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Diffusional spreading of excess carriers in the presence of deep trapping centers is studied under 
conditions of time-dependent thermal equilibrium. Exact formulas are used to show that for 
intermediate times corresponding to rapid trapping of carriers into spatially distributed localized 
states, the problem reduces to calculating the spectrum of a quantum particle in a disordered 
system. This approach is used to establish that for intermediate times, the diffusion obeys a 
universal law which is determined by the dimensionality of the system and is essentially nonlin- 
ear. The relaxation for large times is exponential even for weak fields, and the average relaxation 
time T is inversely proportional to the square of the electric field E and is independent of the order 
parameters. The existence is predicted of a critical field above which the relaxation for large times 
is determined by the drift of carriers in randomly distributed trapping centers directed along the 
applied field; in this case, r is - 1/E. The coherent potential approximation (CPA) correctly 
describes the final stage of excess carrier thermalization. 

1. INTRODUCTION 

Studies of the current associated with injected carriers 
provide an effective method for analyzing disordered mate- 
rials.'.' In systems where the Fermi level E~ lies below the 
edge E, of the conduction band, the relaxation of injected 
carriers with energy E>E, i.e., their distribution over a re- 
gion of localized states for the entire system, is governed by 
the requirement that the system be in thermal equilibrium. 
As far as the kinetics of the excess carriers is concerned, the 
initial disorder can be modeled as a random spatial distribu- 
tion of localized states which act as traps with randomly 
distributed energy levels. We will focus our attention pri- 
marily on the spatial disorder of the trapping centers, be- 
cause this aspect of the problem has not been adequately 
studied. The previous work along these lines (reviewed in 
Refs. 1 and 2) invoked the mean potential approximation; on 
the other hand, the deep centers that trap the carriers most 
effectively are clearly randomly and sparsely distributed. 
We will see below that we thus arrive at a problem which is 
similar to the original problem of calculating the properties 
of a quantum particle in a random potential. 

Carriers can make transitions between different local- 
ized states by diffusing along a region of delocalized states 
(along bands). We will assume for the sake of generality that 
the carriers move by a sequence of classical "hops," because 
the states involved in carrier transport along a band may be 
assumed to be continuous. On the other hand, it is also clear 
that the carrier motion near the edge of the conduction band 
will also have some of the features characteristic of "hop- 
ping" transport. The above model could be applied directly 
to the class of amorphous semiconductors with deep impuri- 
ty levels in the forbidden band. The reader may consult Refs. 
1 and 2 for further applications and physical discussions. In 
this model, the equations 

describe the dynamics of the excess carriers. 
Here D, (Pn ) is the conditional probability for finding a 

carrier at site n in a conducting (localized) state if the carrier 
was present at site m in a delocalized state at time t = 0; 
W, + ,  , is the probability that the carrier will hop between 
two adjacent sites and is given by 

I I e + -  E ) (3) ,,.+,.=a ex, ( - 2  + 
i - ~  2kT 

when a field E is present. Here r, is the position vector of the 
n-th site, i3 (usually comparable to the phonon frequency) is 
the number of "attempted" hops, r, is the Bohr radius, and 
E is the electric field. The quantity u; 
= v exp ( - IE - E, / k T )  in ( I )  and (2) is the probability for 

a transition from a localized state of energy E into the region 
of delocalized states. The probability u: for trapping into a 
localized state is comparable to the phonon frequency, 
u: -v . The traps are assumed to be randomly distributed 
among the lattice sites with concentration c; the sites them- 
selves form a regular lattice with unit cell parameter a equal 
to the effective hopping length. 

The case of band transport follows from (1) if we let 
a+O, i.e., take the continuous limit. In this case, l/w is the 
average time to trapping and a is the corresponding mean 
free path. The above model is valid only if agl ,  because the 
carriers move between the traps by diffusion only in this 
case. Here I = p - 'Id is the average distance between the 
traps,p is the trap concentration, and d is the dimensionality 
of the lattice. On the other hand, a g l  is clearly false for deep 
localized states or for states near the edge of the conduction 
band. In principle, the mean potential model, e.g., can be 
used and the frequent trapping by shallow traps can be treat- 
ed by renormalizing the parameters in Eqs. ( I ) ,  (2) [cf. below, 
however]. We note that w is typically (v for the hops but 
that W)V for band transport; however, both w and v are 
apparently model parameters only-our basic results are in- 
dependent of the ratio w/v. 

We can combine Eqs. (1) and (2) and derive the closed 
equation 
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for the Laplace transform of the Green's function D,, (t ), 
where 

The random parameter ye in (4) is nonzero only for sites 
occupied by traps. The Green's function D,, completely 
describes the dynamics of the carriers in the delocalized state 
region. In particular, we will show in the Appendix that the 
diffusion coefficient for the injected carriers in expressible in 
terms of D,, (s) by 

where Do = a2w is the microscopic diffusion coefficient and 
~ ( f  ) is the fraction of the electrons contained in the deloca- 
lized state region at time t. Similarly, the injected current is 
given by 

1 t )  = ~ ( t )  s = (rn+s-rn) wni8.n. (7) 

Here Q is the total injected charge and v, is the microscopic 
drift velocity; we have v, = pJ to first order in the field, 
where the mobilityp, is related to the diffusion coefficient by 
the Einstein relation p, = (e/kT)D,. 

2. RELAXATION TO A STEADY-STATE 

We note that the random parameter2, in (4) vanishes as 
s 4 .  The coherent potential approximation (CPA) therefore 
correctly describes the exact solution of the problem in the 
low-frequency limit.3 We will take the trap concentration to 
be small, c(1, since otherwise the system relaxes rapidly 
over times Y -  ' = 10-l2 - S. If we then sum only the 
diagrams which do not have any intersections (CPA), we 
find that 

(D,m(~))=D,mo(~(l+h(s))), 
(8) 

where Dm, is the autocorrelator and u = exp ( - &/kT); the 
trap depth E is measured relative to the edge of the conduc- 
tion band. Equations (8) and (7) imply that the steady-state 
drift velocity of the injected carries is 

u,=u,u/ (c-t-u) . (9)  

This result has an obvious interpretation if we note that ther- 
mal equilibrium implies that 

u N exp ( - d k T )  
xc=--=- c+zz N e x ~ ( - c l k T )  + N,'  

where N ,  is the total number of traps and Nis the number of 
conducting "sites." According to (9) ,  the trapping will be 
appreciable if u(c( 1, as we will henceforth assume. 

We now derive the equation that governs the final stage 
of the thermalization process in the system. For d = 1 and 
S(W, the autocorrelator (Dm, ) is given by the expression 

For s(c2w and w(v/~c,  Eq. (8) has the solution 

for E = 0. In the limit- oo , the right-most singularity inx(s) 
(i.e., the pole in A (s) and the cut in the complex s plane from 
the origin to the point s = - 16cuw needed to make the 
square root single-valued) contributes to the diffusion coefi- 
cient, and we have 

where rc = I2/D, = l/cuw is the mean diffusion time 
between traps for a system in thermal equilibrium, and 
I = u / c ' / ~  is the mean distance between the traps. It follows 
that the final approach to the steady-state regime is de- 
scribed by the power law 

( D  ( t )  -D,)/D,= (a , /4n t )  'la, t B r , .  

If E +O, (10) implies that the branch point for the 
square-root singularity moves from the origin to the point 
- wA2/(1 + 2 ); the power law for relaxation at large times 

thus is replaced by the exponential law 

Equations (12) and (13) can be interpreted physically as re- 
flecting the effects of multiple scattering of the carriers by 
the traps over long periods of time. These effects are appre- 
ciably attenuated in a nonzero electric field, so that the relax- 
ation become exponentiaL4 

We now consider the three-dimensional case. The auto- 
correlator Dm, for small s can then be expressed in the form 

<D,,(s) )=bo-b, [ s ( l + A )  +wA2] '", (14) 
where 

Solving (8) by iteration for s-0, we find that 

The mobility consequently relaxes to the steady-state value 
pc = (u/c)p, in accordance with the equation 

which is analogous to (13); here r, = c'l3 /uw. The behavior 
(16) can be traced to the right-hand singularity inil (s), i.e., to 
the cut in the s-plane. Since it is clear on physical grounds 
that this singularity describes repeated trapping processes, 
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we will rewrite Eq. (8) for A = 0 and s(R (where 1/R = 1/ 
Y + bo = 1/v + 1/4w) in the form 

s=-uQ [I -Q (b,q'"+c/q)] -'. (17) 

Here 7 = s(1 + A  (s)). This shows that s is not analytic as a 
function of 7 for 7 between 0 and 7, , where 77, is defined by 

c  b ,  1  -- +--=o. 
qmz 2 q ' ' 2  

We thus find that the endpoint of the cut lies at 7, = (2c/ 
b,)2'3, which corresponds to sm = - uR. 

In exactly the same way, we find that 

ford = 2 and t>r, = ~ / u w .  In this case the logarithmic sin- 
gularity ofA (s) dominates the behavior of (18), and the end- 
point of the cut is 

-I v  1  
s.=-4n.u (~n;) for w<-ln-. 

4 ,  c 

Equation (1 8) describes the final stage of carrier relaxa- 
tion in a system in thermal equilibrium, i.e., how the already 
trapped carriers become redistributed among the localized 
states. Because this redistribution involves repeated carrier 
trapping and escape, the functionx(t ) is small with respect to 
the parameter u for times t during the transient stage. Thus, 
in the low-temperature limit u-0 most of the drop in the 
observable quantities occurs during the initial stage of relax- 
ation, when the free carriers are trapped into localized states. 
We will study the early relaxation process in the next sec- 
tion. 

3. EQUIVALENCE WITH THE ANDERSON MODEL 

We now consider the times for which s)u- (the time 
scales will be classified in more detail later). The distribution 
of the random parameter y, in (4) then takes the form 

II ( y )  = ( I -c )  6 (y) +c6 (7-v) . (19) 
The problem for a continuous distribution of localized states 
can also be reduced to the form (19). Indeed, let p ( ~ )  be the 
distribution density for the localized states, with 

"z 

By the definition of y [cf. (5)], the states with E > Z 
= kT ln (v/s) may be regarded as deep trapping centers. 

Here y = Y and the concentration of these centers is given by 

States with E < E  correspond to shallow traps. In this case 
y-s and the CPA model3 can be used to treat the shallow 
trapping (y-SA ). According to (4), this amounts to dividing 
the frequencies w and Y by the factor (1 + A ) .  This approach 
can be used to analyze an arbitrary distribution p ( ~ ) ;  it also 
implies that the approximation (19) holds quite generally for 
appropriately bounded time intervals and low temperatures. 

We see immediately from (4) that this equation coin- 
cides with the Dyson equation for the single-particle Green's 
function in the Anderson model, which is described by the 
Hamiltonian 

Here a: and a, are the creation and annihilation operators 
for an electron at site n, and the w, + ,  can now be regarded 
as overlap integrals. The equivalence between the two mod- 
els can be expressed formally by the equations 

Dnm (s) =-G,, ( - s ) ,  (22) 

The Anderson model with diagonal disorder has been much 
studied recently (cf. the reviews in Refs. 5-7). However, be- 
fore we can take over the results for the Anderson model, we 
must find a way to handle problems with overlap integrals 
which are symmetric with respect to the lattice sites. We can 
do this by noting the following exact equation for the 
Green's functions: 

D,, ( s ,  E )  = exp ( ";',-)" ) D  ... ( s + - w A ~ ,  0) , 

The proof is quite obvious for ordered systems and consists 
in choosing a new Boltzmann distribution corresponding to 
the final state to which the system relaxes in a nonzero elec- 
tric field E. It can be shown that (24) remains valid for arbi- 
trary types of disorders, including the disorder assumed in 
the bonding problem. We can verify (24) readily for the case 
of interest by directly substituting it into (4). The usefulness 
of (24) is evident, since it can be recast immediately in terms 
of the averaged Green's functions; this makes it possible to 
express the Green's function for E f 0 in terms of the Green's 
function for E = 0. 

4. WEAK FIELDS 

We will first analyze the autocorrelator Dm, in order to 
illustrate the use of Eqs. (22)-(25). According to (22) we can 
write 

7 r. - 3  

As a function of the complex variable s, function G,, (s) is 
well known to have a cut along the positive axis Re(s) > 0, 
and the discontinuity across the cut is equal to the one-elec- 
tron state density n(s) for the Hamiltonian (21). We can thus 
recast the expression forp(t ) as 

= 

We note that the obvious initial condition p(0) = 1 is satis- 
fied. The state density n(s) for the model (1 9), (21) behaves as5 
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near the true edge of the band, provided the Lifshits conjec- 
ture is valid; the numbers b, were calculated in Ref. 8. If we 
substitute (28) into (27) and evaluate the resulting integral by 
the method of steepest descent, we get 

where 

Here T is the average diffusion time between the traps, and 
the saddle point used in evaluating (29) is given by 

2 ( r l t i )  

We recall that our analysis is valid only for sBu- because of 
our initial assumptions. The asymptotic formula (29) is 
therefore guaranteed to be valid only for times 

where T ,  = 1/u- is the average time during which a carrier 
remains confined in a trap. However, there are indications 
that (29) may also be correct even fort not satisfying (30). We 
saw previously (cf. Fig. 1) that for finite T, the function ~ ( s )  
has a cut in the complex plane from the origin to the point 
s = s,. We can thus rewrite inequality (30) in the form 
s, ) s, , which reduces to 

for d = 1, 2, 3, respectively. 
(31) 

Similarly, we can try to use Eqs. (6), (221, and (24) to find 
the time dependence of the function x ( t  ). Unlike the case of 
the autocorrelator, however, in this case we must know the 
analytic properties of the functions G,, (s) for n # m  as well 
as for n = m. It can be shown that the leftmost singularity of 
G,, (s) will again have the form of a cut, as we found above. 
The instanton method7 can be used to find the discontinuity 
in G,, (s) across the cut, and a suitable technique was devel- 
oped in Ref. 8 for solving the quantum problem of interest to 

FIG. 1. Location of the singularities ofx(s)  (d = 3)  in the S-plane, where 
S = S/W, W ( Y .  The value S = - (4c + A2) corresponds to the square-root 
singularity in ~ ( s )  and lies at the edge of the effective band found in the 
coherent potential approximation. The actual cut should in fact extend as 
far as 3. = - A2; however, the jump inx(s)  across the cut is exponentially 
small for S >  - 4c + A'. The value S = - s, corresponds to the saddle 
point in (29). For u+O, this cut overlaps a second cut [ - u( l  + A2/c), 
- uA2/c] which determines the final stage of the relaxation process. In 

this case the residue at the poles = 0 becomes nonzero. For strong fields 
A >2., the pole at S = - S(2A - S) leaves the second sheet by passing 
through the origin of the cut and enters the first (physical) sheet. 

us. A straightforward generalization of the results in Ref. 8 
gives the leading term 

for the jump in G,, (s) across the slit as s-0 (here 0 (x) is the 
Heaviside function). We have so far neglected the more de- 
tailed coordinate dependence because it is not needed to find 
the leading term in the asymptotic expansion. If we now 
combine Eqs. (6), (22), (24), and (32) and take inverse Laplace 
transforms, we find that 

The result ford = 1 of course agrees with the exact solution 
found in Refs. 9 and 10. This asymptotic formula is useful 
because the first term in (33), (34) dominates for large times 
even for weak fields E. Indeed, the average relaxation time 
is- 1/E '. The physical explanation is that the number of 
carriers is further decreased by the electric field because the 
system contains clusters of finite size. 

5. THE DRIFT REGIME 

In the previous section we used Eqs. (22) and (24) to 
calculatex(t ); however, we considered only the contribution 
of the branch-point singularity of the function G,, (s). There 
are grounds for believing that G,, has no other singularities 
as a function of s. The question then arises of determining 
whether all the singularities of,&) are caused by the branch 
point singularities. This question is of interest, becausex(s) is 
given as a sum of G,, (s) over the index n with factors that 
grow exponentially along the applied field. We thus antici- 
pate thatx(s) may contain new singularities when the field is 
nonzero. In order to soIve this problem we must know the 
complete Green's function G,, (s), at least near s = 0. In 
principle, this information could be obtained from the dis- 
persion equations7 for a specified imaginary part Im (s). 
However, this would require knowing the discontinuity in 
G,, across the entire cut. On the other hand, we know that 
Im (G,, (s + iO)) is exponentially small in the fluctuation re- 
gion below the edge of the effective band (cf. below). This 
suggests that the CPA method should correctly describe the 
qualitative form of the Green's function far from the edge of 
the effective band. We will thus use the CPA method to look 
for other singularities (we will also give additional argu- 
ments in support of the final results). 

For the range of parameter values of interest we can 
rewrite Eq. (8), which follows from the CPA approximation, 
directly for the functionx(s) = l/s(l + /1 ) = l/v as follows: 

s=q-cv [ l + v D m m O ( q ) ]  -', (35) 

where the autocorrelator D L,(v) is given by Eqs. (10) and 
(14). We will takes(w and A(1 in what follows; moreover, if 
c< 1 we can invert Eq. (35). For d = 1 and w(v/2c, we thus 
find that 

{=?+2c2+2c (s"+c2+A2)"', (36) 
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where the frequency S is now given in units of w. The physical 
branch in (36) corresponds to 7 > 0 for s > 0. Equation (36) 
then yields the expression 

51 ( s )  = [ ( s + c ~ + A ~ ) ~ ~ ~ - c - A ]  [ ( S + C ~ + A ~ ) ' ~ - C + A ]  
/ [ w  (S-2cA) (S+2cA)]  (37) 

for ~ ( s ) .  The square-root singularity in (37) coincides with 
the cut in the function G,, (s) which we discussed above. The 
value s = - wc2 corresponds to the edge of the effective 
band. According to (24), the branch point for E # O  is shifted 
by wA2 from the edge of the band. The contribution from the 
cut in the square root function can be expressed in the form 

[cf. (33)l. The pole for fields A > c in (37) is new; its contribu- 
tion to ~ ( t  ) is given by 

xP ( t )  '- ( I -CIA)  exp ( -2cAwt ) .  
(39) 

On the other hand, the exact result for d = 1 is9,'' 

2) exp[ -c (2A-c )  w t ]  
A 

Comparison of (39) and (40) shows that the CPA correctly 
describes the dependence on the field. We can account for 
the difference in the exponents (by a factor of 2 when A = c) 
by recalling that in the CPA, the pole must pass through the 
branch points = - w(c2 + A2) of the square root in order to 
reach the physical sheet; on the other hand, s = 0 gives the 
actual edge of the band in the exact solution, and the initial 
point on the cut thus lies at s = - wA2. This is responsible 
for the difference wc2 between the exponential arguments in 
(39) and (40). 

We now discuss the case when d = 3. Proceeding as 
above, we find for w(v that 

where S = s/w + 4c and Z = 2c/n. Here the position of the 
square-root singularity corresponds to the edge of the effec- 
tive band, s = - 4cw[l + O(c)] (cf. Ref. 6) shifted by the 

"amount wA2. The contribution of this cut tox(s) is given by 
an expression similar to (38). The existence of the new pole 
for fields A > Z is nontrivial; its contribution to the time de- 
pendencex(t ) is given by 

xP ( t )  = ( 1  -?/A) exp [ (-2EA+4c) wt] . (42) 

If we recall that the pole can only reach the physical sheet by 
passing through the branch point on the cut that corre- 
sponds to the true edge of the band [i.e., s = - wA2 rather 
than s = - w(4c + A*)], we see that the correct expressior, 
for the pole contribution is 

x P ( t )  = ( ~ - z / A )  exp [ - F ( ~ L ! - F )  wt]  . (43) 

This agrees with the exact asymptotic expression (34) for 
A = 2. We note that (43) is the dominant contribution for 
large times. 

The asymptotic expressions (40) and (43) can also be 
derived as follows. It is clear on physical grounds that carrier 
drifting in large clusters is responsible for the above behav- 

ior. We can use perturbation theory to study the relaxation 
within a given cluster; keeping only the lowest-order term 
(equal to D 11, ) in perturbation expansion, we can estimate 
the corresponding contribution to the time dependencex(t ) 
by 

where R,, (c) is the statistical weight of the cluster. Since we 
are interested in the mathematical origin of the new singu- 
larities in ~ ( s )  for nonzero fields, we will consider only clus- 
ters with the largest statistical weights in (44); allowance for 
the other contributions to ~ ( s )  (including the interaction of 
carriers with traps in larger clusters) will alter only the coef- 
ficient of the exponential in X, (t ). In order of magnitude we 
then clearly have 

d 

J = i  

We can rewrite R,, as 

in the continuum limit, wherep = I - is the trap concentra- 
tion and (T = ad - is the trapping cross section. The Green's 
function can then be expressed in the form 

I 
D.."(s - erp  [ - --(4sD,+i.,2)" 1 r,-r., I 

2Do 

Substitution into (44) shows that ~ ( s )  has a new pole on the 
physical sheet with - wA, < s  < 0 if A > c (i.e., u, > 2Doap). 
Its contribution to ~ ( t  ) is similar in form to (43): 

1 
~ ~ ( 1 ) -  exp -t -------- 

I )I . [ ( i d r  i d i f  

Here ;id, = 1 / u ,  - - cAw/2 is the average drift time between 
thetraps, and1 = l/up = I (I /a)d - ' ,PdV = 1 '/Do = (wc2)-' 
is the time required for a carrier to diffuse a distance 1. The 
condition A > c clearly implies that 6, < 2PdV. The calcula- 
tions can be done for arbitrary fields and concentrations if 
d = 1. For (1 - c)ee > 1 we find that 

which agrees with the exact r e s ~ l t . ~ . ' ~  The set of diagrams 
which describe the carrier-trap interaction in large clusters 
must be considered in order to calculate the coefficient of the 
exponential in (48); however, its structure is correctly given 
by Eqs. (39) and (42), which were derived in the coherent 
potential approximation. 

We also note that the above derivation for the asympto- 
tic time behavior of X, (t ) in fact exhausts all the contribu- 
tions and becomes exact for large E, in which case the carri- 
ers follow the field. In this case the CPA also gives the exact 
result (there are no interference diagrams)" 

x ( t )  =exp [-dEtc] , (49) 
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where 17, is the hopping frequency along the field, which is 
assumed to lie along the long diagonal of the elementary 
lattice cell. 

We have assumed above that w(v in the three-dimen- 
sional system. In the opposite limit w>v every carrier that 
reaches a site occupied by a trap will be captured, and Eq. 
(43) remains valid. One shows without difficulty (using the 
CPA, e.g.) that in this case the constant E in (43) is given by 

For strong fields (directed carrier motion, A k I), the expres- 
sion for ~ ( t  ) for arbitrary ratios v/w becomes 

x ( t )  =exp [-cQt] , 

where 1 /6  = 1/v + l/ditr. For d = 1 or 2, Eqs. (40) or (47) 
remain meaningful for w (v/2c and w <(v/4n) In( 1 /c). Thus 
the dimensionality of the system affects only the time scales 
for fields above the critical value. 

DISCUSSION 

We have derived several exact formulas for the kinetic 
characteristics of a disordered system in which the relaxa- 
tion primarily involves transitions of excess carriers to spa- 
tially distributed localized states. We can arbitrarily divide 
this process into two stages corresponding to large and small 
times. For large times t 2 r C ,  where rC = 1 2/Dc = (uwc2/ 
d -  ) - I  is the average diffusion time between traps for a sys- 
tem in thermal equilibrium, the relaxation to a steady-state 
regime is complete and is described by a (rC/d law. The 
relaxation process during this stage is greatly influenced by 
the electric field; in this case the power law breaks down and 
the relaxation becomes exponential with time constant 
rC (2kT/eEI)'. 

Most of the decrease in the observable quantities occurs 
for short times corresponding to the initial trapping of free 
carriers into localized states. The characteristic time scale 
during this stage is T = 1 2/Do = ~ / w c ' / ~  <rc ,  i.e., it is equal 
to the microscopic carrier diffusion time between the traps; 
the corresponding behavior is given by Eqs. (33) and (34). We 
suggest the following interpretation. The relaxation in a 
cluster of length L is proportional toe - ' I T ,  where T = L '/ 
Do, and the probability of finding such a cluster in the system 
is equal to exp ( - p ~ d ) .  The desired expression (34) thus 
follows by maximizing the product e - ' / T  . exp ( - pLd ) 
with respect to L. 

We found that the initial stage of relaxation is also 
greatly influenced by the electric field. For weak E, the re- 
laxation is exponential with time constant r = l/wA2 for 
large times. We note that T is independent of the order pa- 
rameters. The physical explanation is as follows. In a non- 
zero field, the probability that a carrier will remain at a given 
site decays with time as exp ( - w A 2 t )  even if there are no 
traps [cf. (24)], because the electric field tends to sweep the 
carriers away. However, for an infinite cluster the carrier 
concentration at each site must remain constant even for 
E # O  because carriers are supplied from adjacent sites. For 
finite clusters, this is no longer true-in this case, the carri- 

ers are concentrated at the boundary of the cluster and there- 
fore play no role. The electric field thus decreases the num- 
ber of active carriers by the factor 

exp ( -wA2t )  =exu ( -VoZt /4Do) .  

Another important effect of the field is to direct the 
motion of the carriers. As a result, the clusters (which are 
elongated along the field) start to become more important 
and for field strengths above a critical value, the carrier drift- 
ing in the clusters is the slowest process in the system. This 
process can be analyzed qualitatively by straightforward 
physical arguments. Indeed, the contribution to the drift 
current at time t comes from clusters whose length along the 
field is greater than uot and whose cross sectional area ex- 
ceeds the trapping cross section u. In order of magnitude, the 
relative number of such clusters in the system is equal to exp 
( - puOtu), which roughly speaking also describes the time 
behavior ~ ( t  ), since the spreading of the carriers normal to 
the field retards the falloff in ~ ( t  ) [cf. Eqs. (33), (34)l. If we 
compare this relaxation behavior with the behavior found 
for relaxation in isotropic clusters, which is of the form exp 
( - v; t /4D0), we find that V, =Doup. Thus for strong fields, 
the carriers drift prior to being captured by the traps, where- 
as they move by diffusion for weak fields. 

We close by noting that the above physical arguments 
supporting the asymptotic formulas derived in the previous 
sections are quite general. This suggests that similar time 
dependences should be observed for other disordered mod- 
els, e.g., in the bonding problem. This was demonstrated 
rigorously in Refs. 9 and 10 for the one-dimensional case. 

I thank M. V. Sadovskii for a helpful discussion of some 
of the topics treated in this article. 

APPENDIX 

Proceeding from first principles, we can write 

I ? ( t )  = Q L x  ( (rn-rm) ( D n m ( t )  + PvLm(t) 1 ) 
d t  7 ,  

for the current produced by carriers injected into the con- 
duction band. We can evaluate the sum by multiplying Eq. 
(4) by r, - r, and summing over all n: 

Here we have used sP,, = y, D,, and Z,D:, = l/s [cf. 
Eq. (2)]. We obtain Eq. (1) by averaging the last equation and 
using conservation of particle number: Z(P,, + D,,) 
= l/s. 
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