
Self-consistent effective medium approximation for hopping transport on a lattice 
with random traps 

A. A. Ovchinnikov and K. A. Pronin 

Institute ofChemica1 Physics, Academy of Sciences of the USSR 
(Submitted 3 July 1984) 
Zh. Eksp. Teor. Fiz. 88,921-936 (March 1985) 

A self-consistent cluster effective medium approximation is developed for hopping transport on a 
lattice with random traps which allows for transitions between nearest neighbors. The particle 
kinetics and the partial populations of centers with a specified escape probability are investigated. 
An estimate of the error of the method indicates that the results are exact in almost all limiting 
cases. 

I. INTRODUCTION 

There is much interest today in incoherent migration of 
quasiparticles in disordered systems, which occurs in the 
most diverse physical systems. Examples include exciton mi- 
gration in molecular crystals, amorphous solids, and biolo- 
gical systems (e.g., in the photosynthetic apparatus of 
plants); sensitized luminescence and photochemistry; elec- 
tron conduction in nonintrinsic semiconductors; spin diffu- 
sion, etc. 

The master equation' provides a basis for the rigorous 
description of incoherent (Markov) hopping processes; 
moreover, the analogy with the close coupling problem in 
the quantum theory of disordered systems permits the appli- 
cation of the well-developed Green function f~rmalism.~-*.~ 

The case of symmetric transition probabilities, which 
corresponds to structural disorder, is the best understood. 
For example, transfer of electron excitations between impu- 
rity molecules in a solution was considered in Ref. 2, where 
hops were considered between arbitrarily distant centers. 
The self-consistent medium approximation was also devel- 
oped in Refs. 3-5 (cf. also Ref. 6) to handle the random bond- 
ing problem between nearest neighbors in a lattice. The ex- 
tension of this approximation to clusters was considered in 
Ref. 7. 

Much less work has been done for the general case of a 
finite (nonzero) spread in the energy levels, for which the 
hopping probabilities are asymmetric (w,, +wk,) in the in- 
dices of the centers between which the hopping occurs. For 
instance, self-consistent two- and three-center effective me- 
dium approximations were developed in Ref. 8, where 
Mott's equation a a exp[ - (T , /T) ' '~ ]  was derived for the 
electric conductivity in the low-temperature limit. However, 
detailed analytic investigations of the general problem are 
very difficult. 

Random walks in systems containing traps are an im- 
portant special case in which the transition probabilities are 
asymmetric. In his pioneering work,'' Smoluchowski ana- 
lyzed the case of continuous diffusion accompanied by irre- 
versible trapping by particle sinks of low concentration. 
Two- and three-center effective medium approximations 
with allowance for jumps between all centers were developed 
in Ref. 9 for incoherent transport of electronic excitations in 
solutions containing traps (sinks) of finite concentration. 
The precise decrease n a exp[ - const-t d' 'd+ 2'] in the con- 

centration of free particles for large times was derived in 
Refs. 11 and 12 (cf. also Ref. 13) for continuous diffusion 
with particle sinks in a space of dimension d. Steady-state 
irreversible chemical reactions with external sources were 
considered in Ref. 14. The kinetics of reversible reactions 
was considered in the many-body formulation in Ref. 15 
(trapping corresponds to the case when one of the reagents is 
"frozen"). It was shown there that therelaxation to the equi- 
librium populations for large times is slow, a (Dt )d'2. 

Our purpose in this paper is to study random walks in 
lattices with random traps analytically in as much detail as 
possible. We introduce the model in Sec. 2 and give the basic 
definitions and a quick derivation of the fundamental pertur- 
bation-series formula (15) for scattering by the clusters. In 
Sec. 3 we develop the self-consistent effective medium ap- 
proximation for calculating the particle kinetics in the ran- 
dom trap model. Section 4 deals with the calculations of the 
partial Green functions. In Sec. 5, we study the generalized 
diffusion coefficient and the total population of traps having 
a specified escape probability. Finally, in Sec. 6 we estimate 
the error in the self-consistent effective medium approxima- 
tion. 

2. FORMULATION AND FUNDAMENTAL EQUATIONS 

We consider a particle which hops along a d-dimen- 
sional lattice containing traps of concentration c. The micro- 
scopic spatial distribution of the traps is completely uncorre- 
lated and random, but the macroscopic distribution is 
uniform. 

We will assume that the particle can only jump between 
adjacent centers and that the hopping probability w, (per 
unit time) is the same for hops into a trap and for hops 
between nontrapping centers. In addition we assume that for 
a fixed trap, the probabilities w, for a particle to leave the 
trap and enter any of its z nearest neighbors are all the same; 
the w, for the different traps take random values (i.e., the 
depth of the traps is a random variable) whose distribution 
functionp,(w,) is normalized to unity. The total distribution 
density for the hopping probabilities is thus given by 

By the nature of the problem, w, is < w,, i.e., a particle 
is less likely to escape from a trap than to make some other 
kind of hop; however, this fact will play little role in the 
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solution of the problem. Neither the trap concentrations nor 
the spread in the transition probabilities will be assumed to 
be small. 

The rate equations 

for the populations of the centers describe the incoherent 
migration of a particle over the lattice. The sum over k (j) in 
(2) includes the nearest neighbors j-th center. We emphasize 
that the order of the subscripts in (2) differs from the order 
used in Refs. 3-5-in our case, P,, (t ) is the probability of 
finding a particle in centerj at time t if the particle was ini- 
tially located in center i, and wjk is the hopping probability 
from center k to center j. This order is more convenient in 
our case, for which the transition probabilities are not sym- 
metric, wjk # wkj. We observe that in this model, the hopping 
probability in fact depends only on the second subscript: 
wjk=wk, i.e., on the energy of the trapping center from 
which the particle escapes. 

The Green's function for this problem is determined by 
Eq. (2) for an infinite lattice with the initial conditions 

P,, (t=O) =6,,. (3) 

The initial populations P l ( t  = 0) of the centers are arbitrary, 
and the P,(t ) satisfy the familiar equation 

We clearly have 

P,' ( t )  =P,o ( t )  

in the special case when the particle is initially located at the 
center i = 0. 

This problem is mathematically equivalent to calculat- 
ing the currents in an electric circuit whose nodes (centers) 
form a regular lattice. The adjacent centers are all connected 
by identical resistors R (R = 1, say); in addition, all the 
centers are connected by random capacitors C to a common 
zero potential (Fig. 1). 

There is a probability c that the capacitors C will take 
random values C, characterized by the distribution function 
pl(C,); the rest of the time (with probability 1 - c), C takes 
the fixed value C,. The Kirchhoff equations for the charge 
Q,, at the j-th node lead to an equation of the form (2) with 

FIG. 1. Network of electrical resistors and capacitors described by Eq. (2). 

We note that Kirkpatrick16 used a similar analogy with 
an electric circuit to develop a self-consistent effective medi- 
um approximation for the random binding problem in the 
percolation limit. His method was generalized in Refs. 3-5 
to calculate the frequency-dependent diffusion coefficient 
and electric conductivity. Unlike our model however, in the 
percolation limit for the bonding model all the capacitors C 
are identical and the resistors R are random; moreover, 
R = oo with a finite probability. 

For definiteness we will refer to the problem as a ran- 
dom walk of a particle in a system with random traps. 

In what follows we will briefly derive the fundamental 
formulas (15), (16) by drawing heavily on the analogy with 
the multiple scattering formalism in the quantum theory of 
disordered systems." We note that although the homomor- 
phic coherent potential approximation1* is the formal quan- 
tum analogy of the effective medium approximation for the 
random bonding there is no complete analog for 
systems with asymmetric transition probabilities. 

We thus introduce the transition probability matrix 
Wjk= ( 1 - 6 j k )  wk-,Gjk~wj (5) 

in terms of which we can rewrite the rate equations (2) as 
dP/dt= WP, (6) 

where P = IIP,,ll is the matrix for the populations of the 
centers. If we take the Laplace transform 

of (6) and use the initial conditions (3), we get 

[E-W]H=I,  (7) 
where I,, = Sji is the unit matrix. We will henceforth denote 
the Laplace transform of any functionfbyF=?(~). Equation 
(7) has the formal solution 

P= [F-W]- ' .  (8) 
In order to derive the self-consistent cluster effective 

medium approximation, we will consider the effective or- 
dered transition probability we'(&), which in general depends 
on E.') The corresponding transition probability matrix is 
given by 

eff W,, = (1-6,,)E eff-6jk~iZeff. (9)  

The identity 

expresses the true transition probability matrix Win terms 
of weff, where 

is the complete perturbation matrix and is given by the sum 
of the perturbation matrices A if'm corresponding to the in- 
dividual perturbing clusters: 

m 

The specific form of the perturbing clusters and the corre- 
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sponding matrices A  Prn for the random trap model will be 
described below. 

The Dyson equation 

H=Peff tPeff  ATPI, (12) 

where 

peff=[E-Teff]- l  

is the Green's function for the effective system, follows read- 
ily from (8) and (10). Inversion of (12) leads to the perturba- 
tion expansion 

in the "scattering amplitudes" for scattering of the particle 
by the perturbing clusters. 

If we combine terms in (14) describing successive scat- 
terings by the same cluster, we get the expansion 

where the matrix i is given by the series 

fm=~Wm+AfTmPeff S F m  

+AW,Peff dVmPeff LIT,+. . . . (16) 

The sums in (15) are over distinct indices n,  m, ..., because all 
of the subsequent scatterings by a single cluster are already 
contained in the sum in (16), so that the indices n, m,. .. of 
adjacent matrices i appearing in ( 16) cannot coincide. 

3. SELF-CONSISTENT EFFECTIVE MEDIUM 
APPROXIMATION FOR THE RANDOM TRAP MODEL 

Figure 2 shows a perturbing cluster for a three-dimen- 
sional cubic lattice in the random trap model. The only rel- 
evant properties of the effective medium are the true proba- 
bilities for a transition from the center m to a nearest 
neighbor. The perturbing cluster involves both correlated 
transition probabilities and the probabilities for transitions 

FIG. 2. A perturbing cluster in the random trap model for a simple three- 
dimensional cubic lattice. 

between different, uncorrelated clusters. The cluster may or 
may not be a trap; in this respect, all the centers in the lattice 
are equivalent. The original system is reproduced by gluing 
the clusters together into a mosaic. 

The perturbation matrix A  has exactly z + 1 non- 
zero elements, all in the m-th column: 

AVm=lE,nMm(z) ,  (17) 

where 

The transition probabilities of the form w,,, n = m f 1, ..., 
m + z/2, belong to adjacent clusters and are not included in 
the perturbation (17). 

A straightforward calculation using the symmetry 
properties of the ordered Green's function for the effective 
medium shows that the only nonzero elements in the pro- 
duct P e f f ~  Em lie in the mth column: 

I T z ;  k = m ;  n = m t l ;  . . . ; m+-z/2 
(Peff AW,),k=AGm 2 , ;  k=n=m, (19) 

0; k+m 

where 
eff Tz= -yp;:,, ,-z~~+~,~. 

L(m) 

The general term in series (16) is thus given by 

AWm[Peff ~ W , ] ~ = h i ~ ' k , + ~  y l k M , ( z )  (20) 

and the entire ?-matrix takes the form 
# 

t ,=Fm(z)Mm(z), 

eff eff 
(21) 

&',(z) = A ~ , [ I +  ~ A ~ , ( P , , , - P ~ , . + ~ )  I-'. 

It is important to note that it would be incorrect to 
evaluate i, by using the relation 

f , = a w , [ i - ~ e ~ a t r . ~ ] - ~  (22) 

which follows by formally summing the series in (16); in this 
case, one gets an erroneous expression in which all the ele- 
ments of the (z + l)x(z + 1) matrix i, are nonzero. 

We will need some formulas which relate the popula- 
tions of adjacent centers in the effective medium. By the de- 
finition of the Green's function for an ordered system, we 
have the formulas 

where the primed subscriptj' = j'( j) labels the nearest neigh- 
bors of the center j. 

The formula 
n d 

= 1 d k ,  [ ~ + ~ ~ e f f - a %  cos k t] - '  , (25) 
- x  t = l  i = l  

gives the diagonal elements of the Green's function on a d- 
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dimensional cubic lattice; for d = 1, the integral can be ex- 
pressed in terms of elementary functions: 

p;" =[& (&+4ii; ef f )  I-'". (26) 
Using (24), we can rewrite the quantity F,,, in expression 

(21) for the i-matrix as 
P , ( ~ ) = G ~ ~ ~ A G ~ [ W , , - E P ~ ~  AGm]-'.  (27) 
We now return to the series (1 5); using (21), we can write 

its general term in the form 
(PefffflP"efffmPeff . . . f k P e f f ) , %  

X(P" effilf, ( z )  P" effMm (2)  P" eff . . . Mk (z) F e f f )  ,,, (28) 
where the constraints on the sums in (15) imply that the in- 
dices of the adjacent M's are distinct: n fm, etc. However, 
nonadjacent indices may be equal; for instance, (15) contains 
a term of the form (28) with n = k. 

Thus, if we use the condition 
( F  (2) >=0 (29) 

for the self-consistency of the effective medium approxima- 
tion, all terms of the form (28) with at least one index differ- 
ent from all the others will vanish in the averaged series (1 5). 
Indeed, let a cluster with index n appear only once in the 
product (n, F, (2)) in (28). Then since the different clusters 
are completely uncorrelated, the average value factors as 

and vanishes by (29). Thus in the self-consistent effective 
medium approximation, all paths are summed in the Green's 
function except for exotic paths that "intersect everywhere," 
i.e., which pass at least twice through each center. We note 
that this result is also true for the random bonding problem. 

We will discuss the error in the effective medium ap- 
proximation in detail in Sec. 6; here we will content ourselves 
with a few observations. First, it is clear from the above dis- 
cussion that the approximation is exact to first order in the 
concentration c as c+O or in 1 - c as c+l, while for inter- 
mediate c it gives a reasonably good interpolatation. Fur- 
thermore, since the approximation fully treats all trajector- 
ies containing up to three scattering centers, at least the three 
leading terms in the expansion of the generalized diffusion 
coefficient are exact for small times. For large times, it is 
clear that the neglected paths which intersect everywhere 
may contribute significantly; this will be the case, e.g., for 
percolation problems when the particle has a finite probabil- 
ity of being localized in an isolated conducting cluster. This 
extreme case occurs in the random bonding problem. How- 
ever, since all jump probabilities to adjacent traps are identi- 
cal in the random trap model, regions of preferential local- 
ization cannot form in this case. Nevertheless, the error in 
the effective medium approximation should also be appre- 
ciable in the extreme case of irreversible trapping. 

4. CALCULATION OF THE PARTIAL GREEN'S FUNCTION 

In addition to the kinetic properties, partial quantities 
such as the total population of traps with energies in a speci- 

fied range are also of interest. We will therefore calculate the 
elements P,,(w,) of the partial Green's function which de- 
pend on the unaveraged escape probabilities from a finite 
center j. 

In order to do this we return to the original disordered 
system. All the hopping probabilities except those involving 
escape from centerj will be replaced by an effective probabil- 
ity 5'". Let (p,,) be an arbitrary element of the averaged 
Green's function connecting any two centers k, I with k #j, 
I #j; then (P,, ) is given by series (15), in which the averaging 
is over all the random transition probabilities wi with i#j. If 
we require as before that Eeff be determined by the self-con- 
sistency condition (20), the only nonzero corrections will 
come from trajectories which pass through each center wi 
( i f j )  at least twice: 

( p k l  ) = P ~ : ~  f ( p  eff fJpeff ) kI+O (f3) . (30) 
In other words, the only contributions neglected in (30) are 
those from the paths that self-intersect everywhere except at 
the single center j. 

The definition of the Green's function for our model 
system now implies that the two elements P,:,(w,) and q,,, are 
related by 

(We recall that p,,i is the matrix element for a nearest neigh- 
borj' of centerj and is given by the effective medium approx- 
imation, so that Eq. (30) holds for p,,i.) Equation (23), follows 
from (31) if we take tuj = Eeff. 

If we substitute (30) into (3 I), use the explicit form (2 1) 
for the i-matrix, and recall Eq. (23), we get the expression 

eff 
Pji (wj) =P;' iiieff [ W , - ~ P ~ ;  ( w j - ~ e f f  ) I-,.  (32) 

for the partial population of the j-th center. The density of 
the total population of the centers with a specified escape 
probability w is given by 

P ( w )  = Z<P,, (w,) 6 (w,-w) )P.. (L=O) 

Substituting (32) and using the normalization condition 

we get the final expression 

for P (w). 

5. ANALYSIS OF THE KINETIC PROPERTIES AND PARTIAL 
POPULATIONS 

We now turn to a specific calculation; for convenience, 
we use Eq. (27) and again rewrite the self-consistency condi- 
tion (29), this time in the form 
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The equations 

lZ  - 
D ( t )  = - ( E )  1 ,  

t  

relate the generalized time-dependent diffusion coefficient 
and the frequency-dependent electric conductivity to the ef- 
fective transition probability given by (34). Here n is the car- 
rier concentration and I is the distance between the centers 
(we take henceforth take I = 1). 

We first examine the case of small times t, which corre- 
sponds to E+W . If we substitute the expansion for P 7; into 
(34), solve the resulting algebraic equation, and take the in- 
verse Laplace transform, we get the expansion 

D(t-O)=(w)-z[(~~)-(w)~]tf.. . (37) 

for the generalized diffusion coefficient D ( t  ) as t-0 for a z- 
connected lattice of arbitrary dimension d. The interpreta- 
tion of (37) is clear-at the initial time t = 0, the rate of parti- 
cle migration is determined only by the probability of the 
first hop; in disordered systems, D ( t )  then decreases with 
time. 

We next consider large times t+ w for the case of rever- 
sible trapping (nonzero transition probabilities). Expanding 
the diagonal element of the Green function of the effective 
medium for E - -0, we find from (34) and (35) that 

w (nt)  '" 

ford = 1, 
1 -' 

D(t--)=(--)  w +G,L[ t y+ln ((+)-' t ) ]  

for d = 2, and 

ford = 3, where yz0.5772 is Euler's constant, 

r (4n)-l for a square lattice 
Gz = 3-'" (4n)-l for a triangular lattice (41) 

3' ' (4n)-l for a tetragonal lattice 

16  1 
G ~ = - I ? ( - )  192n3 r (z) 5 I? (&) r(%) ~0.2527. .  . , 

1 
(424 

G3 = 7 
32n 

[I? ( + ) I 4  =0.1742.. . , (42b) 

Here Eqs. (42a-c) are valid for simple cubic, bcc, and fcc 
lattices, respectively (cf., e.g., Ref. 6). 

According to the results in Sec. 6 below, the first (and 

possibly also the second) terms in the expansions (38)-(40) 
are exact. We note that the analogy with electrical circuits in 
Sec. 2 yields a simple proof that the leading terms are exact. 
Consider, e.g., the case when t-a. In this limit the charge 
in the system in Fig. 1 approaches an equilibrium distribu- 
tion, the currents across the resistors R tend to zero, and the 
voltages across the capacitors Ci all approach the same 
limiting value. Since the system clearly acts as a circuit of 
parallel capacitors to a dc current, the total capacitance of 
the system is BiCi and the effective capacitance per capaci- 
tor is given by 

N 

The leading terms in the expansions (38)-(40) now fol- 
low if we recall the correspondence (4). The above proof also 
shows that the principal terms in (38)-(40) are also valid for 
arbitrary correlations between the spatial positions and en- 
ergy levels (escape probabilities w) of the different traps. 

It is noteworthy that the expression forD ( t + ~  ) is inde- 
pendent of d and z. We also note that a case of physical 
interest occurs for systems with deep traps such that 
c (w;  ')$(l - c)w, '-in this case, D (t-W) depends only 
on the concentration and depth of the traps and is complete- 
ly independent of the properties of the medium in which the 
particle diffuses. 

We can derive an expression for D (t ) valid for all t if the 
traps are shallow and of the same depth. Indeed, let the dis- 
tribution density of the transition probabilities be of the form 

with Z = 1 - w, /w,( 1. Up to terms quadratic in Z we then 
find in the one-dimensional case d = 1 that 

Taking inverse Laplace transforms, we then find the exact 
formula 

where F is the confluent hypergeometric function. 
We can derive an analytic formula for d = 3 by using 

the approximation 

which corresponds to a semicircular state density. Proceed- 
ings as above, we find that 

D ( t )  =w,{l-cZ+c(1-c)22{(3wLI)1[ 1-esp(-tiw,t) 
X ( I ,  (6wot)+I,(6wOt)  ) ] -1) tO (r3)), (46) 

where I,,(x) is the modified Bessel function. According to 
Eqs. (44) and (46), D (t ) decays smoothly and monotonically 
with time. 

The frequency-dependent electric conductivity can be 
analyzed similarly; we will give an expression for ~ ( w )  for 
systems of arbitrary dimension with sparse trapping centers 
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all of the same depth. To first order in c, we have 

for all frequencies w. According to (47), a(w) is smooth and 
increases monotonically with w as the latter increases from 
wo[l - c(wo/w, - I ) ]  to wo[ 1 - c(l  - w,/w,)]. 

In order to consider the case when the transition proba- 
bilities vanish, we first refine our terminology. Assume that 
a particle has entered a trap with a zero escape probability. 
Then we will say that the particle has been irreversibly 
trapped ifit remains a physically distinct entity which can be 
treated as before, i.e., if it gives a constant contribution to the 
meansquare displacement and the total normalization of the 
probability is correspondingly unchanged. If however the 
particle falls into an infinitely deep trap and disappears, we 
will refer to the trap as a particle sink. 

We will examine irreversible trapping first by consider- 
ing three classes of hopping probability distributions p(w) 
which correspond to different limiting behaviors D (t+ w ) 
(cf. the random bonding problem in Ref. 6): 

where 

For the first two distributions, the infinitely deep traps are of 
zero measure (c = 0), while their concentration is > 0 for the 
distribution (50). 

The self-consistency condition (34) and the expansions 
of the diagonal elements of the Green function of the effec- 
tive medium for E - ---PO (i.e., t + ~ )  yield the following 
limiting expressions: 

class a)  

for systems of arbitrary dimension; 
class b ) 

for d = 1 and 

fo rd  = 3; fo rd  = 2, logarithmic corrections must be added 
to (53). In Eqs. (51)-(53), const denotes a constant of order 
unity which depends only on the detailed form of the distri- 
bution p(w). 

For systems with a distribution of type c) D decays as 1/ 
t for large t, which corresponds to a finite meansquare parti- 
cle displacement 

D ( t + m )  = [ ( I -cZ) i4c?]  t - I  (54) 

D (t+ m )  =Qt-' (55) 
for d = 1 and d > 1, respectively, where 52 is defined by 

E P ~ : ~  (5 eff =QE) I ,,o=c. 

The higher-order terms in the expansion can be found 
similarly; they turn out to depend essentially on the form of 
p,(w). According to the results in Sec. 6, the error in the 
leading terms in the expansions (54) and (55) is of the same 
order in l / t  as D (t+ w ) itself. 

An analytic expression for Eeff valid for all E can easily 
be derived for the special case when the distribution (50) is 
binary, i.e., when 

p ( W )  =c6 ( 1 0 )  + ( I-C) 6  (E -W) .  (56) 

F o r d  = 1, we find 

Using the approximation (45), we find similarly for a three- 
dimensional cubic lattice that 

We will need these formulas to analyze random walks of 
particles in systems with sinks. 

We next find the partial populations for a one-dimen- 
sional system with traps of finite depth in the limit t- tm . If 
we use the exact expression (26) for the Green's function in 
Eq. (33), we get an expansion for the partial population P (w) 
as E+O which can be inverted term-by-term to give the ex- 
pansion 

in the t-representation. 
The first term corresponds to the Boltzmann distribu- 

tion to which the system relaxes for t-t oo . The second term 
is the kinetic correction; it is proportional to l / / t  and 
shows that the equilibrium populations are approached 
slowly, a t - "' (Ref. 19). F o r d  = 2 and 3 we can use a simi- 
lar procedure to find the expansions of the partial popula- 
tions in &-space: 

and 
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As bef~re, the leading terms give the Boltzmann distribution 
in the limit E-0; however, the kinetic corrections in this case 
can no longer be found by inverting (60), (61) term by term, 
which would require knowing the explicit form of P (w) for 
arbitrary E. 

In order to derive an analytic expression we consider a 
three-dimensional system with shallow traps (43) of identical 
depths. Substitution of (45) into (33) yields the Laplace trans- 
form P (w), which up to terms quadratic in Z is given by 

Taking inverse Laplace transforms, we get the expression 

for the total populatior! of all the centers with a specified 
escape probability w. Expression (62) is valid for all t, and the 
time-independent transition probability we' is given by the 
first two terms in (46). 

Recalling the expansion of the modified Bessel function 
for large arguments, we get the result 

for the kinetic corrections that describe how the populations 
relax to equilibrium. Again, the relaxation is quite slow, 
a t -3'2. We note that similar kinetic corrections of the form 
o: (Dt ) -3'2 were found for the related many-body problem in 
Ref. 15, where the kinetics of diffusion-controlled reactions 
was studied. 

Similar calculations can also be carried out for the one- 
dimensional case. The partial population is given by the 
expression 

which is valid for all t [the terminology is the same as in (62)l. 
Of coursz, the two leading terms in (64) coincide with the 
more general expression (59) as t--t a . Equation (64) is exact. 

We next examine the case of particle sinks; for simpli- 
city, we will consider the binary distribution (56). Equation 
(32) implies the simple relation 

P(w=O) = = p ( w - ~ ) / ~ z ~ : f f  , (65) 

for the density function describing the total population of 

the centers with escape probability w = 0 (i.e., the distribu- 
tion density for the fraction of particles trapped by the sinks). 
Here P T ~  is given by Eqs. (261 and (45) for d = 1 and 3, re- 
spectively, and fief is given by Eqs. (57), (58). 

The mean square displacement of the "surviving" parti- 
cles is given by the obvious relation 

where Rji is the distance between centers i and j. Using (32), 
we can recast (66) as 

where the terminology is the same as in (65). 
Expressions (65) and (67) are quite complicated; how- 

ever, numerical methods are available for calculating the in- 
verse Laplace transforms needed to analyze the population 
kinetics and generalized diffusion coefficient in systems with 
sinks. Numerical methods can also be employed to analyze 
more general situations for complicated hopping distribu- 
tion functionsp(w) for arbitrary E and trap concentrations G. 

6. ERROR BOUNDS FOR THE SELF-CONSISTENT EFFECTIVE 
MEDIUM APPROXIMATION 

We now examine the accuracy of the method in greater 
detail by returning to the averaged series expansion for the 
Green's function (15). When condition (29) is used to deter- 
mine the effective medium parameter, all corrections in (15) 
that include scattering by three or fewer clusters will vanish. 
If we denote the first nonvanishing terms by X and Y, we see 
that they are fourth-order in i and are given by the formulas 

X=<PefVIP effEnPefffjP effEnPeff)3,; n + ~ ,  
Y=(Peff't",PeffEnPefft",Peff%,P eff)3,; mZj; mPn.  

If we use the explicit form (21) of the ?-matrices and 
apply Eqs. (23), (24) to expand the products, we get 

We first analyze the leading terms in the four-center 
corrections (68), (69). Let t-+8 and recall that we have 

Z e f f = O  ( I ) ,  ( F m 2 > = 0 ( 1 ) ,  p,]eff =o(E-'- '~-"), 

in the limit as E+W. We then find that 
~ - ~ - % - ! n - i l - 3 l n - j <  - .E 5 .  nZj. (70) 

The correction Y is also of order five in E- ', while the other 
(neglected) terms are of higher order. For t-0 (or equiv- 
alently, E-+w), they thus contribute to the fourth term in the 
expansion for the averaged Green's function ( G  ) and to the 
third term in the expansion for the generalized diffusion co- 
efficient D (t ). This result is also valid for irreversible trap- 
ping. 

We now consider the case of shallow traps for which 
p(w) is nonzero only in a narrow range Sw of w values, so that 
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Z = Sw/w(l. We then have 
(Fm2>-r2 ,  x-Y-x4 ,  

for arbitrary E, i.e., for small spreads Sw in the transition 
probabilities, the leading corrections are fourth order in 2. 

An estimate for the largest corrections as ~ + C C  for the 
case of nonvanishing transition probabilities (finite trap 
depths) shows that the corrections appear to fourth order in 
the expansions for D ( t  ) and (G ) . 

Finally, for class a and class b distributions, the correc- 
tions for irreversible trapping for large times (E-0) are of the 
same order as the second terms in the exphnsions for (G ), 
while for class-c distributions the correctibn is comparable 
to the leading term (P ) . I 

i 
However, the above estimates for the leading correc- 

tions are suggestive only; they do not necessarily character- 
ize the actual error, which may be larger. We can obtain a 
more realistic bound in the one-dimensional case by adding 
all of the four-center correction terms (68), (69), say. We will 
not give the complicated expression for this sum (which we 
denote by Z )  but will merely state the results. 

In agreement with the above analysis, the first four (re- 
spectively, first three) terms in the expansion of (G ) (respec- 
tively, D )  are exact for small times. If the traps are shallow, 
the first four terms in the expansion are accurate to O(Z3) for 
all times t, again in agreement with the above estimate. How- 
ever, for t-+m the error is larger than predicted by the above 
analysis of the leading error terms. Specifically, we have 
Z = 0 (E '" )  for traps of finite depth for which 

Geff =O( l ) ,  ( F m 2 > = 0 ( 1 ) ,  pjZeff =o(E-"l) for E+O, 

i.e., the third terms in the expansions for ( G  ) and D are in 
error. If the trapping is irreversible, the sum Z of the four- 
center corrections has the following order of magnitude for 
~4 :  class a) ,  z = 0 (E- ' I 2 ) ;  class b ) z = 0 (E - 1'2(2 - a) 1; 
class c) Z = 0 (E- I ) .  That is, in all cases the error in the prin- 
cipal terms in the expansions for (G ) and D is comparable to 
the principal terms themselves. 

For multidimensional systems the error in the effective 
medium approximation is clearly larger than for d = 1. 

We can summarize our results as follows. The range of 
trap energies and transition probability spreads for which 
the effective medium approximation gives exact results can 
be depicted as a "box" (cf. Ref. 17, where the quantum co- 
herent potential approximation was considered). In the cross 
section of this box shown in Fig. 3, the two (horizontal) axes 
correspond to the dimensionless Laplace parameter E' = E/ 

w and to the spread Z = (w,,, - wmi,,)/wmi,, in the transi- 
tion probabilities. The trap concentration c is plotted along 
the vertical axis (normal to the plane of the figure). The first 
three terms of the expansion of D are exact for E'-+ co (small 
times) for arbitrary Z and c; we indicate this in Fig. 3 by the 
upper hatched region of thickness 3A. The left-hand region 
(Z( 1) corresponds to the case of shallow traps; its thickness 
is 4A. For large times, i.e., E'-0, the two leading terms in the 
expansion of D may be exact (in any case, we showed rigor- 
ously in Sec. 5 that one of them is exact); thus the thickness of 
the bottom hatched region is either 2A or A. The right-hand 
edge of the box (Z--t cc ) corresponds to irreversible trapping 

FIG. 3. Horizontal cross section of a "box" depicting the region in which 
the effective medium approximation gives exact results. 

and is of vanishing thickness. Finally, the reader can imagine 
hatched "concentration" regions above and below the plane 
of the figure which are of thickness A. The effective medium 
approximation gives interpolated results in the interior of 
the box. 

We can use a similar method to estimate the error in 
Eqs. (32), (33) for the partial populations. The first terms 
neglected in the sum (31) are third-order in i. Calculations 
using (21) yield corrections of the form 

u= E eff S - eff 
P j k  Phi (Fb2)F> 1 w, = w  

(&+zwj)Geff 

to the expression for P,, (w,). 
An analysis similar to the one above shows that for 

E-co (small times t ) the four leading terms in the expansion 
of pji(w,) are accurate to -E-'; for a system with shallow 
traps, the three leading terms are accurate to - Z2 for arbi- 
trary E; for E-0 (t-co ), at least one (and possibly two) of the 
leading terms is exact. For irreversible trapping, the partial 
Green function G,,, always contains an error of the same 
order in E as Gp,,, itself. The region in which the formulas for 
the partial quantities are accurate can again be depicted by 
suitably modifying the box in Fig. 3. 

"In the time representation, the effective system is described by an equa- 
tion with "memory": 
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