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The relative decrease in the rate constant for exchange and multipole quenching as compared 
with the value estimated by the diffusion theory is calculated by the encounter theory method for 
arbitrary migration lengths 0  <Ao < W .  The feasibility of extrapolating the diffusion and jump 
solutions to intermediate A, by means of formulas which join them to the mixed quenching 
mechanism is investigated. The black sphere model, which describes the diffusion and hopping 
limits to lowest order, is shown to be invalid for intermediate A,. 

1. INTRODUCTION 

Random walks of electrons or excitons with a finite mi- 
gration length A, are accompanied by trapping in liquid and 
solid solutions. The trapping rate constant was originally 
calculated by Smolukhovskii (cf. Ref. 1) for the case when 
Ao+O, i.e., when the random walk can be approximated by 
continuous diffusion. He also assumed that trapping is cer- 
tain to occur once the particle enters a "black sphere" of 
radius R, surrounding the trap, and that no trapping occurs 
outside this sphere. The phenomenological black sphere 
model is now widely employed; it defines the trapping rate as 
the frequency kc of encounters with traps, where c is the 
density of the traps, 

k=4nH,D, (1.1) 

and D is the encounter diffusion coefficient. This theory is 
essentially the same as the ones developed later in Refs. 2 4 ,  
which merely determine the dependence of R, on D and de- 
fine the black sphere radius R, more precisely in terms of the 
probability w(r) for an electron or exciton to reach a trap. 

However, the diffusion approximation for the approach 
to a trap is not always correct. The transport probability w(r) 
falls off so rapidly with distance that the characteristic diam- 
eter of the strong interaction region in which trapping is 
certain is usually comparable to or even less than A,. In this 
case only a single "hop" is needed to take the particle into the 
strong interaction region, and the diffusion description be- 
comes invalid. However, the black sphere formalism may 
also be useful in this case; the radius R ,  of the spheres is now 
determined by the hopping frequency r; ' rather than by 
D = A :T; '. The black sphere model yields5v6 

for the quenching rate constant associated with hopping; the 
dependences of the rates kin (1.1) and (1.2) on the electron or 
exciton migration rates and transport constants are general- 
ly different. 

Equations (1.1) and (1.2) are valid f o r A o 4  andA,-+ w , 
respectively, and remain approximately correct even for fin- 
ite A, if we neglect corrections of order A, and A ; ' in the 
diffusion and hopping cases, respectively. However, there is 

a large intermediate region in which neither formula is valid. 
In order to judge the success of the black sphere approxima- 
tion in the diffusion and hopping limits and for intermediate 
values A,, it will therefore be of interest to analyze the rela- 
tively few cases in which the problem admits an exact solu- 
tion for arbitrary A, without recourse to the black sphere 
formalism. 

Such a program was first carried out in Ref. 7 for migra- 
tion of self-stabilized electrons in a liquid (the Torrey mod- 
el8). The interest in Ref. 7 was primarily in the "exchange" 
mechanism of trapping, whose probability decays exponen- 
tially with distance: 

w ( r )  =wo exp ( -2r lL) .  (1.3) 
In the binary trap approximation, the problem reduces to 
solving an integral equation which has a kernel of a specific 
form. This equation characterizes the hopping length distri- 
bution for average hopping times and lengths equal to T, and 
A,, respectively. The general expression for the rate constant 
is 

where the effective trapping radius RQ depends on T, and A,. 
The ratio R Q / R s  tends to 1 and 0 in the diffusion and hop- 
ping limits, respectively. A "mixed" trapping mechanism 
for intermediate A, was assumed in Ref. 7, i.e., the rate con- 
stant k = 4 r R ,  D contained the characteristic parameters 
for both the diffusion and the hopping limits as multiplica- 
tive factors. If this approximation is correct, R p / R ,  should 
not decrease monotonically as A, increases from 0  to w but 
should pass through a low maximum, because R ,  is larger 
than R, for intermediate A,. The situation is exactly the 
same for trapping (quenching) of an incoherent excitation by 
the multipole mechanism; in this case the trapping probabil- 
ity decays as a power of the distance, 

w ( r )  =cDalrm. (1.5) 

Although this situation was analyzed semiquantitatively in 
Ref. 7, the results have been used on several occasions to 
estimate the quenching rate for intermediate A, for migra- 
tion of excitations along impurity centers in solid solu- 
t ion~.~-"  

We emphasize here that the migration mechanisms in 
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continuous media are physically distinct from those in solid 
solutions, and this is reflected in the form of the kernel in the 
integral describing the random walk, which is considerably 
more complicated for random walks over a disordered sys- 
tem of centers in a solid. In this case the problem can only be 
solved numerically. Such a solution was given in Ref. 12 for 
dipole-dipole migration and quenching. The ratio RQ/R, 
was found to decrease monotonically with decreasing 
z = c, /cDD, where cDD is the constant for resonant trans- 
fer of excitation between identical centers. Since A, increases 
as z decreases, this result shows that at least for the dipole- 
dipole interaction, RQ/R, has no maximum as A, increases 
from 0 to a. 

In the present work we examine the generality of this 
result and explore its physical origin by means of direct cal- 
culations for multipole and exchange quenching in the Tor- 
rey model and by using approximate formulas (including 
first-order corrections in A, and A ; ')to extend the solutions 
into the intermediate region. We calculated RQ quantita- 
tively for both exchange and multipole quenching by extend- 
ing the theory developed previously in Ref. 7. We found that 
the dependence RQ/R, (A,) was in fact monotonic in both 
cases; moreover, a satisfactory description was achieved by 
joining the approximate first-order formulas together at the 
center of the intermediate region. The use of the mixed rate 
constant for intermediateil, is unjustified because it assumes 
a greater accuracy than the black sphere model (which is 
zeroth-order in A,) is capable of providing. 

2. EXCHANGE QUENCHING OF LUMINESCENCE 

The hopping mechanism for electron trapping in li- 
quids was detected experimentally in Ref. 13, where the re- 
sults were interpreted using Eq. (1.2). Similar behavior was 
observed in Ref. 14, where electron conduction in chalco- 
genide glass semiconductors was studied. However, in our 
context it is preferable to consider trapping of triplet excita- 
tions rather than electrons. The migration and trapping 
(quenching) of triplet excitations both involve the exchange 
interaction, which like the resonant interaction decays ex- 
ponentially with distance. The kinematics of migration and 
trapping are thus identical for electrons and incoherent tri- 
plet excitons. By analyzing the quenching of luminescence 
rather than electron trapping, we will be able to compare the 
rate constants for quenching of triplet and singlet excita- 
tions, i.e., to make comparisons between quenching by the 
exchange mechanism with probability (1.3) discussed in this 
section and the multipole quenching given by Eq. (1.5), 
which we will discuss in Sec. 3. 

The encounter theory7+l5 gives the expression 
m 

k= w (r) n (r) 4nr2 d i ,  (2.1) 
0 

for the steady-state quenching rate, where n(r) is the distribu- 
tion of excitons around an acceptor (which is assumed to 
occupy a negligible volume). This distribution is described 
by the integral equation 

m 

1 
a (r) n (r) - - [ n ( r )  -4n j f ( r ,  r )  n ( r )  r2 d r  ] =0, (2.2) 

t o  0 

whose kernel 

specifies the probability that an exciton at a distance of x 
from the acceptor will make a single hop (during an average 
time r,) and enter a spherical shell of radius r. The hopping 
length distribution in the Torrey model8 is given by 

1 
@ (z) = - exp (-z/ho) ; 

A 0  
(2.3) 

here A, is the most probable length, and the mean square 
displacement is A = 6A g. Although the Torrey model cor- 
responds to a definite random walk mechanism, we are inter- 
ested in it primarily because it admits an exact solution. 

An exact solution is possible because the integral equa- 
tion (2.2) can be reduced to the differential equation 

where the function ~ ( r )  = n(r)[l + w(r).r,]must be bounded 
for r = 0 and satisfy the obvious boundary condition 
~ ( C O  ) = n( ) = 1 at infinity. Because w(r) decays with dis- 
tance at least as rapidly as F 3 ,  7 and n both have the same 
limiting behavior given by the familiar expression 1 - R,/ 
R, for large r. This suffices to determine the rate constant 
(1.4), because the effective quenching radius 

d 
RQ= lim rZ - q (r) 

,,, dr (2.5) 

is just the parameter in the asymptotic expansion of 7 for 
large r. 

The calculation in Ref. 7 gave the result 

R,=6[ln yz+g4-2$ (112) +x+G (g, x)  ] (2.6) 
for exchange quenching (1.3). Here S = L /2, y = ec (where 
C is Euler's constant), 5 = ln(w,r,), x = Ads,  

r2 (I lx)  F (1/x, 111, I+2/2; -e-&) exp (-Elx) 
G(E,x)= 2I'(2/x) F (-llx, l lx ,  1; -ek) 

, (2.7) 

and F ( a ,  P,y; z) is the hypergeometric function of the first 
kind. This general result describes both the kinetic stage of 
quenching, which is independent of the relative motion of 
the partners, and the migration-dominated stage, in which 
the kinematics of the approach of the partners plays a role. 
Since we are interested only in the migration-dominated 
stage, we will confine our attention to the halfplane {> 0 
(Fig. I), where the quenching is rapid and is therefore limited 
by the kinematics. We divided the 6 > 0 plane into three re- 
gions of small, intermediate, and large A, corresponding to 
the diffusion, mixed, and hopping quenching mechanisms. 
An adequate estimate for RQ in the diffusion and intermedi- 
ate regions can be obtained by setting G = 0 in (2.6), 

On the other hand, the formula 
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will see below that the exchange and multipole quenchings 
can be compared only in this section. 

We will now analyze the limiting behavior of (2.8) for 
X( 1 and x) 1 and show that for large g, the approximations 
(2.8) and (2.9) completely cover the intermediate region ofA, 
values between the diffusion and hopping limits. For x(1, 
which corresponds to the diffusion limit, we have 

and R, = 612 ln(y/x) + 41. For x )  1 we have 

R,=R,-&, (1-1,6Xiz/hG2+0 (S3/hoZ) ) , 6<ho, 

where R, = Sg. If we expand Eq. (2.9) in the parameter f /  
x)l,  we get 

FIG. 1. Boundaries demarcating the migration-controlled quenching RQ=R,-Xo[ 1-2 exp (-2R,/Xo) 1, ho<R,. 
mechanisms; D is the diffusion region (x < 1); the intermediate region M 
lies between the { axis and the heavy curve, which bounds the hopping The lowest in 
region J from above. The vertical and slanted lines correspond to the 
sections rO = const and D = const, respectively. RQ=R,-Lo, 6Kh0<R,. (2.12) 

This shows that Eqs. (2.8) and (2.9) can be joined at least for 
values S4A,(R, within the intermediate region (if in fact was derived in Ref. 7 for the intermediate and hopping re- 
they do not overlap it completely). For f /x4 1 outside this sions. 
region, Eq. (2.9) yields the result A direct numerical calculation using Eqs. (2.6), (2.8), 

and (2.9) will give complete information regarding the exact 
R Q = F [ i - T ( h - ) 2 ] .  2 R, RwKLo, solution in any cross section of the region in which it is de- 

(2.13) 
3ho 

fined, as well as information on the approximations from 
above and below (corresponding to the hopping and the dif- 
fusion limits). It is natural to take the section defined by 
g = const as the vertical section (Fig. 2). Since the character- 
istic parameter To of the hopping model is constant in this 
section, it is interesting to choose the other section (Fig. 3) so 
that D = il ir; ' = const,i.e., 

~ 0 6 ~  
t = 2  In xf ln-. n (2.10) 

The constant terms wJ2/D must be large in this section in 
order for diffusion to dominate the quenching process. We 

t n x  

FIG. 2. 

which is valid for the hopping mechanism of quenching. 
Numerical calculation confirms that the approximate 

results (2.8) and (2.9) join together roughly in the center of 
the intermediate region both for ro = const (Fig. 2) for the 
D = const (Fig. 3). Figure 3 also shows that they asymptoti- 
cally approach the curve (2.12) for the mixed mechanism; 
however, this approach is to opposite branches of the curve 
and occurs outside the region where (2.12) is valid. In other 

FIG. 3. Relative decrease in the quenching rate constant in the section 
D = const [In(wd2/D ) = 101. The vertical line gives the boundary for the 
hopping mechanism; the veritcal axis In(x) = 0 gives the boundary for the 
diffusion regime. The notation is the same as in Fig. 2, except that the light 
curve shows the approximation (2.12) corresponding to the mixed quench- 
ing mechanism. 
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FIG. 4. Approximation of the exact solution shown in Fig. 3 by the ap- 
proximate formulas (2.1 1 )  (long dashes) and (2.13) (dashed-and-dotted 
curve). Only the lowest-order corrections to the diffusion and hopping 
descriptions in the black sphere model are included. 

words, the mixed quenching mechanism gives an acceptable 
approximation only in a narrow region where the diffusion 
and hopping solutions join. The penetration distance of each 
of the limiting solutions into the mixed region is shown in 
Fig. 4, where these solutions are replaced by curves showing 
the behavior of the diffusion and hopping solutions (2.11) 
and (2.13), which do not join. 

Although these results taken together indicate that a 
mixed quenching mechanism does exist, it is easy to see that 
the estimate for the effective radius given by the black sphere 
model is invaIid. Indeed, this approximation is correct only 
for the first terms in (2.11)-(2.13). In the diffusion or hopping 
limits, we can take A, or A ; ' to be so small that the correc- 
tion terms in (2.1 1) and (2.13) become insignificant; if we 
neglect them, (1.4) leads to (1.1) or (1.2), respectively. How- 
ever, the situation is different for intermediateil,. Since A, is 
bounded from below by 6, if we neglect the corrections to Re 
in (1.12) the resulting error will exceed the difference 
between the effective radii for the diffusion and mixed re- 
gimes. In fact, the above discussion implies that 

Consequently, for x,  1 in the intermediate region, 

Thus Rp is less than R, here; however, if we neglect A,, we 
will have RQ ZR,, which is greater than R,, cf. Fig. 3 in 
Ref. 7. It might therefore appear that as A, increases from 
the diffusion to the mixed regimes, the radius and quenching 
constant should increase. In fact, however, they both de- 
crease monotonically as A, increases; in other words, the 
black sphere model, which neglects corrections of order A, 
to the quenching radius, is not valid for intermediate A,. 

On the other hand, the black sphere model can be used 
as a first approximation for both the diffusion and the hop- 
ping regimes. In addition, this model is convenient because 

approximate formulas with a straightforward physical inter- 
pretation can be used to calculate the radii of the black 
spheres up to a numerical factor. In the case of diffusion, one 
requires that the time needed to cross the layer of thickness 6 
bounding a sphere of radius R, be long enough to permit 
complete quenching: 

Substitution of (1.3) into (2.16) leads to the correct formula 
for R,, except that y = 1 instead of e C .  For the hopping 
regime, quenching must occur during a single hop while the 
excitation remains inside a sphere of radius R, : 

If we substitute (1.3) into (2.17), we recover the exact 
expression for R,. Of course, this agreement with the exact 
result is to some extent fortuitous and is a consequence of the 
rapid decay of the quenching probability w(r) with distance. 
The numerical discrepancy for multipole (in particular, di- 
pole-dipole) quenching may be large; nevertheless, the func- 
tional form of the dependences R, (D ) and R, (T,) is correctly 
reproduced, provided the thickness S of the quenching layer 
is suitably chosen. 

3. MULTIPOLE QUENCHING 

We can analyze multipole quenching without altering 
the kinematics of the random walk by substituting the prob- 
ability (1.5) into Eq. (2.4). This gives 

d2y Lo2 - - (D ( r )  y=O, 
dr2 

where y = r-q, and 

(D ( r )  = 
w(r)  To - - 

1 

l +w ( r )  T, (~/R~)"'+T ' 

where R, = (c, T,)'/". Since this equation cannot be 
solved exactly, the quenching rates were only estimated se- 
miquantitatively in Ref. 7 by means of Eqs. (2.16) and (2.17). 
The previous discussion clearly shows that these estimates 
are inadequate for intermediate lengths A,. We will therefore 
proceed differently and use the approximation 

(3.3a) 
(D ( r )  = {'(Ru>r)m iz2 (3.3b) 

which permits an analytic solution. We thus have two re- 
gions r<R, and r > R, in which the solutions are different. 
In the first case, the quenching saturates: 

y,=C, sh (rll-,), rGRu, (3.4a) 

while elsewhere we have 

~a=r'"{Cl-,[rp ( r )  I -C,I,[cp ( r )  I ) ,  r>R,, (3.4b) 
with #(r) = 2ve (R, /r)'/2v and 

O=R,lh,, I.= (m-2)-'. (3.5) 

In order to obtain a complete solution of (3.4) valid for 
all r, we must join the solutions y, andy, together with their 
first derivatives at the point r = R, and invoke the boundary 
condition y, /r = 1 fory, as r-+ co , which immediately leads 
to 
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The matching conditions then determine two additional 
constants, of which we will need only 

since [cf. (2.5)] the radius can be expressed in terms of Cb as 

The last two formulas give the final expression 

The matching conditions cause both the modified Bessel 
functions I, and their derivatives I to appear in the result 
(here the primes denote derivatives with respect to the argu- 
ments). The parameter v characterizes the steepness of the 
multipole quenching (regarded as L /2-exchange), and the 
correspondence among the remaining quantities is estab- 
lished by setting { /x  = 0. 

It is clear from the preceding that the inequality 8 )  1 
rules out the hopping mechanism of quenching. However, 
this does not suffice to justify using the diffusion limit, which 
in this case requires that 

Indeed, when (3.8) holds we can use the asymptotic expan- 
sion for the Bessel functions in (3.7) to get 

r ( I - V )  1 
RQ=R, (v0) " --- [ I - %( v + t) a-'"' sin nv 

r ( i S - ~ )  

(3.9) 
On the other hand, in the hopping limit when 

v0<0<1, (3.10) 

expansion of (3.7) with respect to the small parameters leads 
to 

For v( 1, the regions defined by (3.8) and (3.10) are separated 
by a gap vRW -gAO(Rw in which the quenching may be re- 
garded as mixed. The correction terms in (3.9) and (3.1 1) 
make it possible to extrapolate the results for the diffusion 
and hopping mechanisms to intermediate A,. 

If these corrections are neglected, we recover the famil- 
iar formula16 

for diffusion quenching; moreover, the radius for the hop- 
ping regime 

coincides with its exchange analog, apart from a numerical 
factor. 

These results can be derived (up to the numerical factors 
found above) from Eqs. (2.16) and (2.17), respectively, if we 
take 

8=vR,. (3.14) 

This formula refines the definition S = R, /m given in Ref. 7 
for the thickness of the quenching layer bounding the black 
sphere. Formula (2.16) for calculating R, (D ) is radically dif- 
ferent from the formula w(R,)R 1/30 = 1 suggested pre- 
viously in Refs. 17 and 18. The latter formula assumes that 
quenching occurs throughout the time the excitation is con- 
tained inside the black sphere; in fact, however, only the time 
needed to diffuse across the boundary layer of the sphere (of 
thickness S ) is relevant, because the excitation is completely 
quenched inside this layer. This can be seen clearly from Fig. 
5, which plots the exciton flux J = - 4n-?Ddn/dr reaching 
an acceptor as a function of the relative distance r/R, from 
the acceptor; the gradient VJ, which gives information on 
the spatial distribution of the quenching, is also shown. 

In view of the definition (3.14), we can now introduce 
the quantities x = A,/S and 

E=Rm/6= (m-2) x2'", (3.15) 

which are identical to the ones used in Sec. 2. We see from 
(3.15) that x and 6 are uniquely related for multipole quench- 
ing, regardless of whether D or r, is assumed to vary while 
the other is constant. The radius R, calculated from the 
general formula (3.7) gives complete information regarding 
the gradual transition from diffusion to hopping quenching 
as x increases (Fig. 6). Although the interval of x values se- 
parating these two extremes is quite wide, the lowest-order 
corrections for the finiteness ofA, in (3.9) and (3.11) enable us 
to extend the solution roughly as far as the midpoint of the 
intermediate region. There is thus no need to derive the ana- 
logs of (2.8) and (2.9) for multipole quenching. If we compare 
Figs. 4 and 6, we see that the qualitative behavior for multi- 

FIG. 5. Normalized exciton diffusion flux J ( R  ) / J (m ) toward an acceptor 
(dashed curve) and its derivative (solid curve), which reflects the spatial 
distribution of the quenching ; m = 10 and R, is the distance of closest 
approach. 
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FIG. 6. Change in the rate constant for dipole-dipole quenching as the 
length of an elementary hop increases (heavy curve). The approximations 
given by Eqs. (3.9) and (3.1 1) (dashed and dashed-and-dot curves, respec- 
tively) are also shown; only the lowest-order corrections are included. 

pole and exchange quenching is the same. The quenching 
rate can be calculated adequately by the black sphere model 
for both the diffusion and the hopping limits, provided the 
sphere radii are given by Eqs. (2.16) and (2.17). However, the 
leading corrections to the black sphere approximation must 
be included in order to describe the quenching for intermedi- 
ate A,, and the transition from the diffusion to the hopping 
regimes can be established only through exact calculations. 
Although this transition is accompanied by a monotonic de- 
crease in R Q / R ,  which is characteristic for each type of in- 
teraction, the qualitative behavior is apparently independent 
of the details of the interaction and of how the migration 
occurs. In any case, the behavior is similar to that found in 
Ref. 12 for dipole quenching in the case of migration over a 
disordered system of centers with quasiresonant dipole-di- 
pole energy transfer. 

IN. N. Tunitskc, Diffuziya i sluchainnye protsessy (Diffusion and Ran- 
dom Processes), Nauka, Moscow (1970); U. M. Gosele, Reaktionskinetik 
und Diffusion in Kondensierten System, Univ. Stuttgart (1980). 

ZP. G. Gennes, J. Phys. Chem. Sol. 7, 345 (1958); G. R. Khutsishvili, Zh. 
Eksp. Teor. Fiz. 42, 131 1 (1962) [Sov. Phys. JETP 15, 909 (1962)l. 

3N. N. Tunitskiiand Kh. S. Bagdasar'yan, Opt. Spektrosk. 15, 100 (1963) 
[Opt. Spectrosc. (USSR) 15,50 (1963)l; S. F. Kilin, M. S. Mikhelashvili, 
and I. M. Rozman, Opt. Spektrosk. 16, 1063 (1964) [Opt. Spectrosc. 
(USSR) 16, 576 (1964)l. 

4M. J. Piling and S. A. Rice, J. Chem. Soc. Faraday Trans. 71, 1563 
(1975); Yu. A. Berlin, Dokl. Akad. Nauk SSSR 223, 625 (1975); A. B. 
Doktorovand A. I. Burshtein, Zh. Eksp. Teor. Fiz. 68, 1349 (1975) [Sov. 
Phys. JETP 41,671 (1975)l. 

5A. I. Burshtein, Zh. Eksp. Teor. Fiz. 62, 1695 (1972) [Sov. Phys. JETP 
35, 882 (1972)l. 

6A. I. Burshtein and L. D. Zusman. O D ~ .  S~ektrosk. 38,1020 (1975) IOD~. . .  - , , - A  

Spectrosc. (USSR) 38, 588 (1975). 
7A. B. Doktorov, A. A. Kipriyanov, and A. I. Burshtein, Zh. Eksp. Teor. 
Fiz. 74, 1184 (1978) [Sov. Phys. JETP 47, 623 (1978)l. 

'H. C. Torrey, Phys. Rev. 52, 962 (1953). 
91. A. Bondar', V. A. Smirnov, N. A. Shcherbakov, et al., Zh. Eksp. Teor. 
Fiz. 81, 96 (1981) [Sov. Phys. JETP 54,45 1981)l. 

1°Yu. E. Perlin, A. M. Tkachuk, and S. I. Klokishner, in: Proc. Seventh 
All-Union Symp. on Spectroscopy of Crystals Activated by Rare-Earth 
Metal Ions [in Russian], Leningrad (1982). 

"I. A. Bondar', A. V. Krutikov, L. P. Mezentseva, et al., ibid. S. N. 
Perepechko, Yu. S. Privis, V. P. Sakun etal.,  Dokl. Akad. Nauk 271,615 
(1983) [Sov. Phys. Dokl. 271, 581 (1983)l. 

lZB. E. Vugmeister, Phys. Status Solidi B 90, 71 1 (1978). 
"B. S. Yakovlev, S. Vanin, and A. A. Balakin, Khim. Vys. Energ. 16, 139 

(1982). 
I4L. E.Stys and M. G. Foigel', Fiz. Tekh. Poluprovodn. 15, 761 (1981) 

[Sov. Phys. Semicond. 15,431 (1981)l. 
15A. A. Kipriyanov, A. B. Doktorov, and A. I. Burshtein, Chem. Phys. 76, 

149, 163 (1983). 
16B. Ya. Sveshnikov and V. I. Shirokov, Opt. Spektrosk. 12, 576 (1962) 

[Opt. Spectrosc. (USSR), 12, 320 (1962)l. 
I7V. L. Shekhtman, Opt. Spektrosk. 33,284, 776 (1972) [Opt. Spectrosc. 

(USSR) 33, 152 (1972)l. 
I'D. C.  Huber, Phys. Rev. Ser. B 20,2307 (1979). 

Translated by A. Mason 

521 Sov. Phys. JETP 61 (3), March 1985 BurshteYn etal. 521 


