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Analysis of the dynamics of a nonlinear quantum system in a stationary coherent state yields the 
conditions for a transition from regular motion to chaotic motion. 

1. INTRODUCTION 

Under certain conditions, the motion of a classical dy- 
namic system will become s tochast i~ . ' .~  A quantum-me- 
chanical analysis of such systems runs into serious difficul- 
ties, both analytic and numerical, and only the simplest of 
systems have been studied so far. The dynamic behavior of 
quantum systems which are stochastic in the classical limit is 
found to be more stable than a classical stochastic motion, at 
least for systems with one and a half degrees of freedom, (one 
degree of freedom interacting with an external field which 
has a regular time dependence3-6). 

In this paper we show that even in the simplest case of 
one and a half degrees of freedom it is possible to find a class 
of quantum systems for which the motion goes stochastic. 
These quantum systems are related to so-called stationary 
coherent states.'-" Although such systems are not typical 
from the physical standpoint, their analysis may be of inter- 
est in connection with the problem of the transition to chaos 
in quantum systems. 

A coherent state is defined as an eigenstate of an anni- 
hilation operator, 

a,la)=crla>, (1.1) 

where a, = a(t = 0)  (the subscripts specifies the Schrodinger 
picture), and a = a ( t  = 0). In the Heisenberg picture (de- 
noted by the subscript g), the operator a, (t ) depends on the 
time, and the coherent state la)  in (1.1) is "stationary" if it is 
an eigenstate of the operator a, (t ) for all t: 

a , ( t )  l a ) = a ( t )  la) .  (1.2) 

Equation (1.2) imposes some severe restrictions on the possi- 
ble Hamiltonians. It turns out, however, that these condi- 
tions are met by some systems which have the property of 
exhibiting a stochastic behavior in a certain region of param- 
eters. The stochastic behavior here is analogous to that in 
quantum systems. 

2. BASIC EQUATIONS 

Following Refs. 7-1 1, we list some properties of sta- 
tionary coherent states which we will make use of below. In 
the Heisenberg picture we have 

ifici,(t) = [ a , ( t ) ,  H,(t ,  a , ( t ) ,  a,+ ( t ) )  ] =dH,lda,- ( t ) .  (2.1) 

We consider the class of Hamiltonians which have station- 
ary coherent states, i.e., those for which condition (1.2) 
holds. According to Ref. 11, a necessary and sufficient con- 
dition for a coherent state to be stationary is 

[ a , ( t ) ,  ci2(t) I la)=O, (2.2) 

where the stationary coherent state l a )  does not depend on t 
in the Heisenberg picture and is determined by Eqs. (1.1) and 
(1.2). The state a )  can of course be written as an expansion 
in the energy states In): 

rn 

where 

B ( z ,  a*)  =exp (aa,+-a'n,) 

Condition (2.2) can be written 

We write the Hamiltonian in the form 

+aB" ( t )  H i 2 '  ( t ,  a g ( t ) ,  ag+ ( t )  1, (2.5) 
where 

= 

H:.)= C a C t n ( t )  h..(t, n , ( t ) ) .  
11L=o 

(2.6) 

In general, H can be chosen to be non-Hermitian. The neces- 
sary and sufficient condition for the existence of stationary 
coherent states can also be expressed as the requirement that 
there exist a function a ( t  ) which satisfies the equations1' 

if22 ( t )  =Hg(" (a , ( t )  = d ( t ) ,  t ) .  (2.8) 

That conditions (2.7) and (2.8) are necessary conditions fol- 
lows from the equation 

<a/  ihcig(t)  - [ a , ( t )  , H , ( t )  ] 1 a>=O (2.9) 

under conditions (1.2),.(2.4), and (2.6). The proof of sufficien- 
cy uses the state 

IJ., t ) = F ( t ) U + ( t ) l a ( t ) ) ,  (2.10) 

where la(t  )) is the eigenfunction of the Schrodinger operator 
a, in (1.1) with the eigenvalue a ( t  ), 

a , I a ( t )  ) = a ( t )  Ivx(t) ), (2.11) 

and the function a ( t )  satisfies Eqs. (2.7) and (2.8). We write 
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the state la(t )) in the form 11;" ( t )  =E"ha,(t) f ( t )  -fi2pa" ( t )a ,2  ( t ) ,  

In (2. l o ) ,  U ( t  ) is an evolution operator which satisfies the 
equation 

Function (2.10) is an eigenfunction of the operator a, (t ) 
= U +(t  )a, U (t ), with the eigenvalue a ( t  ). From (2.10) and 
(2.1 1) we have 

a p ( t )  I$, t ) = U + ( t ) a , U ( t )  19, t> 
= U + ( t ) a , U ( t ) F ( t )  U+ ( t )  l a ( t ) >  
= F ( t )  U+ ( t ) a , [ a ( t )  ) = a ( t )  19, t ) .  (2.14) 

The proof that conditions (2.7) and (2.8) are sufficient to sa- 
tisfy Eq. (1.2) reduces to the following according to Ref. 1 1 : 
We require that conditions (2.7) and (2.8) hold, and we write 
F ( t  ) in (2.10) as 

In this case the state I$,t ) is stationary, ( a / &  )I$,t ) = 0 ,  so 
that 

I+, t ) =  I$, O)=ja(O)>=la>.  

Using (2.16), we find from (2.14) 

The state I$,O) = la} is thus a stationary coherent state. The 
evolution of the wave function of a stationary coherent state 
is described in the Schrodinger picture by 

wherea(t )satisfies Eqs. (2.7) and (2.8), and the function F (t )is 
of the form in (2.15) or, when (2.8) is used, 

3. DYNAMIC CHAOS IN STATIONARY COHERENT STATES 

We now wish to show how the evolution of a quantum 
system in a stationary coherent state can lead to chaos. As an 
example we consider the Hermitian Hamiltonian 

~ = h w a ' a + h " [ a + ~ a  ( t )  ( a - a ( t ) )  + (a+-a* ( t ) )  a* ( t )  a'] 

(a++a) f ( t )  . (3.1) 

In (3 , l ) ,  f ( t  ) is a given function of time, a(t ) is a function to be 
determined, and m y ,  andA are parameters. We write (3.1) in 
the form in (2.5), (2.6), where 

11;" ( t )  = f ioa , ( t )  +A2pa' (t)n,L ( t )  +ii'"'hf ( t ) ,  

H,'~' ( t )  =?pa ( t )  (a , ( t )  - a ( t )  ) . (3.2) 
Equation (2.7) for h,(t,a(t ))holds identically for Hamiltonian 
(3.11, (3.2), and Eq. (2.8) becomes 

i jc( t )  = o a  ( t )  +phi a  ( t )  12a( t )  -1-kibAf ( t ) .  (3.3) 
To simplify the analysis, we choose f ( t  ) as a sequence of S- 
function pulses which is periodic in time: 

02 

In this case, Eq. (3.3) becomes 
rn 

where 

Equation (3.5) can be written in Hamiltonian form: 

The criterion for stochastic behavior for system (3.5) was 
calculated in Ref. 6 in connection with a study of the classi- 
cal limit (f i  = 0 )  for the dynamics of a nonlinear quantum 
oscillator excited by a periodic sequence of 6-function 
pulses. We introduce 

z,~=z (t,,-O), Z=z (t,,+O), t,,=nT. (3.9) 

From (3.5) we have 
z,=exp { - i ( l + l ~ , - ~ ( ~ ) T ) r  ,,-,, Z,,-,=z,,-,-ie. (3.10) 

From (3.10) we find the recurrence relation 

z,,=exp {- i ( l+lz , - , - - ieJ2)T)  (z,- ,- ie).  (3.1 1 )  

We replace the canonical variables z, ,z,* by the canonically 
conjugate action I, and the canonically conjugate phase 8, 
in accordance with 

'h z,=I, exp  ( - i o n ) .  (3.12) 

In terms of the variables I, ,On, transformations (3.11) be- 
come 

1,,=1,-,+2eI,!~ sin 8,-,+e2, 

'h 
On= arctg( tg  9,-i+~II,-i cos O n - , )  + ( i+I , )  T. (3.13) 

The condition for stochastic behavior for transformations 
(3.13) can be written in the 
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. . , FIG. 1. Stochastic pathjn the O,,I,, phase plane 

. . . . .  . . .  ( e , = o , I , = i , ~ = o . i , T =  10). 

For a relatively small perturbation (&/I 1) the condition Iz, t>=i7(~) I$, O>=F(a) Iz(.t)> 
for stochastic behavior for transformations (3.1 1) and (3.12) r 

takes the following form, according to (3.14): = e ~ p { ~ 1 ( i + 2 1 z ( ~ ' )  I')~Z(T') 12d~r}lz(~)), 
~ f i  0 

Accordingly, if we require that the function a ( t  ) = (o/ 
pfi)1/2z(~) in Hamiltonian (3.  I)  satisfy Eq. (3.5), the coherent 
state la) for a system with Hamiltonian (3.1) will be station- 
ary. The expectation value of the operator a, (7) in this state 
is described as a function of Z(T) by 

The behavior of the function Z(T) depends strongly on the 
"stochastic parameter" K, in (3.15). If K, < 1, the function 
Z(T) varies regularly over time. If K, > 1, the behavior of the 
function Z(T) is stochastic. The evolution of a wave function 
in the Schrodinger representation is described by the follow- 
ing expression for the Hamiltonian given by (2.18), (2.19), 
(3.2): 

FIG. 2. Local instability of the path shown in Fig. 1. 
p (0) = 5 . 10-'(r = n). 

IZ(T))=D(Z(T), z*(T)) 1 0 ) .  (3.17) 

Numerical analysis of transformations (3.11) has been 
carried out in an effort to determine the conditions for a 
transition from regular motion to chaotic motion. Figure 1 
shows a typical stochastic path in the (0, ,In ) phase plane. 
We see from Fig. 1 that the chaos boundary agrees well with - 
the estimate I, Z ( ~ E T ) - ~  = 1/4 which followsfrom thecon- 
dition K, =: 1. There are some differences from the value of 
I,, but they can be attributed to the first term in (3.14) 

= 0.2) and the finite path length. Figure 2 shows the 
time (T) dependence of the logarithm of the distance 
P(T) = ~z(T) - zl(r) / between thez(r) path shown in Fig. 1 and 
the path zf(r),  which is close to the former path at T = 0. We 
see from Fig. 2 that the path Z(T) is locally unstable; this is a 
characteristic property of a stocastic regime of motion. 

4. CONCLUSION 

We have been discussing the special (limiting) case of 
quantum dynamics in which the state of a nonlinear quan- 
tum system which is coherent at t = 0 remains coherent, uni- 
formly over time, even for random motion. In this sense we 
can speak in terms of a maximum possible correspondence 
between the stationary coherent state and the classical limit. 
This example of a stationary coherent state shows that, even 
in the simplest case of one and a half degrees of freedom, 
quantum systems can exhibit stochastic dynamics. The class 
of Hamiltonians which allow stationary coherent states, 
however, is a rather special one. The primary reason for this 
circumstance is the incorporation of certain functions of the 
type a ( t  ) in the original Hamiltonian [see (3. I)]. These func- 
tions are determined from the corresponding dynamic equa- 
tions. The regular behavior of the functions a ( t  ) thus gives 
rise to a corresponding regular time dependence in the origi- 
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nal Hamiltonian. Under certain conditions on the param- 
eters of the original Hamiltonian (K > I) ,  the requirements 
for the existence of stationary coherent states lead to sto- 
chastic behavior of the functional a( t ) ,  in terms of which 
various observable quantities are calculated. This means 
that a random process will appear in the original Hamilton- 
ian. We can also expect stationary coherent states to prove 
unstable with respect to an additional perturbation of the 
Hamiltonians [of the type in (3. I)] which allow these states. 

It nevertheless seems useful to study this class of Hamil- 
tonians in connection with the problem of stochastic behav- 
ior in quantum dynamic systems and to extend this study to 
the extent possible to systems of physical interest. We also 
note that there would be no difficulty in extending these re- 
sults to systems with more degrees of freedom. 
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