
Ground state of a dipole system in a plane rhombic lattice 
P. I. Beiobrov, V. A. Voevodin, and V. A. lgnatchenko 

L. K Kirenskiilnstitute of Physics, Siberian Branch of the Academy of Sciences of the USSR 
(Submitted 22 July 1984) 
Zh. Eksp. Teor. Fiz. 88, 889-893 (March 1985) 

Numerical simulation is used to study the ground state of a system of magnetic or electric dipoles 
located at the sites of a plane rhombic lattice with an arbitrary rhombicity angle a. The energy 
density per particle is studied as a function of a for the microvortex, ferromagnetic, macrovortex, 
and antiferromagnetic states. It is shown that as a decreases from 90", at least two orientation 
phase transitions occur, from a microvortex to a macrovortex structure and from the latter to an 
antiferromagnetic state with axis along the small diagonal of the rhombohedron. Of the various 
final configurations to which the dipole system of a hexagonal lattice (a = 60") can relax from 
various initial states, only combinations of an even number of pairs of macroscopic vortex do- 
mains are observed. The ground state of a dipole system in a plane hexagonal lattice is shown to be 
a solitary macrovortex, and the ferromagnetic state is unstable with respect to long-wave fluctu- 
ations. 

The ground state of a dipole lattice was first analyzed in Here x > 0 is the exchange constant, and H, is a functional 
Ref. 1 for dipoles described by an exact classical Hamilton- of M which is determined by the magnetostatic equations 
ian which allows for both the long-range nature and the an- with appropriate boundary conditions. 
isotropy of the dipole-dipole interaction: If we neglect the long-range magnetic dipole forces we 

see that M(r) is uniformly oriented in the ground state, so 
d,d, 3 (d,r,,) (d,r,)) 

(1) that the gradient term in (2) vanishes. In this case the magni- 
2 rV5 tude of the magnetic dipole fields is a minimum in the 

where r, is the distance between the dipoles dl and d,. The 
ground state of a such a system in a three-dimensional cubic 
lattice was found to be antiferromagnetic with antiferromag- 
netic axis parallel to an edge of the cube. 

This problem was analyzed in more detail both analyti- 
cally and numerically in Ref. 2, where it was shown that for 
three-dimensional cubic and two-dimensional square lattice, 
the ground state of the dipole system has a periodic micro- 
vortex structure with period 2a along each coordinate axis (a 
is the lattice constant). The structure is continuously degen- 
erate in the the angular variables in the three-dimensional 
case and in the single (polar) angle in the two-dimensional 
case. Although the antiferromagnetic state found previously 
in Ref. 1 is a special case of a general microvortex structure, 
the lattice energy for the antiferromagnetic state need not be 
a minimum. 

The problem of finding the ground and metastable 
states for dipole systems described by the Hamiltonian (1) 
differs markedly from the widely studied case of systems 
with short-range forces. These differences can be explained 
most clearly by considering the example of masroscopic in- 
homogeneities in a dipole system. 

We will regard the dl as the magnetic moments of the 
atonis and add a short-range exchange term to (1). If we 
consider only inhomogeneities in the orientations of the d, 
which have a large-grain structure, we average over physi- 
cally infinitesimal volumes V )a3 and introduce the magne- 
tization vector M(r), whose modulus is conserved and for 
which the classical Hamiltonian takes the form 

7 

ground state. The basic way to decrease these fields in a 
three-dimensional object is to minimize the average bulk 
magnetization, so that the object does not behave as a single 
giant dipole. The situation remains unchanged if the volume 
becomes infinite but the shape of the object remains the 
same, because the density of the fields H, depends only on 
the ratio of the three diameters of the object. If the average 
magnetization is to be decreased, the vectors M(r) must be- 
come inhomogeneously oriented, i.e., domain or vortex 
structures must form. Although a space charge field VM will 
be produced, its contribution can be made negligible com- 
pared to the contribution from the surface charge on a uni- 
formly magnetized object. The ground state must thus be 
inhomogeneous for a pure dipole-dipole interaction in three- 
dimensional objects. For systems with a short-range interac- 
tion (as opposed to dipole-dipole systems), the addition of a 
long-range force generally destabilizes a homogeneous fer- 
romagnetic state but tends to stabilize inhomogeneous struc- 
tures. In our case, however, the inhomogeneous ground state 
will be destabilized when a small positive exchange term is 
included in the dipole-dipole interaction, while other more 
homogeneous structures will be stabilized; the situation is 
thus in a sense opposite to what occurs for short-range sys- 
tems. The above arguments become invalid for lattices that 
are infinite along only one or two coordinate axes, because 
the average density of the magnetic fields produced by the 
surface magnetic charges then vanishes. In this case (i.e., for 
one-or two-dimensional infinite systems), analytic methods 
can be developed which show3s4 that the ground state may be 
homogeneous and ferromagnetic. 

The continuous medium approximation (2) cannot gen- 
erally be used to analyze inhomogeneities in dipole-dipole 
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FIG. 1. Energy density per particle for different states of a dipole system 
as a function of the rhombicity angle a for a plane rhombic lattice: V, F, 
MV, and DAF are the vortex, ferromagnetic, macrovortex, and diagonal 
antiferromagnetic configurations, respectively. The circles on the curves 
show the energies, minimized with respect to the orientation of the dipole 
structure relative to the crystallographic axes. The dashed curve plots the 
ground-state energy as a function of a. 

systems because it neglects the microscopic vortex struc- 
tures which are actually presenL2 We will therfore return to 
the exact lattice Hamiltonian (1). 

The structure of the ground state of a dipole system 
should be sensitive to the symmetry of the nearest-neighbor 
environment. We will study the effects of local symmetry on 
the ground state of a system of dipoles at the sites of a plane 
rhombic lattice with an arbitrary rhombicity angle a .  Figure 
2 below shows such lattices for the three angles a = a/2 
(square), a = a/3 (hexagon), and a = a/6. The samples used 
in the numerical simulations were taken to be disks with 
centers coinciding with the center of an elementary rhombic 
cell. The disks ranged from 10a to 40a in diameter and con- 
tained from 80 to 1500 dipole sites, depending on a .  The 
energy density U = Z / N  (a) per particle was calculated in 
units of d '/a3. 

In the first series of numerical experiments we calculat- 
ed the energy as a function of a for four types of dipole struc- 
tures: ferromagnetic, antiferromagnetic (along the rhombus 
diagonals), microvortex with period 2a (special cases of a 
vortex structure with antiferromagnetic vector parallel to 
the sides of the rhombus), and homogeneous vortex centered 
at the coordinate origin. For each structure we freely varied 
the degeneracy of the vortex configuration and the orienta- 
tion of the ferromagnetic (or antiferromagnetic) axes relative 
to the crystallographic axes of the lattice. Figure 1 shows the 
results. 

In accord with the results in Ref. 2, the microvortex 
structure V in Fig. 2 minimizes the energy of a system wth 
a = a/2; the antiferromagnetic structure in Ref. 1, antifer- 
romagnetic axis along an edge of a square unit cell, is a spe- 
cial case. The antiferromagnetic structure with axis along 
the diagonal of the square cell has the highest energy of the 

FIG. 2. Ground state configurations for plane rhombic dipole lattices: V 
vortex (microvortex); MV macrovortex; DAF, diagonal antiferromagnet- 
ic. 

structures considered. As a decreases, the energy of the vor- 
tex configuration rises steadily while that of the diagonal 
antiferromagnetic (DAF) structure, with antiferromagnetic 
axis along the minor diagonal, drops monotonically. How- 
ever, the macrovortex state MV (also shown in Fig. 2) be- 
comes energetically favorable before the energy curves for 
the V and DAF states cross; indeed, the MV state has the 
lowest energy for a between a, z 75" and a, z 50". The DAF 
state is the ground state for a < a , .  Although the energy of 
the ferromagnetic state is higher than for the macrovortex 
state for all a ,  the difference decreases as the number of di- 
poles N increases. 

Thus, at least two orientation phase transitions 
(V+MV+DAF) should occur as the lattice is deformed, i.e., 
as a decreases from 90". 

In the second series of numerical experiments we stud- 
ied how the dipole orientations relax from different initial 
configurations to a ground or metastable final state. Similar 
studies were carried out for cubic and square lattices in Ref. 
2, where the numerical method is described in detail. We 
chose to study a two-dimensional hexagonal dipole lattice 
(a = 77/3) in our work because the intermediate macrovortex 
phase is most sharply differentiated from the V and DAF 
phases for a --,a/3. 

Table I shows the results of the numerical experiments. 
We see that as in the case of square  lattice^,^ the dipoles tend 
to become oriented in the plane of the lattice-the effective 
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TABLE I. Final states of a disk-shaped hexagonal lattice (N = 92). 

Initial configuration 

Energy per 
particle 
d '/a3 Final configuration 

Energy per 
particle 
d */a3 

Spatially random 0.2 Two vortex domains in the lattice plane - 2.32 
Diagonal antiferromagnetic - 1.83 

- 2.35 
- 2.37 

Ferromagnetic (along major diagonal) - 1.95 Four vortex domains - 2.26 
Microvortex with period 2a - 1.35 Ferromagnetic with two poles inside the disk - 2.02 
Ferromagnetic (along minor diagonal) - 1.94 Solitary macrovortex - 2.58 
Solitary macrovortex - 2.57 

dipole anisotropy of plane lattices is of the "easy plane" type. 
We recall that the numerical method2 used in the calcu- 

lations is phenomenological and treats the relaxation of the 
dipole orientation to minimum energy at zero temperature. 
The system therefore stops at the first energy minimum that 
it encounters; in general, this minimum is only one of several 
possible metastable states. We note that the number of me- 
tastable states in plane lattices is much greater than for 
three-dimensional dipole systems because there are more 
barriers. By doing repeated simulations and comparing the 
final state energies, one can get a reasonably accurate idea of 
the structures that correspond to the ground state. 

Table I shows that macrovortex structures were present 
in the final state for all structures that were able to reach a 
sufficiently deep energy minimum (energy U< - 2.26 per 
particle) during relaxation from the initial state; however, 
two or four macrovortex domains rather than just one were 
present in the final state. The initially ferromagnetic struc- 
ture with ferromagnetic axis along the minor diagonal was 
the only one which did not reach a deep energy minimum; 
instead, it relaxed to a metastable state of energy 
U  = - 2.02 which was quite far removed from the ground 
state energy U = - 2.58. The configuration of this state is 

-0.01d ' / a 3 ) .  
As anticipated, the ferromagnetic state differed from 

the ground state for a classical dipole-dipole spin system in a 
finite plane hexagonal lattice. Indeed, the ferromagnetic 
state was not even metastable-the dipole moments in this 
state were not oriented parallel to the local fields near the 
edge of the lattice, and the initial ferromagnetic configura- 
tion was therefore unstable with respect to long-wave fluctu- 
ations. 

Our numerical simulations thus demonstrate that the 
ground state of a finite two-dimensional (disk-shaped) dipole 
lattice has a solitary macrovortex structure with energy 
U = - 2.58. The closest metastable states into which relax- 
ation occurs readily are the macroscopic two-vortex (vortex- 
antivortex pair, U =  - 2.35) and four-vortex states (two 
vortex-antivortex pairs, U = - 2.26). Remarkably, we did 
not detect a single case in which the system itself relaxed to a 
state containing an odd number of macrovortices (including 
the ground state). Perhaps there is a topological constraint 
that requires the average circulation of the magnetic field in 
a system to remain zero if it is zero initially (this constraint 
could thus act as a "potential barrier"). 

the discrete analog of a pair of "boojums," i.e., point vortices 
'J. M. Lattinger and L. Tisza, Phys. Rev. 70, 954 (1946); 72, 257 (1947). 

On a surface' It is noteworthy that neither the microvortex 2P. I. Belobrov, R. S. Gekht, and V. A. Ignatchenko, Zh. Eksp. Teor. Fiz. 
nor the DAF states were metastable for the hexagonal lat- 84, 1097 (1983) [SOV. P ~ Y S .  JETP 57,636 (1983)l. 
tice-because these states were specified, they relaxed to ma- 3S. V. Maleev, Zh. Eksp. Teor. Fiz. 70,2374 (1976) [SOV. phys. JETP 43, 

1240 (1976)l. crovortex structures. The specific solitary macrovortex in 
4v. M, ROzenballm and V, M, Ogenko, Pis,ma Zh. Eksp, Tear. Fiz, 35, 

our numerical experiments was always of low energy, even 151 (1982) [JETP Lett. 35, 184 (1982)l; Preprint No. 20, Inst. Fiz. Akad. 
initially, and remained a solitary macrovortex after the re- Nauk Ukr. SSR, Kiev (1983). 

laxation process (the final energy decreased only slightly, by Translated by A. Mason 
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