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The interaction between particles can cause either localization or delocalization. Delocalization 
occurs after a threshold is reached and requires a finite particle density which depends on how 
nonideal the crystal is. The onset of localization with increasing particle density is related to self- 
localization in an ideal crystal { Yu. Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 87, 348 
(1984) [Sov. Phys. JETP 60,201 (1984)l j .  Phase diagrams are constructed to illustrate the local- 
ization and delocalization regions as functions of the temperature, the defect concentration, and 
the particle concentration. Phase transitions to a self-localization state are predicted as the tem- 
perature is raised. 

1. INTRODUCTORY COMMENTS 

For motion in a narrow band in a crystal the region in 
which particles interact strongly with defects and with each 
other typically has a large radius. We assume that the inter- 
action is repulsive in both cases, and we assume, exclusively 
for simplicity, that the two interactions are identical, de- 
scribed by the power law 

way to a liquid regime, but no localization ofany sort occurs. 
An irreversible escape of a particle from a particular spatial 
volume now results from many-particle excitations, which 
cause the particle to diffuse in energy and which alter the 
local potential relief. 

As the particle concentration is increased further, how- 
ever, we enter a region in which the size of the relative shift of 
the levels in adjacent unit cells due to the interaction of the 
particles at an intermediate distance begins to exceed A. The 

[the volume of the unit cell of the lattice is (4/3)aa: 1. If the corresponding characteristic concentration x, can be found 

band width A satisfies the inequality 
from an expression analogous to (5), by replacing Ro by the 
radius Roo defined by 

it is easy to see that, even for states at the center of the band, 
the potential and kinetic energies are equal, 

U (R,) =A , (3) 

at a radius 

This result means that each particle or point defect is sur- 
rounded by a large "exclusive volume" which the other par- 
ticle must "circumvent" in the course of scattering. The vol- 
ume is filled with such spheres at a concentration 

We initially assume that the particle concentration x is 
negligible. At a static-defect concentration y, = vy,( 1 (v > 1 
is a numerical factor, and yo = x,), absolute localization will 
then occur, i.e., localization for all the energy states in the 
band. In the absence of inelastic processes this localization is 
a quantum process (Anderson localization1). By vi~tue of in- 
equality (4), y, lies very close toj ,  , the point of purely classi- 
cal localization of the percolation type (Ref. 2). 

We now consider the opposite case, in which there are 
no defects, and the particle concentration is finite. We as- 
sume T >  A, U, (where U, is the characteristic interaction 
energy of the particles at the concentration x); at x( 1, there- 
fore, the particles clearly obey classical statistics. In contrast 
with the preceding case, in which the particle concentration 
reaches the region x-x,, the gaseous diffusion regime gives 

(y > 1 is a numerical factor). 
In this concentration range, in the absence of an interac- 

tion with phonons, in a randomly distributed system of par- 
ticles (T>  U, ), an infinite immobile cluster forms, in which 
both single-particle and many-particle motions are sup- 
p r e~sed .~  The principal reason for this situation is the dis- 
crete nature of the space which is imposed by the periodic 
structure of the ideal lattice. In contrast with the case of 
diffusion in a liquid, this periodic structure requires that a 
particle undergo a finite displacement to reach resonance 
also and makes available a finite number of resonant paths, z. 
Particles which do not belong to the infinite cluster remain 
capable of diffusing through interactions with each other. 
(Their interaction with the particles of the immobile cluster 
is an elastic intera~tion.~) At a concentration 
x, = vxoo(v-2), however, the strength of the immobile 
cluster, which is evidently serving as a static defect struc- 
ture, reaches a level such that the volume which is kinetically 
accessible to free particles contracts to a critical size at which 
the particles can no longer escape to infinity. As a result, 
complete localization occurs in an ideal crystal without stat- 
ic defects, solely because of the interaction of the diffusing 
particles with each other. We wish to stress that we are talk- 
ing here about the high-temperature limit; a further increase 
in the temperature will not change x, . 

Localization of this type and also delocalization caused 
by phonons3 have been detected experimentally by Mikheev 
et al.4-6 in the diffusion of He3 in a He4 crystal. 

583 Sov. Phys. JETP 61 (3), March 1985 0038-5646/85/030583-06$04.00 @ 1985 American Institute of Physics 583 



2. ROLE OF THE INTERPARTICLE INTERACTION IN 
LOCALIZATION 

We now consider the general case ( y # 0, x # O), and we 
analyze the effect of the interparticle interaction on the pic- 
ture of localization in a crystal with static defects. We begin 
the study with the high-temperature limit. 

We assume y > y, , j, . When, with increasing concen- 
tration x, the interaction between particles comes into play, 
an energy diffusion arises in the potential relief created by 
the static defects. The particle no longer exhibits a fixed en- 
ergy level; on the contrary, diffusion now occurs, in princi- 
ple, in an energy band AE- U, > A. As a consequence, the 
quantum localization due to phase relaxation is eliminated 
(Ref. 7, for example), and in addition the increase in the size 
of the region of the crystal which is kinetically accessible to 
particles eliminates classical localization. An upper limit is 
set on the concentration in the delocalization region by the 
self-localization of particles. It is easy to understand that the 
presence of defects effectively increases the strength of the 
immobile cluster at a given x and simultaneously lowers the 
critical concentration for self-localization. The upper 
boundary of the delocalization region, 2, is determined by 
the simple relation 

Actually-and this is an important point-the density x in 
region in which localization is eliminated is also bounded 
below. The reason is that energy diffusion arises after a 
threshold value ofx is reached. Let us examine this question 
in more detail. 

At y > y, , all the single-particle states are localized. 
Outside the critical concentration interval, the linear dimen- 
sion of the localization region of the wave function, I ,  can be 
estimated from the condition that the shift of the band in the 
potential relief of the impurities be comparable in magnitude 
to the width of the band: 

1IVUI - A .  

We thus have the approximate result 

It follows that 

R ( y )  > l B a ;  (9 )  

this is a consequence of the large-scale nature of the potential 
relief created by the defects. The second inequality is violat- 
ed only at y -y, = x,,, where 1 -a. Let us consider two par- 
ticles which are in localized states and separated by a dis- 
tance R) 1. The amplitude for a transition of this pair with a 
change in the state of each of the particles is determined by 
the matrix element of the interaction: 

d 2 U  ( R )  
PIIPZI. RiZ=R+pI-p> 

dR, aR, 

The dipole matrix element effectively couples localized 
states separated by an energy 

The matrix element itself is given in order of magnitude by 

V ( R )  - U" ( R )  1'. (12) 

It is easy to see that at distances (R ) between the particles for 
which the inequality 

holds the probability for the occurrence of a resonant two- 
particle transition is negligible. If the concentrationx is such 
that inequality (13) holds at the characteristic distance R ( x )  
between particles, then no energy excitation can escape from 
a bounded volume of the crystal. As a consequence, there is 
no energy diffusion with an irreversible escape of the phase 
from a given region, and the role of the interaction between 
particles reduces to a renormalization of the states. In the 
absence of an energy diffusion, on the other hand, localiza- 
tion persists, and the macroscopic mass diffusion coefficient 
is D = 0. The question of maintaining localization when a 
short-range interaction between particles comes into play 
was first discussed in Ref. 8. 

A localized wave function formally has a nonzero over- 
lap integral with ( l / ~ ) ~  states, for which the distance 
between levels is far smaller than (1 1). It can be shown, how- 
ever, that the matrix element for a transition to this fine 
structure in the level within an interval w, which clearly re- 
quires consideration of higher multipoles than (lo), decays 
far more rapidly than does the corresponding decrease in the 
distance between levels. 

We also note that, under condition (13), the amplitude 
of the many-particle transition decreases exponentially with 
the number of particles involved in the transition (see the 
corresponding analysis in Ref. 2), rendering the probability 
for a resonant process for such transitions (the agreement of 
the initial and final energies within the transition amplitude) 
even smaller. 

Inequality (13) is evidently violated only at a finite con- 
centration x, so that the delocalization of particles due to 
their interaction does in fact require that a threshold be 
reached. 

The lower boundary of the delocalization region, 6, is 
determined by a relation of the type 

where the numerical factor 6 requires a special determina- 
tion. Using ( l l ) ,  (12), (8), and (I),  we find the approximate 
result 

~ = g , y ( , ~  ( y / y o o )  3("+' ) / (a+2' .  
- (15) 

In deriving (15) we have assumed that the parameters of the 
problem satisfy the condition V(x,,) > w(x,,) (Ref. 2). The 
opposite case requires special study. It follows from the form 
of (15) that they dependence of5 is approximately cubic, and 
the line Z(y) is intersected even at x <y. 

Asy approachesy, , this law changes to a critical depen- 
dence 

The reason is that at the critical pointy, the length 1 becomes 
infinite [it should be kept in mind that representation (8) and 
expansions (10) and (12) are inapplicable]. Aty < y, the diffu- 
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FIG. 1 

sion coefficient is D #O, even in the limit x+O, and an in- 
crease in the particle concentration x does not qualitatively 
change the diffusion picture until we reach the self-localiza- 
tion region. On the whole, therefore, the (x,y) phase diagram 
will be as shown in Fig. 1, where we are using (7), (15), and 
(16). The hatched region is the region in which the macro- 
scopic diffusion coefficient is nonzero. Along the line ab 
(Fig. 1) the diffusion coefficient initially increases as we 
move away from point a; it goes through a maximum, and 
then there is a liquid diffusion regime, with D decreasing 
with increasing x. At point b we have D = 0 as a result of self- 
localization. 

As long as there is no interaction with phonons, the 
phase diagram at T >  U, will not change as T is increased. 
When the interaction with phonons is taken into account, a 
phonon-stimulated delocalization occurs in the unhatched 
region of the phase plane. The interaction with phonons is 
also important for the part of the hatched region directly 
adjacent to the boundaries Xh) and xh) ,  causing an increase 
in D with increasing T (Refs. 2 and 3). In the inner part of the 
hatched region, far from the boundaries, the interaction with 
phonons causes D to decrease with increasing T. 

3. PHASE DIAGRAM AT T = 0 

We now consider the corresponding phase diagram for 
T = 0, assuming that the particles obey Fermi statistics. We 
note at the outset that the diagram must be fundamentally 
different from that in Fig. 1, since now we are dealing with 
localization in the ground state, while at high temperatures 
T the identical population of all the statistically allowed en- 
ergy states plays a decisive role in the localization. 

Assuming that the interaction law in the form in (1) 
again holds, we find the following result for the amplitude of 
the scattering of a particle by an impurity in the limit E--tO 
(the scattering length; a > 3): 

(z is the number of equivalent sites in the first coordination 
sphere). A situation in which the impurity is gaseous prevails 
under the condition 

FIG. 2 

Here L = 1/47~f 'nim is the mean free path, and fi is the wave- 
length of the particle. It is easy to see that the condition fi>f 
holds at the delocalization threshold in the gaseous region, 
(18), and the scattering amplitude retains its limiting value, 
(17). From (19) we directly find the critical particle concen- 
tration: 

By virtue of (18), on this critical curve we have x e ,  and the 
interaction between particles plays no substantial role. Con- 
sequently, the dependence x -y3 is universal (curve 1 in Fig. 
2). 

The boundary of the region which in which the impuri- 
ties are gaseous, yzy* ,  corresponds on the critical curve to 
the region in which the transition from a gas of particles to a 
Fermi liquid occurs (x -x. = y. ). Accordingly, at y > y*, 
not only does the nature of the scattering by impurities at the 
delocalization threshold change, but also the interaction of 
particles with each other simultaneously becomes impor- 
tant. 

At y ~ y .  we have 

. .. 
(21) 

and the potential relief which arises is semiclassical. In the 
"unit cell" per impurity which is characteristic of this poten- 
tial relief, the number of single-particle levels is 

The penetrability of the characteristic potential barrier with 
respect to a transition between these and lower levels is de- 
termined by a factor e - S ,  where s - ~ ' ' ~ .  It is easy to see 
that the probability that discrete levels in neighboring poten- 
tial wells coincide within the transition amplitude is small, 
and the states in this part of the spectrum are localized. Ac- 
tually, delocalization arises in the one-particle problem only 
at an energy on the order of U, . The corresponding thresh- 
old energy is 

In the interval of concentrations y obeying (18), the energy The value of the constant P is approximately equal to the 
threshold for the localization is found from the Ioffe-Rege1'- corresponding quantity determined for the threshold for 
Mott condition classical percolation in the potential relief under considera- 
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tion (Ref. 9, for example). The quantum corrections to this 
quantity for interference effects, (7E /L )2 - 7-', and for tun- 
neling are small, on the order of the parameter 7,'. If we 
ignore the interaction between particles, we can find the 
critical concentration directly from (23): 

Consequently, for a noninteracting Fermi gas the cubic y 
dependence at y < y, gives way to a x  at y > y. (curve 2 
in Fig. 2). 

It can be concluded from (24), however, that on the 
critical curve we have x>y at y>y.. If the interaction 
between particles is comparable in magnitude to that 
between particles and impurities, it follows that near curve 2 
both Fermi-liquid effects and correlation effects will be im- 
portant (there is an effective "screening" of the impurity po- 
tential). When correlation effects are predominant, the expo- 
nent a/2 in (24) is replaced by x ,  where 

If we not set y = 0 and arbitrarily increase x, we find that a 
certain concentration x,, >x. the subsystem of particles un- 
dergoes a transition to a crystalline state, accompanied by 
the formation of a regular sublattice. The transition concen- 
tration can be determined from the relation between the ki- 
netic and potential energies (on the liquid side), 

or from the ratio of the square displacement c of a particle in 
the crystal sublattice to the square distance between parti- 
cles, R 2 ( ~ ) ,  

These two relations leads formally to 

where the numerical parameter isp) 1. The small value ofx. 
in (18) presupposes that crystallization occurs at T = 0 at a 
low particle concentration, i.e., that we have x,, 4 1 and 
R (x,,)>a. In this case we have {>a; in other words, the 
particles in the crystalline phase are smeared over regions 
large in comparison with the volume of the unit cell of the 
host. 

The concentration x,, varies comparatively slightly 
over they interval up to the point at which the crystallization 

line x,, @) (curve 3 in Fig. 2) crosses curve 2 in Fig. 2. The 
continuation of the crystallization line formally intersects 
the abscissa at y ~ x , ,  , because of the formation of a com- 
mon, generally disordered, lattice of particles and impuri- 
ties. 

As a result, the diffusion coefficient at T = 0 on the (x,y) 
plane is nonzero only on the hatched region in Fig. 2. Out- 
side this region we have D = 0. This is true above line 3 
because of the formation of a crystal sublattice, and below 
this line because of the localization of particles in the poten- 
tial relief of the impurities. The phase diagram found here 
differs substantially from the high-temperature diagram in 
Fig. 1. 

4. PHASE DIAGRAM FOR T#O 

Let us examine the changes in the phase diagram with 
increasing T, assuming as before that there is no interaction 
with phonons. In general, the phase diagram is three-dimen- 
sional, and we will restrict the discussion to a qualitative 
look at a few of the most representative cross sections. 

Let us consider the casey = 0. Figure 3 shows the corre- 
sponding phase diagram in the (x,T) plane. In the analysis 
above it was actually assumed implicitly everywhere that the 
ratio Ao/Uo is quite small. When this ratio is nonzero, al- 
though small, several different cases are possible, depending 
primarily on the position of x,, on the x axis to the left or 
right ofx, . In the latter case, the melting line is as shown by 
the dashed line in Fig. 3. 

In the former case, at x <x,, (or at x < x, in the latter 
case), the system of particles remains fixed at arbitrary T. In 
the intervalx,, < x  < x, the mobility vanishes at all tempera- 
tures up to the melting point T,, while at T >  T,,, the diffu- 
sion coefficient is nonzero at all T. 

At x > x, , a line (2) appears on the phase diagram which 
separates the region of self-localization of particles from the 
region with D # O  (the latter region is the hatched region in 
Fig. 3). The self-localization depends to a large extent on the 
random spatial distribution of particles. At U,, a limit- 
ing randomization is reached, so that line 2 goes vertically 
upward with increasing T as x, - x 4 .  With decreasing T, 
in contrast, the degree of randomization decreases, and self- 
localization sets in at a larger value of x. With a further 
decrease in T, line 2 intersects the melting curve at point 0 
(or 0 '). To the left of point 0 (or 0 '), an extremely nontrivial 

FIG. 3 FIG. 4 
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pattern of phase transitions unfolds with increasing T. A 
crystalline phase D = 0 persists up to the melting point; at 
T>  T,,, a liquid phase with D #O arises, and with a further 
increase in Ton line 2 this liquid phase transforms into a self- 
localized phase, again with D = 0. In the second case, the 
subsystem of particles remains a liquid with D # O  at 
x, < x <xi, from T = 0 up to the self-localization line. As a 
result, localization occurs with increasing temperature in 
both cases (in the absence of an interaction with phonons). 
To the right of point 0 (or 0 ' j  the particles are in a self- 
localized phase as the crystal sublattice melts, so that local- 
ization occurs at any Tin this case. 

At a fixed value ofy <yo, the phase diagram in the (x,T) 
plane has the same structure as in Fig. 3. Only the reference 
points change, with x,, +x,, Cy) and x, -+3y). Not until y >yo 
does a fundamental change in structure occur (Fig. 4). In this 
case, a tx <&b)  (Fig. I),  the inelastic interaction between par- 
ticles is suppressed, and all the one-particle states are local- 
ized. We thus find a finite concentration interval 0 < x  < x  
(the Z phase) in which the diffusion coefficient is zero at all 
T. With a further increase in y, the phase diagram remains of 
the same form as in Fig. 4, but there is a continuous contrac- 
tion of the liquid region, F, in which we have D # 0. At y > x, , 
there are no regions with D # O  on the (x,T) plane. 

5. CONCLUDING REMARKS 

We note first that on these phase diagrams the tempera- 
ture dependence of the diffusion coefficient in the regions 
with D # O  may differ greatly, depending on the values of the 
parameters. The behavior D ( T )  can be found in each particu- 
lar case. At low temperatures, for example, in those parts of 
regionFin Figs. 3 and 4 which correspond to the localization 
regime in Fig. 2, D depends exponentially on the tempera- 
ture, with an activation energy which varies with x. Outside 
the hatched regions, the diffusion coefficient is strictly zero. 
Only the incorporation of phonons gives rise to a nonzero D; 
at low T the diffusion coefficient increases with increasing 
ternperat~re.~.~ 

The Z phase is of special interest in this connection. In 
this phase (Figs. 1 and 4) Anderson localization actually per- 
sists at a finite density of diffusing particles, at an arbitrary 
temperature (in the absence of an interaction with phonons). 
As discussed above, the reasons are the distinctive manner in 
which inelastic processes are suppressed and the resulting 
energy diffusion of the particles. In a sense, the problem re- 
mains an effectively one-particle problem, and the tempera- 
ture is responsible only for the distribution of particles 
among states. 

Ofparticular interest in the diagrams in Figs. 1,3, and 4 
is the self-localized phase SL. At first glance, this phase is 
reminiscent of a glass phase, since it is disordered and at the 
same time has a zero macroscopic diffusion coefficient D. 
However, there are some fundamental distinctions between 
these states. The most important distinction is that the SL 
phase is stable, not metastable. Another distinctive feature 
of this phase is the possible coexistence of static and mobile 
systems of particles with a macroscopic diffusion coefficient 
D = 0. Finally, the short-range order in the SL phase is 

formed in a way completely different from that in a glass. 
The entire analysis here has been based on the assump- 

tion that the particles interact in accordance with the power 
law (11, and inequality (2) holds. Narrow bands occur in a 
natural way in the quantum diffusion of light atomic parti- 
cles in a crystal. In such cases it is easy to arrange conditions 
such that 8, B D A  (where €3, is the Debye temperature), 
so that the effect of the interaction with phonons and thus 
the phonon-stimulated diffusion are largely suppressed. It 
was in such a system-in a study of the quantum diffusion of 
He3 atoms in a crystalline He4 lattice-that the phenomenon 
of self-localization was d i s~overed .~-~  Our analysis has ac- 
cordingly focused on such systems. 

In analyzing the mobility of electrons in crystals in the 
case of anomalously narrow bands, however, in particular, 
in the case of a strong polaron effect, we are dealing with a 
situation in which ratio (2) may actually be small (in this 
case, Uo is the Coulomb interaction of the electrons over an 
interatomic distance). If the screening radius is large in com- 
parison with a,, the results given above can also be used to 
analyze the problem of electron localization. In particular, a 
self-localization of electrons might be predicted in an ideal 
crystal with sufficiently narrow bands. 

It is easy to see from the phase diagram in Fig. 3 that if 
the electrons form a Wigner sublattice at a low temperature 
then the system may be directly in theSL phase when it melts 
as T is raised (line ab ). This transition will be fundamentally 
different from an ordinary insulator-metal transition. For 
example, if the melting point of the sublattice is comparati- 
vely low, the conductivity due to the interaction with phon- 
ons will increase with increasing Tin the SL phase, and only 
after going through a maximum will it begin to decrease with 
T (see Refs. 2 and 3, but note that the specific functional 
dependences on the temperature in those papers have to be 
changed, since the condition Age, does not generally 
hold). 

Interestingly, a similar picture is observed in magnetite, 
where a well-known electron phase transition occurs at 
T = 110 K, and extensive experimental data point to a nar- 
row electron band. M ~ t t ' ~ * "  was the first to suggest that the 
phase which appears upon the melting of the electron sublat- 
tice is a "Wigner glass." The ideas in Ref. 2 and in the present 
paper can be used to formulate an alternative interpretation 
of this phase. 

We note in conclusion that in a magnetic material with 
a highly anisotropic interaction between spins one should 
expect the appearance at high temperatures of a phase which 
is an analog of SL and Z phases simultaneously, in which 
there will be no spin diffusion. This phase arises in cases in 
which the scatter in the distances between levels for an indi- 
vidual spin exceeds the amplitude for a flip-flop transition by 
virtue of fluctuations of the self-consistent field [cf. (13)]. An 
important point is that in this case the spin diffusion is absent 
not in the limit T-0 but at a high temperature, at which the 
scatter of levels reaches a cerLain magnitude. 
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