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The polarizability of small metal particles under various conditions is analyzed. When the dis- 
crete spacing of the levels in the small metal particles is not evident because of thermal smearing of 
the levels, the electric and magnetic polarizabilities can be expressed in terms of the low-frequen- 
cy conductivity of the particle. The temperature dependence of the conductivity at low tempera- 
tures is determined by a quantum correction to the classical value. Two mechanisms determining 
the quantum correction are considered: Nyquist noise (which introduces a temperature depen- 
dence) and an external magnetic field. When the thermal smearing of the levels is less than the 
spacing of the levels, and the electric field is weak, the polarizability can be expressed in terms of 
the Green's functions of the system. When these functions are written as integrals over the Q 
matrix, the quantum corrections to the polarizability can be calculated. 

1. INTRODUCTION 

The properties of small metal particles are presently the 
subject of active experimental and theoretical research.' The 
magnetic and electric polarizabilities and the absorption of 
electromagnetic waves by these particles are being measured 
experimentally. Several  investigator^^-^ are studying the ab- 
sorption of electromagnetic waves and the polarizability of 
small metal particles theoretically. 

If the average spacing A between levels is much smaller 
than kT, the electric and magnetic polarizabilities a, and 
a, and the energy absorption cross section a, can be ex- 
pressed in terms of the frequency w and the static conductiv- 
ity a of the material of the particle (if the frequency is not too 
high).6 

The dependence o f a  on external fields and the tempera- 
ture in disordered conductors at low temperatures has re- 
cently been studied in detail7 for samples with various effec- 
tive dimensionalities, d,, = 1,2,3. It has been found that the 
magnitude of the quantum corrections and their dependence 
on the temperature and external fields depend strongly on 
the dimensionality of the sample. 

We are interested in the behavior of the conductivity of 
small metal particles which are, in a sense,"zero-dimension- 
al" samples. In the first part of this study we derive the quan- 
tum correction to the classical (Drude) conductivity for the 
interference of the electron wave function in elastic scatter- 
ing by impurities. We assume a uniform distribution of im- 
purities in the sample, and we assume that the mean free path 
is much smaller than the size of the particle. 

The magnitude of this correction is determined7 by the 
time T ,  for phase relaxation of the electron wave function. 
This relaxation results from various inelastic processes: elec- 
tron-electron scattering with a large energy transfer, elec- 
tron-electron scattering with a small energy transfer (which 
may be regarded as the interaction of an electron with ther- 
mal electromagnetic fluctuations), and electrons-phonon 
scattering. In addition phase relaxation is caused by a mag- 
netic field. 

We consider here the phase relaxation caused by only 

two mechanisms: the interaction of the electron with ther- 
mal fluctuations (Nyquist noise) and its interaction with an 
external magnetic field. 

In Section 4 we directly calculate the correction to the 
polarizability of small metal particles with the help of the 
Kubo formula. To calculate the products of Green's func- 
tions which arise here we use the formalism in which these 
products are written as an integral in Grassmann variables, 
followed by a transformation to an integral over the Q ma- 
trix.' 

Small metal particles undergo a self-cleaning,' so we are 
interested in the behavior of the correction to the polariza- 
bility in a hollow sphere with diffusely reflecting boundaries. 
It is found that the polarizability of small metal particles at 
the frequency w is given by 

a(o) =a(") (o) [ I + !  (o, t,)]. (1) 
Here a'O'(w) and rP are different for particles with and with- 
out impurities, while f is a universal function. 

2. QUALITATIVE ANALYSIS 

The correction to the conductivity for coherent effects 
can be calculated by examining the quantum-mechanical 
probability for the return of an e l e ~ t r o n . ~  If the scale length 
for inelastic scattering is long (in comparison with the mean 
free path I which arises from elastic scattering by impurities), 
the electron wave function will remain coherent for a long 
time. If the electron wavelength satisfies R<1, the semiclassi- 
cal approximation is valid, and the path integral in terms of 
which the propagation amplitude is expressed9 can be used 
to identify the contribution from paths which run within 
tubes with a cross-section area on the order of R along the 
classical paths of the diffusing particle. Under these condi- 
tions, the relative correction (Aa/u) to the conductivity is 
proportional to the probability for a diffusing particle to re- 
turn to a volume of order v,Rd - ' dt (where v, is the electron 
velocity on the Fermi surface, and d is the dimensionality of 
the space). Integrating over all the return times t from T, 

where T is the scale time for elastic scattering, to T,, , we find 

564 Sov. Phys. JETP 61 (3), March 1985 0038-5646/85/030564-05$04.00 @ 1985 American Institute of Physics 564 



the estimate7 
ZD 

A o _ - j d t v A d - '  
(3 ( B t )  ' 

where 29 is the diffusion coefficient. In the case d $3 this 
expression is correct if the transverse dimension of the sam- 
ple satisfies a 52. If ( 2 9 ~ , ) ' ~ ~ > a ) i l ,  the classical path uni- 
formly fills the cross-sectional area of the sample over a time 
t)t, -a2/9J. The average distance traversed by the particle 
in the dimension in which it can diffuse freely is, as before, 
( 9 t  )'I2. It can thus be assumed that the effective dimension- 
ality of this sample decreases, and in the case de, = 2 the 
probability which we are seeking is equal to the probability 
for return to the plane, multiplied by the probability for 
reaching a given point in the cross section, il /a. In the same 
manner, for an arbitrary effective dimensionality we find 

bo 3-de f f  dtuaLd e f f  -' 
( B t ) d e f f ' z  ' 

In the case of a small particle of volume V we find 

We see from this result that the correction depends on the 
time 7,. 

Let us find the characteristic time for phase relaxation 
due to thermal electromagnetic fluctuations. As an electron 
moves through an electric field, it acquires (or gives up) ener- 
gy, so that the phase of the wave function changes. The phase 
difference acquired in motion in opposite directions along 
the path which begins at the time - t at the point r and 
which ends up at the same point at the time r is7 

where v(t ) is the velocity on the path, and e is the energy of 
the particle. The square of the phase shift averaged over all 
such paths can be estimated with the help of this formula: 

( (IT ( t )  )')- (eE,) 2mZt'a2/h2 (6) 
[in the case in which the field E(t ) = E cos wt is uniform, and 
the condition wt<l hold]. If we instead have a t )  1, we find 

( ( A T  ( t ) ) 2 > -  ( e E , ) Z B t / h 2 m 2 .  (7) 

It can be seen from (6) and (7) that the phase shift occurs 
most effectively over a time t at frequencies w - l/t. Accord- 
ingly, the phase shift over the time t from the entire spectrum 
of the electromagnetic fluctuations can be written as an inte- 
gral over the frequency from 0 to l/t: 

1 1 1  

e" 
( (AT ( t )  ) ' )  - j dw -i;; (EE>.~' l 'o2.  (8) 

0 

The spectrum of fields which are uniform over the size of the 
particle is independent of the frequency: 

(EE>,-T/oV. (9) 

The phase relaxation time T~ is determined by the condition 

( ( A ~ p ( 7 , ) ~ ) - 1 .  (10) 

Using this condition along with (9) and (8), we can estimate 
the phase relaxation time corresponding to the interaction 
with Nyquist noise, T,: 

~,-~-e~Ta' / (3Vh' .  (11) 

In a static magnetic field, there is a phase relaxation 
time rH . In the case of a small particle, the phase relaxation 
time in a magnetic field can be found from estimates derived 
for the phase relaxation in a thin film in a longitudinal mag- 
netic field7: 

Since the phase relaxation times appear in the expression for 
the correlation functions of the propagation amplitudes in 
the form (AIA,*), a exp( - t /T, ), the overall phase relaxa- 
tion time is expressed in terms of all the time in the following 
way: 

T,-~=T, , - '+T, \~-~+T~- ' .  

Here re, is the time for pulse relaxation due to electromag- 
netic interactions with a large energy transfer. The inverse 
time re, - - l/vV (vis the state density at the Fermi level) is 
also independent of the temperature.' 

As a result we can write 

3. DERIVATION OF EXPRESSIONS FOR THE CORRECTION 
TO THE CONDUCTIVITY 

The theory derived in Refs. 10 and 7 can be used to 
calculate the corrections to the conductivity without consi- 
deration of the electron interaction in the region of param- 
eters specified above (T )A, (gr, )"*%a). 

The presence of a fluctuating or static electromagnetic 
field is manifested only in that part of the conductivity which 
is expressed in terms of a "cooperon," i .e.,  a two-particle 
Green's function in the particle-particle channel (the Cooper 
channel). As was shown in Ref. 10, the correction to the 
conductivity in the Cooper channel is 

where the cooperon C satisfies the equation 

=6 (r-r') 6 (7-7'). (15) 
Here r: is a nucleation time for the phase relaxation. This 
equation is to be solved along with a boundary condition at 
the surface of the particle, (dC/dn), = 0, where n is the nor- 
mal to the surface. It can be shown that the boundary condi- 
tion holds automatically in an integration over paths which 
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do not go outside the particle. 
The solution of Eq. (15) can be written as a path inte- 

gral.' After an average is taken over the fluctuations of the 
electromagnetic field, this solution becomes 

where 

(r, v )  =A(r ,  t+q/2) +A(r ,  t -q /2 ) .  

Considering only fluctuations which are homogeneous over 
the dimensions of the particle, we may assume 

and we can write the expression as 
r ( n ) = r  II 

1 
Cqf,,, (r, r') = Dr (ti)  ex*{ -! dti [G + - 

r ( ~ ~ ~ ) = r '  7: 

After some further manipulations, we find the expression 

i 
C,, -* (r, r') = 1 Dr (i,) e r p  { - J dti [% + - 

r ( - , , ) = r '  - -1 4 g  ?,O 

Since the correction to the conductivity is expressed in terms 
of the cooperon at coincident points, the term e2T(r' - r)'/ 
2aV is zero. The remaining integral can be rewritten in the 
following form, by virtue of the small quantity e2Ta2/2uV: 

After a long time 7 (long in comparison with the time for 
diffusion through a sphere, a 2 / 9 ,  the paths which are im- 
portant in the integral are those with a length considerably 
greater than the dimensions of the sphere. Accordingly, over 
a time 7 the path fills the sample uniformly, and we find 

where 

We then find 

j C-, ,  (r, r) dq = -- 
The correction to the conductivity then becomes 

In the case of an external magnetic field, the correction 
can be found in a similar way. The time for phase relaxation 
due to the magnetic field is 

(23) 
The combined expression for Aa then becomes 

4. DERIVATION OF AN EXPRESSION FOR THE 
POLARlZABlLlTY 

If the thermal smearing of the levels is less than A, and 
the strength and frequency of the external field satisfy the 
conditions 

E<A/ea, w<uF/a, 

the interaction of the small metal particle with the field can 
be treated by perturbation theory for a quantum-mechanical 
system2 with an interaction operator 

D = - ~ d ,  (25) 
where 2 is the dipole momentum operator. Using the Kubo 
formula, we can write an expression for the susceptibility in 
the form2 

We rewrite this expression by means of retarded and ad- 
vanced Green's functions: 

e2 1 
%(a)= --- j d r  dry dr [ n  (E)  -n (E-  W )  ] ~ f + ~  (r, r f )  

3 2ni 
X[GcR (r', r )  -Get' (r', r) Irr'. (27) 

Here 

where U (r) is the random field of impurities. Here ( U ) = 0, 
and 

< U (r) U (r') ) = (2nvt )  -'6 (r-r') 

An average must be taken over the random field U (r); then 
the following characteristic term appears in the expression 
for the susceptibility: 

[(G:+- (r, r')GeR(r', r) ) - ( ~ & ( r ,  r') GeA (rr, r ) )  lrrr drdrf .  

Expectation values of this type can8 be rewritten in 
terms of an integral in Grassmann variables and then trans- 

566 Sov. Phys. JETP 61 (3), March 1985 G. B. Lesovik 566 



formed 
(G:+m 
(G  :+ m 

to an integral over the Q matrix. The product 
GSA) is important here, while the product 
GeR ) can be omitted. 

The expression in which we are interested is 

J (G:+" (r, rT) GsA (rf, r) )rr1drdr1 

= J 1 DQdrdrle-' Sp[ (I-A) (I-r,)Q(r) 

~ ( l + A ) ( l + r ~ ) Q ( r ' ) ] r r ~ ( l ~ ~ ~ ~ ~ e - ' ) - ~ ~  A-=O , 

B 
F=F,+F~ { B Sp(VQ)'+Zio s~(AQ)+ - ~ p [ r r ,  Q]') dr. 

4 7 ,  

(28) 
Here 9 = vF2r/3; A is a 2N x 2N diagonal matrix with the 
elements A, = l(n(N) and A, = - l(n > N) ;  and Q is a 
2N x 2N matrix with the elements 

The last term in the expression for the free energy Fcorrects 
for electron phase relaxation processes; T, is the phase relax- 
ation time which appears in the equation for the cooperon. 

The susceptibility uncorrected for the cooperon was 
calculated in Ref. 2; it can also be derived in the Gaussian 
approximation in our formalism. In this case the matrix Q is 
written in the form 

where B is an arbitrary real-quaternion matrix, and the ex- 
pansion of the free energy is carried out up to second order in 
B. The elements A,, are assumed to be uniform over the 
sample, while the D,, (r) are expanded in the eigenfunctions 
of the Laplacian p,(r) with the boundary condition 
nVp, = 0, where n is the normal to the surface (the "con- 
finement" condition). 

To calculate the correction containing the cooperon, we 
must expand Q up to fourth order in B and also expand the 
exponential function in (28). The leading contribution comes 
from the following term, which appears in the expression for 
the free energy: 

This result means that the correction in first order in the 
cooperon arises from a matrix element, not from the level 
correlation function. [We recall that ~ ( w )  can be written in 
the form2 

(29) 
where ,yo is the static susceptibility, and R (a) is the Dyson 
correlation function of levels, which was reproduced in Ref. 
11 by a formalism like that used in Ref. 8; Q was treated as a 
matrix which was uniform over the sample.] Integrating the 

coefficient of the exponential function in (28) with a Gaus- 
sian weight in B, we find the following expression for the 
correction to the susceptibility: 

The particle polarizability is expressed in terms of x as fol- 
lows12: a = ~ / ( 1  + ~ T X ) .  If there are no impurities in the 
sample, we could carry out an analogous derivation for 
(G :+, G, A ), assuming the surface to be rough, and taking 
an average over the roughness. The expression for the cor- 
rection should remain of the same form as in (30). For this 
case, xO(w) was calculated in Ref. 2; it was found to be 

The phase relaxation time in an empty sphere in a magnetic 
field is T, -' = e2v,H 2R (this value can be derived ifwe 
know the temperature of the superconductivity transition in 
small particles, which was calculated in Ref. 13). The time 
for the phase relaxation due to electromagnetic fluctuations, 
on the other hand, remains the same as before. This assertion 
can be proved in the following way. We write an expression 
for the cooperon, using Feynman integrals for the propaga- 
tion functions: 

. . 

- - j Dx, (t,) exp { i  j dt, [T x12-erp (xi. I , )  

where x2( - t ) = x,(t ), and 

We now transform to the new coordinates x,,, = x + y/2. 
In this case, the paths with small y(t ) are important in the 
integral over the paths x(t ), y (t ). In the Lagrangian, we carry 
out an expansion in the small y: 
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. . e 
L=mxg-e[q(x, t ) - q ( x ,  - t )  I - _  [Vcp(x, t)+Tcp(x, - t ) ] y  

L 

+ 2 [.4 ( x ,  t )  +A ( x ,  - t )  ]x+ :[A ( x ,  t )  -A ( x ,  -1 )  ] j  
C 2c 

dAP (x ,  t )  dAa ( x ,  - t)  + - 
dx, 8x6 

(33) 
Integrating by parts, we find 

.. e 
exp ( i  L d i ) =  exp { i  [( - m x - x  [ V Q ( X ,  t ) + ~ c p ( x ,  - I )  1 

-11 n 
e .  e .  -- [ A ( X , ~ ) + A ( ~ , - ~ ) I - -  [ ~ . ~ ( t ) - ~ ( - t ) l j  y d t )  

2c 2c 
9 

Xexp { i  14 [A ( t )  +A (- t )  ] x ( t )  dt ) (34) 
- I1 

After an integration of y we find 
X ( l , l = r  

- = J D X  ( t )  6 ( m i - e ~ -  5 11. H ( t )  -ti ( - t )  ] ) 
x f -n ,k=r  

2c 

This expression must be averaged over A ( t ) ,  and then we 
must take an integral over the classical paths, which obey the 
equation specified by the 6-function. At large values of v, the 
only important consideration for the calculation of T, ' is 
that after a long time the paths fill the sample uniformly, for 
both a sphere containing impurities and an empty sphere, 
and the values of ~i ' are the same in the two cases. 

5. EXPERIMENTAL OBSERVATION 

The contribution from Nyquist noise can apparently be 
determined most simply in the quantum correction to the 
polarizability which we have calculated. If 
rH - ' ) re ,  -' + T~ -', i.e., if the magnetic field is strong, we 
can write 

Aa--  ( T ~ c - ' + T Y - ~ )  ITH-'. (36) 

The term 7, ' /T ;  is proportional to T / H  and can easily be 
distinguished from the other temperature-dependent correc- 
tions to the conductivity because of the dependence on the 
magnetic field. 

It should be noted that in an experimental observation 
of the absorption of electromagnetic waves by a small metal 
particle one should observe an effect as the temperature is 
lowered, since the electron temperature exceeds the phonon 

temperature. l4 In a metal at a low temperature, the electron- 
electron collision times are far shorter than that for electron- 
phonon scattering, so that a quasiequilibrium distribution is 
established in the electron system with an electron tempera- 
ture which is generally different from the phonon tempera- 
ture. When the phonon temperature T,, is zero, the electron 
temperature T, will be finite at a finite absorption power, 
and the absorption cross section should correspond to this 
finite temperature. This limiting temperature can be esti- 
mated by using the expression for the characteristic time (7,) 
of the electron energy relaxation due to phonon emission 
during diffusion in a field of impurities.'' At the lowest tem- 
peratures, this expression is 

Here a is the dimensionless constant of the electron-phonon 
interaction, ,u is the chemical potential, O is the Debye tem- 
perature, and u is the sound velocity. Equating the absorbed 
energy to the energy transferred to phonons by electrons,we 
find the following expression for the limiting electron tem- 
perature: 

T,= [O"RZo2a,Vj E j 2 / 1 0 n 3 ~ ~ c 2 , u 2 N ]  "6. (38) 
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