n= ((1-A')'" cos cp, (I-h2)'" sin cp, A), n'= ((1-h") '' 

x cos cp', (I-h'2) "' sin cpl, h') , (23) 

If p = 0, the coefficient is c, = 0. This value corresponds to 
the solution Y = 1, which is always a solution of Eq. (22) if 
p = 0. At large J, however, this solution must be discarded, 
since the integrals in (13) and (14) diverge for all complex 
frequencies w in the upper half-plane R@ > 0. If, on the oth- 
er hand, we formally evaluate integrals (13) and (14) for 
ReD< 0 and then continue into the half-plane R@> 0, the 
result is found to be nonanalytic in the upper frequency half- 
plane. 

Solution c, in (27) is analytic in the upper frequency 
half-plane, and when expression (26) is substituted into inte- 
grals (13) and (14), the latter converge. The density correla- 
tion functions are thus analytic in the upper half-plane, as 
would be required by causality. Substituting (24) and (26) 
into (14), and evaluating the Gaussian integrals, we find the 

n,= ( ( k 1 2 - l ) i h  cos ( P I ,  (h12-1)'h sin TI. h i ) ,  following expression for the density correlation function: 
n,'= ( () . i '2-  1 )  'Iz cos cp,', (leir2- I )  '" sin Q , ' X , ' ) .  

K (rl r') = 
(2"~"  - ( m  + p) - R  

c (m+l )  + p 
(29) 

Integrating over g, ' and g, ; in (22), and using Eqs. (19) and 
where R is the distance between points r and r'. Expression 

(20), we can return to Eq. (17), (18). (29) holds for all symmetries of supermatrix Q-not only for 

4. DIFFUSION IN THE LIMIT OF LARGE INTERGRANULE 
COUPLING CONSTANTS 

A Cayley tree differs in many ways from ordinary d- 
dimensional lattices. The very concept of a diffusion coeffi- 
cient on a Cayley tree is not simple. It is thus useful to calcu- 
late the density correlation function in the limit of large 
coupling constants, J )  1. If such a correlation function is of a 
diffusive form, then there is no difficulty in determining the 
diffusion coefficient. 

In the limit J )  1 small deviations of the super-matrix Q 
from A arise. It is simplest to apply expressions (12) and (14) 
directly. For the supermatrix Q there exists a convenient 
parametrization1 l :  

Here a and b are real numbers, and a and p are Grassmann 
variables. The Jacobian of the transformation to the varia- 
bles P is  1. 

In the leading approximation in J  it is sufficient to re- 
tain only the first terms of the expansion of Q in P. In this 
case the kernel in integral equation (12) becomes Gaussian, 
and this equation itself can be written 

B Y ( P )  = J r r p  {-STr [ ~ ( P - P T ) ~  + T ~ f 2 ] )  Y ~ , ( P ~ ) ~ P ~ .  
'- d 

(25) 

The solution Y will of course also be Gaussian: 

Y ( P )  =exp ( - ' / 2 ~  STr P 2 ) .  (26) 

Substituting (26) into (25), we find c: 
1 

c12=-{a(m-1)- /3k[a'(m-1)2 +2aB(rn+l)+/3'] '). 
2 m 

In the low-frequency limit, P A ,  we have 
(27) 

, , 

a model with magnetic interactions. In the low-frequency 
limit this correlation function is, for coincident points, 

Recalling the relationship betweenp and the frequency 
w ,  we find a time representation for K (r, r'). In the limit of 
large distances R) 1 and long times a h t )  1 we have 

2vZn'"Arn R exp[-Dt (m'i9-l) ' /m '"]  
K ( r ,  r', t )  = -------- -- 

m- 1 r n R / 2  ( D t )  "2 

where D = m 1 ' 2 a A / ~  is the diffusion coefficient. The last 
exponential factor in Eq. (3 1) is characteristic of free diffu- 
sion. The coefficient of this exponential function, on the oth- 
er hand, differs from that for a real d-dimensional lattice, (6). 
The rapid decay of this coefficient over time makes the mod- 
el on a Cayley tree similar to models in an infinite-dimension 
space. The same situation arises in phase-transition theory. 

Equation (30) can also be derived from (17), (18), and 
(21). For this derivation we need to write A, andR in the form 

and, assuming s,, s, s; and s' to be small, we need to carry out 
expansions in these variables. All the integrals overs, and s 
should be evaluated between the limits of 0 and co . We seek a 
solution Y in the form 

Y =exp [-c (Ai-A)] . (32) 

After going through the appropriate calculations, we find 
Eqs. (28) and (30). 

The condition a )  1 is sufficient only for m - m - 1. We 
can examine the limit m-+l formally. In this limit, we need 
the more stringent condition a) l/(m - 1) in order to derive 
(30) and (3 1). In the opposite limit m )  1, expression (32) with 

610 Sov. Phys. JETP 61 (3), March 1985 K. B. Efetov 610 



the coefficient c from (28) holds up to A,-m, not only at 
values ofA, near unity. Equation (30) is not changed, but the 
applicability condition becomes a) l/m2. 

The results of this section show that in the limit of large 
intergranule coupling constants the frequencies on a Cayley 
tree diffuse freely, and the diffusion coefficient is propor- 
tional to the coupling constant. 

5. LOCALIZATION IN THE LIMIT a ( l  

We show below that at a <a , ,  where a, is a critical 
value, the diffusion disappears, and the system becomes an 
insulator. The most interesting case is the low-frequency 
limit w(A. In this limit, Eqs. (17) and (18) and integral (21) 
simplify significantly in a local region. A simplification of 
this sort has proved very important in the problem of local- 
ization in wires. l5 As in Ref. 15, large values A ,  - A/w be- 
come important. In (17), (18), and (21) we should therefore 
take the limit of large A ,  and A ; everywhere. Using the 
change of variables z =PA, and going through some 
straightforward calculations, we replace (1 7), (1 8), and (2 1) 
by 

m 

where 

s h a  d 
a':2 da exp[-:(z++)]} . 

Expressions (33) and (34) hold for arbitrary a in a local re- 
gion and completely determine the problem of finding the 
integral dielectric constant Z. Expression (33) was derived 
under the assumption that the solution q is a function of the 
variable PA, at small values of P. Such a solution becomes 
the solution W = 1 at p = 0. Consequently, the simplified 
equation (33) contains only solutions which become \V = 1 in 
the limit P-0. Solutions of the type (32), corresponding to 
diffusion, are not contained in Eq. (33). To find solutions of 
that type we need to use the exact equation (17), (18). In the 
sections which follow we determine the critical value a, 
which separates the conducting region from the insulating 
region. At this point we carry out an expansion in the limit 
a(a,. We write solution q in the form 

Here we have written the first terms of the expansion for 
a( 1. Substituting (35) into (38), and equating terms of identi- 
cal order, we find 

z' dz'  ~ , ( ~ ) - j  t i - )  e-Ir- -  1, 
' z  z  ' 

dz' c ( z ) =  m j  t i  f )  L:,(z)e-:,- 
z  ' 

0 

Values z- 1 are important in the evaluation of integral 
(34). Carrying out the integration in (36) at z- 1, we find 

Substituting (35) and (37) into (34), and integrating, we find 
the first terms of the expansion for Z: 

With a = 0, Z corresponds to the integrated dielectric 
constant of an isolated granule. The functional dependence 
of Z on a in the limit a-+O is highly nonanalytic, making it 
impossible to expand the density correlation function in a 
series in a. This fact is seen formally in the appearance of the 
divergences mentioned in Sec. 2. With increasing a ,  the val- 
ue Z increases. Comparing the subsequent terms in expan- 
sion (38) with the preceding terms, we see that this expansion 
holds for am21n(1/a)(1 with m 2 1. 

This expansion shows that at sufficiently small values of 
a the system is an insulator. Recalling the results of the pre- 
ceding section-that the system conducts at large values of 
a-we conclude that a metal-insulator Anderson transition 
occurs. 

6. GREEN'S FUNCTION OF THE INTEGRAL EQUATION 

To analyze the trapsition from the conducting region 
into the localized region, we use the basic integral equation 
written in the form in Eqs. (22) and (23). Introducing 

1-Y A C' = ---- r ~ I I '  dn, ' ra3 (A) = ., r ( l l l l l .  l l , l l i l )  0 ( h ) y  
h1-3, ' ( 2 x 1  - 

(39) 

for arbitrary @, we transform Eq. (22) to 

where 

F [ U ]  = { [ I - U ( h l - A ) ]  "+mU(h: -h)  - l ) / ( A , - h )  

contains only terms which are nonlinear in U. 
Let us examine solutions T which decay in the limit 

/,,-+w. Correspondingly, Ushould approach a constant val- 
ue asA,J+l [see (19a)l and approach the asymptote U- l /  
A ,  as A ,-+ w . The function F [U]  has a very important prop- 
erty: For any m > 1, for functions U of the type described 
here, the condition F [U]>O holds. 

We can now rewrite Eq. (40) in a final form convenient 
for analysis of the transition: 

61 1 Sov. Phys. JETP 61 (3), March 1985 K. B. Efetov 61 1 



where GB(A, A ') is the Green's function which satisfies the 
equation 

{ f - ' -m  exp [ p  ( A - A , ) ]  )GP(h, A') =6 (?*-A1) 6 ( A l - A , ' ) .  (42) 

As we mentioned earlier, the density correlation function 
must be an analytic function of the frequency w in the upper 
half-plane; this means it must be analytic with respect t o p  in 
the right-hand half-plane. The condition of analyticity is of 
assistance in choosing the appropriate solution of Eq. (41). 

The function Gp(A, R ') Ean be expanded in the eigen- 
functions @, of the operator r- ' - m expw (A - A ,)I in the 
usual way: 

where the E are the eigenenergies. 
Before we take up the properties of the solutions of Eq. 

(41), let us examine the analytic properties of Green's func- 
tion GB in (42); these properties are determined in turn by the 
singularities of the Green's function at zero frequency, Go. 
With p = 0 in expansion (43), @, and: are the eigenfunc- 
tions and eigenenergies of the operator r- ' - m. Naturally, 
5 e  functions @, are now also eigenfunctions of the2perator 
r .  Because of the particular form of the operator r in (23), 
we can write the eigenfunctions @,(A ) in product form: 

The eigenfunctions p, in (44) are the Legendre polyno- 
mials P, (A ). Substituting into (23), and integrating, using the 
formulas for combining these polynomials, we test this as- 
sertion and evaluate the eigenvalues. In precisely the same 
way we can verify that the x,(A,) must also be spherical 
harmonics. The Legendre polynomials, however, are not 
suitable here, since the functions X, must decay in the limit 
A ,+ w . As a complete set of orthogonal spherical harmonics 
which decay in the limit Al+oo, we choose the so-called 
cone functions, which are the Legendre functions P,, with 
index Y = - 1/2 + i ~ ,  where E is a real number.I6 The most 
important properties-orthogonality and completeness- 
for these functions can be written 

6 ( E - E ' )  

E thne ' 

The functions P - ,,, + , (z) are real if E is real. 
Equation (43) with p = 0 can now be rewritten as 

Go (L, A') = J GonePn ( A )  Pn (A') P-t/z+is ( A i )  

yhere G &,' = r, ' - m are the eigenvalues of the operator 
r. Using16 

J P x e x  = ( )  + ( a ) ,  
- 1  

where K and I are Bessel functions of imaginary argument, 
we find 

d d me ( a )  = a [K. .  (a)-- I,+I/: ( a )  - (a) - -Kt~  ( a ) ]  . 
da da 

(47) 

The function Go@, A ') is well defined if G &: does not 
vanish at any E. For any a ,  the function r,' is minimal for 
n = 0, E = 0, and increases monotonically with increasing n 
and E. Consequently, G&d is always positive if r;'(a)>m. 
The function T;'(a) becomes arbitrarily large at small val- 
ues of a. With increasing a ,  this function falls off monotoni- 
cally. A singularity first appears in Go,, at n = 0, E = 0, 
where a reaches the critical value a, determined by the con- 
dition 

roo-' ( a e )  =m. (48) 

Singularities appear in Go,, with n # O  at larger values 
of a .  In the limiting cases of large values of m and of values of 
m near unity we can find an analytic solution of Eq. (48). For 
m - 1, the solution can be found only be numerical methods. 
The results are 

At m = 1, no singularity appears in Go,, or on the right side 
of Eq. (46). 

In the limit of small values of E and for a g a , ,  Green's 
function G,, takes the simple form 

GOoe=a/(be2+ T) , T= (a,-a) la,, (50) 

where a and b are coefficients which depend on m. The 
Green's function G,, in (50) has the customary form for 
Green's functions corresponding to critical modes in phase- 
transition theory. In contrast with phase-transition theory, 
however, divergences do not appear in the physical quanti- 
ties in the limit 7 - 4 .  The reason is that the right side of (46) 
has a factor ~ t a n h m .  Because of this factor, the function 
Go(A, A ') remains finite as 7 4 .  Consequently, divergences 
should not appear in the solution U of Eq. (41) or in the 
dielectric constant Z in this limit. Despite the absence of 
divergences from the physical quantities as a+ac, the point 
a, is the boundary of the insulating region, as will be shown 
below. 

We now return to the analytic properties of the function 
GB(A, A '). These properties depend strongly on the spectrum 
of eigenenergies E in expansion (43). As we have already 
shown, for each a there ex$s a minimum eigenvalue Emin of 
$e operator r-I-m. The o~era tor  
r-' - mexp [ p  (A - A,)] is found from the operator r- '-m 
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by adding the function V = m ( 1 - exp [B (A - A,)  ] J . This 
function is positive for positive real P. The minimum eigen- 

A 

value Emin (p ) of the operator r- ' - mexp [ P  (A - A,) ] 
therefore increases monotonically from the value Emin at 
/3 = 0 to the value Emin + m in the limit &+.a. The value 
Em, ^$ m is the same as the minimum eigenvalue of the oper- 
ator r-' and is positive for arbitrary a. The energy spec- 
trum remains continuous at P #O.  

At a < a ,  the value of Emin is positive. We then con- 
clude that Emin (p) is positive for all values o f p  on the real 
semiaxis, P > 0. In this case, for any values o f p  in the right 
half-plane, the path of the integration in (43) does not inter- 
sect a singularity of the integrand. Correspondingly, for 
a < a, the function GP (A, A ') is analytic in the right half 
plane. This analyticity is preserved at a = a,. 

If, on the other hand, we have a > a,, then Emin < 0. In 
the limit p-t co , however, Emin (p ) increases to Emin + m > 0. 
Consequently, at some real PC > 0 the quantity Emin (p) van- 
ishes. At this value ofp, the integration path in Eq. (43) goes 
through a singularity for the first time. This result means 
that the analyticity in P is violated. For Re B <PC, the limit 
of the function Gg as Im b--+ + 0 is different from the limit 
as Im 0- - 0. The imaginary part, GI;', naturally has differ- 
ent limits; for the real part, the limits are identical. As P-0 
with a > a,, the imaginary part GI;' does not disappear. It 
can be written 

where c is a numerical factor. The index a is the root of the 
equation r,'(a) = m. 

Consequently, for a > a ,  the function Gg is analytic in 
the region ReP>P,, where PC is the root of the equation 
Emin PC) = 0, but it has a cut along the line segment [0, PC 1. 
At a = a, we have 0, = 0; at a < a , ,  the function Go is ana- 
lytic over the entire half-plane Re B > 0. 

7. THE METAL-INSULATOR TRANSITION 

The singularity a, of the Green's function Gg in Eqs. 
(47) and (48) is the point of the metal-insulator transition. At 
a <a, ,  the system is in a localized state, while at a > a, it is 
conducting. This assertion follows from an analysis of the 
solutions of Eq. (41), to which we now turn. 

To find Uat a < a, we expand Eq. (41), treating F [U] as 
a perturbation. We then seek a solution U in the form of a 
series each term of which is a function ofA, A ,, 0,  and a .  All 
the terms ofthe series for a < a ,  are analytic in Pin the right- 
hand half-plane-a consequence of the analyticity of the 
Green's function Gg. The resulting series clearly converges 
at large IP I. In this limit we have U = l/(Al - A ). The ratio 
of the terms of the series to the preceding terms increases 
with decreasing lP I. But at small values of IP I the series con- 
verges if a < a,. That this is true can be seen most simply by 
examining Eq. (33), derived in the limit P A .  If the series 
had begun to diverge at some a ,  this circumstance would 
have given rise to a singularity in dY/da. For the function 
aY/da we easily find the following equation with the help of 
(33): 

- dY dz' 

z  

where 

The solution of dY/aa can bec%me singular only if zero 
eigezvalues appear for the operator To. However, the opera- 
F r  r0 acquires zero eigenvalues no sooner than the operator 
r, does: 

dz' F,@ (;I= m ( 2 )  - m j  i ( G )  m ( z ~ ) - ~ ,  
0 

since the kernel z is positke definite, and Y(z) < 1. A zero 
eigenvalue of the operator r, first appears at a = a,,  where 
a, is determined by (47) and (48). At a <a, ,  therefore, no 
singularities can appear in dY/da. It follows that the func- 
tion Y found through the solution of Eq. (41) by successive 
approximations is analytic with respect t o p  in the right half- 
plane if a < a,. This function decays as A ,-+ co . Consequent- 
ly, Z is also analytic. 

At small values o f 8  we can use Eq. (33). For a g a , ,  this 
equation has already been analyzed in the preceding section. 
At a -a,, numerical methods must be used to solve it. Nu- 
merical calculations have been carried out for m = 2 and 
m = 3. Equation (33) was solved by an iterative method us- 
ing the recurrence scheme 

z 

dz' ,.+, ,;) 1 J (:) e-; ,  u r ; t ' ; ' ~  
0 

The integral in (34) was then evaluated. A check verified that 
the function Y(z) falls off monotonically from 1 to 0. Figure 2 
shows the dielectric constant Z as a function ofa. We see that 
Z remains finite. This result confirms the assertion which 
was made on the basis of qualitative arguments. As we ap- 
proach the critical point a, the number of iterations re- 
quired to find Z with some specified accuracy increases by 
orders of magnitude. In the region a > a,,  the iterations di- 
verge. This numerical analysis confirms that a critical point 
exists and that the dielectric constant is finite at this point. 

The quantity Z(a,) can be calculated analytically if we 
formally take the limit m-1. According to (48), a, is large in 
this limit. At large values of a ,  the kernel z (zl/z) in Eq. (43) 
has a sharp maximum at z = z'. It thus becomes possible to 
reduce the integral equation (33) to a differential equation. 
Expanding the function Y(zl) in gradients, and retaining only 
the leading terms, we find 

z2 d 2 Y  
zYP + (m- I )  Y ln Y=O. 

2u dz" 
(54) 

This equation has been elsewhere derived for the case m = 1 
in the problem of localization in wires.15." For m # 1 and 
arbitrary a ,  the nonlinear equation (54) cannot be solved 
analytically, except in the case a = a, = 1/8(m - I)-'. At 
this value of a ,  the solution is - 

IT! =exp ( -2V2ctz ) .  (55) 
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FIG. 2. The integral dielectric constant X as a function 

1 of a-', the reciprocal of the reduced probability for 

1 tunneling between granules. 

Substituting Eq. (55) into Eq. (34), and integrating, we find 

Our study shows that at a < a, the system is an insula- 
tor, and the dielectric constant Z remains finite as a-a,. 
The solution found here cannot be used at a > a,. If we at- 
tempt to seek a solution of Eq. (41) in series form, treating 
F [U] as a perturbation, we immediately find that each term 
in the series at a > a, is nonanalytic in in the right half- 
plane. This conclusion follows immediately from the nonan- 
alyticity of the Green's function Gg in Eq. (41). This result 
apparently is related to the absence of nonincreasing solu- 
tions of Eq. (33) for a > a,.  By analogy with phase-transition 
theory, where an order parameter appears spontaneously be- 
low the critical point, we suggest that for a > a, a solution U 
which does not vanish in the limitP+O appears in Eq. (40) or 
(41). This solution was found in Section 4 for the region 
a)a, [Eq. (32)] in a study of diffusion. The solution \V falls to 
zero in this region if 8 = 0. Correspondingly, U decreases 
from some constant C, [see (19a)], which is reached as A,, 
A-1, to zero, having the asymptotic behavior U -  1/A, as 
A ,+m.  The existence of a solution W which decays forP = 0 
means that the system is conducting. This conclusion fol- 
lows from the convergence of the integral (21) with 0 = 0; 
this integral is proportional to the reciprocal of the diffusion 
coefficient 5 (the solution * must of course fall off quite 
rapidly if this convergence is to be achieved). 

We will now prove, first, that a solution of the diffusion 
type can exist only for a > a,. For this purpose we multiply 
both sides of Eq. (40) by the Legendre polynomial P,(A,), and 
we integrate over A ,  and A. In the limit P = 0 we have 

- 1 
( r o ,  - , ( Y + ~ ~ ? ~  ( a ) -  m) U,,=-F,,, (57) 

where 

-i 1 - 1  1 

the quantity Ta ,, + ,,,, (a) can be derived from (47) through 
the simple replacement E+ - i(v + 1/2). 

Let us assume that at a < a ,  there exist nonvanishing 
solutions Uwhich have the asymptotic behavior U -  1/A, as 

A,+m. This situation corresponds to the existence of solu- 
tions * which fall off to zero. Using (57) we easily see that 
this assumption is contradictory: At a < a ,  the quantity 

,/,, (a) - m is positive for v = - 1/2. At some 
v = vc, - 1/2 < v, <O, this quantity vanishes. As v in- 
creases further, it becomes negative, approaching a limit 
1 - m as v-0. The quantities U, and F,, in Eq. (57) remain 
finite on the line segment [O, v, 1 .  However, F,, is strictly 
positive, since the functions F [U] and P, are positive. It then 
follows from Eq. (57) that U,, is negative for - 1/2<v<v, 
and tends toward infinity as v-tv, . This result contradicts 
the assumption regarding the function U, since P, is a mono- 
tonically decreasing positive function with the asymptotic 
behavior P,(A,)-A c V  as A,-m with v >  - 1/2. Conse- 
quently, a solution of the diffusion type exists only if a >a , .  

An explicit solution U cannot be found for arbitrary 
a > a,. We will therefore analyze the properties of this solu- 
tion at a qualitative level. Particularly interesting is the be- 
havior of the function U (or *) as a<, , since this behavior 
determines how the diffusion coefficient vanishes. If the 
function * fell off very slowly with increasing A,  toward the 
point of the transition the integral (21) would take on a large 
value. In this case the diffusion coefficient 5 would vanish. 
In the opposite case in which the relative change of the func- 
tion \V is of order unity and does not approach infinity as 
a-a,, the diffusion coefficient 5 should tend toward a fin- 
ite limit 5, and should vanish abruptly. Mott's arguments 
regarding the existence of a minimum metallic conductivity 
would then be correct. 

We first examine the asymptotic behavior of the solu- 
tion Y with P = 0 as A, -+m,  to verify that the integral (21) 
converges. In this limit Eqs. (17), (18) are rewritten 

where z ( z )  is defined in (33). The solution *(A,) does not 
depend on A at A , )  1. Equation (58) differs from Eq. (33) in 
that it lacks an exponential function in the integrand; this 
function arises only at finite frequencies. It is convenient to 
transform to the variables 19, = In U ,  t = In 22 [cf. (18)l. To 
show that the asymptotic behavior of the solution of Eq. (58) 
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we substitute (59) into (58), transforming everywhere to the 
variables el, t. The right side of (58) is then expressed in 
terms of the integral 

m 

t 
B ( a ) =  5 exp{-[ aeh t  +-+nm(~,"+y)exp(bB, '")  I) d t .  

- * 2 

At large 0 , )  1 the integral B (a) can be evaluated by the 
method of steepest descent. We need to minimize the expres- 
sion in the exponential function in the usual way and to find 
its value at the minimum. All the calculations are carried out 
to the accuracy required for writing terms of order 
6' ;/2e~p(b6' ;/2) and exp(b6' ;/2) in the exponential function. 
We will not calculate the coefficients of the exponential 
function. After some straightforward transformations we 
find that the form of the function in Eq. (59) is reproduced. 
Comparing the coefficients of 6' ;/2e~p(b6' :/') and exp(b6' :/2) 

in the exponential functions on the right and left sides of Eq. 
(58), we find 

a=sa (2m ln  m)-'", b= (2  In m)'". (61) 

The number y is arbitrary. 
The form of the asymptotic behavior in Eqs. (59), (61) 

proves that the integral (21) converges for all a and for all 
m > 1. Nevertheless, knowledge of the asymptotic behavior 
is not sufficient for evaluating the integral (2 1). The reason is 
that Eq. (58) is invariant under the change of scale A ,-Ail ,. 
Any function Y of the form 

Y 0.1) =Yo ( A l l ) ,  (62) 

where Yo is some solution of Eq. (58), and A is an arbitrary 
number, can also be a solution of this equation. The fact that 
the number y in the asymptotic solution (59) is arbitrary is a 
consequence of this invariance. In principle, there might be 
the possibility that A would approach zero as the transition 
point a, was approached. The integral in (21) might then 
increase without bound, causing the diffusion coefficient 5 
to vanish. To determine the coefficient A we need to join the 
solution (62) with the solution for small A,. However, even 
without going through these complicated calculations, we 
can see that the coefficient A will always be of order unity 
and will not approach zero as a-+a,. 

Let us assume that Y,(A,) is some solution of Eq. (58) 
which varies by A ,  - 1. As such a solution we might take, for 
example, the solution having the asymptotic behavior in (59), 
(61) with y = 0. Theexact solution of Eq. (17), (18) withA,) 1 
is written in the form in (62). We assume that as a-a, the 
parameter A approaches zero in (62); we see that this as- 
sumption is contradictory. Specifically, the function U de- 
fined in (39) takes the following form in the region A ,  ) 1: 

U ( X , ) = A U O ( A L ) ,  11, (hi)= [I-'l'o(I1) ] / a , .  (63) 

We now recall Eq. (57). In the case A(1, the integrals are 
dominated by the regionill - 1/A. Substituting (63) into (57), 
and introducing the variable z = AA,, we can put (57) in the 

following form for A(l and v = - 1/2: 

In deriving (64) we used expression (40) for F [U]  and the 
asymptotic behavior P- ,,,(z)-ln z/z1I2 at z) 1. The inte- 
grals in Eq. (64) converge at both large and small values ofz. 
The typical interval for the variation of the function U,, like 
that for Y,(z), is z - 1. The integrals in Eq. (64) are thus on the 
of order unity. We have assumed, however, that a ap- 
proaches a,. In this case, m - Ti '(a) approaches zero. We 
thus have a contradiction: The left side of (64) is approaching 
zero, but the right side remains of order unity (we recall that 
F[U,]>O). Consequently, the assumption that A tends to- 
ward zero as a-+a, is incorrect. The relative changes in the 
functions Y and U are of order unity, and both depend 
strongly on the parameters A ,  and A. Only in this case can we 
satisfy Eq. (57) with v = - 1/2 and a-,. The integral in 
(21) must also remain of order unity as a-+a,. This assertion 
means that the diffusion coefficient 3 tends toward a finite 
value as the transition point is approached, demonstrating 
the existence of a minimum metallic conductivity. 

8. CONCLUSION 

The exact solution of the model on a Cayley tree given 
above can be used to describe the Anderson metal-insulator 
transition. We have derived expressions for the total diffu- 
sion coefficient in the conducting region and for the dielec- 
tric constant in the localized region. We have asserted that 
the conductivity tends toward a finite value as the transition 
point is approached. As the transition point is approached 
from the side of the insulator, the dielectric constant in- 
creases, but it remains finite even at the transition point. 

Actually, we have calculated not the diffusion coeffi- 
cient and the susceptibility themselves but some integral 
quantities which determine the density correlation function 
for coincident points. To calculate the actual diffusion coef- 
ficient we need to calculate the density correlation function 
for different points. However, the critical behavior which 
has been found here is a consequence of an abrupt change in 
the solution Y at the transition point. The same function Y 
determines the behavior of the density correlation function 
at different points, K (r, r') [see (14)l. The correlation func- 
tion K (r, r') is equal to a finite-dimensional integral of a com- 
bination containing Y. Accordingly, discontinuities should 
also occur in the correlation function K (r, r') and thus in the 
diffusion coefficient. For the same reason, the actual dielec- 
tric constant does not become infinite at the transition point. 
The limitation imposed because we have considered only 
systems which have a magnetic interaction (model 11) is not 
important. The results which would be obtained for model I 
(a system with only potential scattering) and for model I11 
(potential and spin-orbit scattering) can be expected to be 
qualitatively the same. 

The conclusion that there exists a minimum metallic 
conductivity agrees with Mott's assertion2 but differs from 
the results of Refs. 3-6,9, 10, and 17. This is apparently the 
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first assertion of the existence of a maximum dielectric con- 
stant. We believe that the existence of a minimum metallic 
conductivity and of a maximum dielectric constant is not a 
consequence of the particular features of the model on a Cay- 
ley tree. Let us examine some possible reasons for the dis- 
crepancy between the results of the present paper and those 
of Refs. 3-6, 9, 10, and 17. 

Gotze" used a nonrigorous approximation, which may 
have qualitatively changed the results. 

Kunz and Souillard'' used the Anderson model on a 
Cayley tree to calculate a correlation length which diverged 
in a power-law fashion as the transition point was ap- 
proached. They linked this length with the conductivity on 
the basis of dimensionality considerations, which were not 
>roved.'' Critical modes of some sort also exist in the theory 
set forth in the preceding sections [see (50)l. However, these 
critical modes do not make a divergent contribution because 
of the small phase volume. The existence of a diverging 
length is thus not by itself proof that the conductivity tends 
toward zero. 

Shapiro9 also examined a model on a Cayley tree. Sha- 
piro's derivation uses some rather strong assumptions. For 
example, it is assumed that the unaveraged coefficient for 
reflection from an arbitrary piece of a Cayley tree is approxi- 
mately unity near the transition point and fluctuates only 
slightly. Shapiro uses averaging methods whose validity has 
not been proved. Furthermore, it is assumed that the resis- 
tivity behaves in the same way as the total resistances of the 
entire tree. 

The concept of scaling, initially proposed by Thoule~s '~  
for one-dimensional systems, and subsequently generalized 
to arbitrary dimen~ionality,~ has had a major influence on 
the present understanding. For one-dimensional systems, 
this concept has led to the prediction of localization for any, 
arbitrarily slight disorder. An exact calculation shows that 
the one-dimensional geometry does in fact always lead to 
localization. This result confirms the applicability of scaling 
for the description of one-dimensional systems. The results 
predicted by scaling3 for a space of dimensionality 2 + E 

agree with the perturbation-theory  result^'^^^^ and the re- 
sults found by renormalization-group  method^.^-^ In the 
scheme proposed by Abrahams et there is no minimum 
metallic conductivity in a space with any dimensionality d. If 
we assume that models on a Cayley tree correspond to the 
limit d-+CC, we conclude that the result found above contra- 
dicts the scaling hypothesis. However, we are not completely 
convinced even by the results found by the renormalization- 
group method in a space of dimensionality 2 + E.  Our rea- 
soning is that the noncompact a model used to describe dis- 
ordered metals differs from ordinary compact a models. In 
the calculations, large values of A ,  turn out to be important. 
Actually, all the results for the localized region are derived 
in the limit A, )  1. It is the noncompact nature of the group of 
matrices Q which is associated with the existence of a mini- 
mum metallic conductivity. On the other hand, studies by 
perturbation theory or by the renormalization-group meth- 
od consider only the contribution from the regions of A and 
ill near unity. 

A perturbation theory can also be constructed for Eqs. 

(17), (1 8). The specific features of the noncompact group will 
of course not be seen in any way in the first terms of the 
expansion. These features may, however, cause an increase 
in the coefficients in the higher orders of perturbation the- 
ory, rendering this theory inapplicable in many regards. 
Furthermore, in the renormalization-group method in the 
case of compact a models the reproducibility of the Lagran- 
gian upon renormalizations is guaranteed by the circum- 
stance that Tr(VQ )'is the only possible combination because 
of the absence of any special direction in the space of the 
matrices Q. In a noncompact a model, a special direction of 
A arises, since the term iwS TrAQ serves as a cutoff for the 
integrals which may diverge at w = 0. Accordingly, we do 
not rule out the possibility that additional terms of the type 
ylTr(AVQ )' or y,(TrAVQ ), will arise upon renormaliza- 
tions. The quantities y, and y, would of course have to be 
exponentially small with respect to the nucleating charge, 
since these additional terms do not arise in perturbation the- 
ory; in the region of large effective charges, however, these 
terms may become large. Kravtsov and Lerner2' have re- 
cently asserted that the use of a single-parameter renormal- 
ization group leads to contradictions. In summary, we be- 
lieve that at present there are no rigorous results which deny 
the existence of a minimum metallic conductivity or of a 
maximum dielectric constant. 

In analyzing the experimental situation one must bear 
in mind the existence of large-scale inhomogeneities, which 
can be analyzed by perturbation theory. Such inhomogene- 
ities are not dealt with in the theory of localization. Strictly 
speaking, the minimum metallic conductivity and the maxi- 
mum dielectric constant can be observed only in systems in 
which there are no large-scale inhomogeneities. The incor- 
poration of such inhomogeneities in a percolation theory 
should lead to a power-law decay of the conductivity near 
the transition point and to a power-law increase in the dielec- 
tric constant. Mott and K a ~ e h ~ ~  believe that the experiments 
which have already been carried out furnish evidence for the 
existence of a minimum metallic conductivity, although dif- 
fering interpretations are possible (see Ref. 23, for example). 

I wish to thank A. I. Larkin for many discussions. 
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