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We analyze how line surface defects of the substrate crystal affect the correlation characteristics 
of the solitons which form in adatom lattices which are incommensurable with the substrate. 
Randomly arranged "frozen" defects always localize solitons. The width of the localization re- 
gion is studied as a function of various parameters. Some experimentally verifiable consequences 
of localization are pointed out. 

1. Incommensurable structures are presently an active 
field of research. Among the systems of this type are the 
lattices of atoms which are adsorbed on the surface of a crys- 
tal substrate and which have periods incommensurable with 
those of the substrate. Structures of this type are extermely 
numerous and are seen in a huge number of adsorbate-sub- 
strate systems. Consequently, interest in these systems stems 
from not only purely physical considerations but also practi- 
cal considerations. An understanding of the behavior of such 
systems is necessary for reaching an understanding of many 
surface processes. 

Near the point of commensurability, incommensurable 
lattices consist of large regions of a phase which is commen- 
surable with the substrate, separated by linear regions in 
which the commensurability is disrupted--domain walls or 
solitons. Recent experiments, including some direct diffrac- 
tion experiments,' have revealed several facts which confirm 
the existence of a soliton superstructure in adsorbed films. A 
detailed theory has been worked out for soliton superstruc- 
tures on an ideal (defect-free) substrate (see the reviews in 
Refs. 2-4). However, we know that defects may play a domi- 
nant role in the behavior of few-dimensional systems. At the 
surface of the crystal there are both point defects (vacancies, 
impurities, etc.) and line defects (steps). The effect of point 
defects was studied in Refs. 5-7. In the present paper we 
examine the effect of a random arrangement of line defects 
on the behavior of an individual soliton. This is a problem of 
current interest because defects may play a crucial role in the 
dynamics of solitons, as experiments have shown.' The prob- 
lem of a soliton in the field of line defects is also of method- 
ological interest, since it may be studied both by renormal- 
ization-group transformations and by reduction to the 1D 
quantum-mechanical problem of a particle in a random po- 
tential. 

In Section 2 we formulate the model of the lattice of 
adatoms and of substrate defects which we will use. In Sec- 
tion 3 we examine localization in the case of a single poten- 
tial well. In Section 4 we do the same for the case of random- 
ly positioned potential wells or barriers at high 
temperatures. In that section we also point out some conse- 
quences of soliton localization which would be verifiable ex- 
perimentally. 

2. As a model of the incommensurable lattice of ada- 
toms we choose a system in which the periods of the ad- 

sorbed film and those of the substrate are commensurable 
along the x direction but incommensurable along y; this is a 
model of an anisotropic crystal.24 In the weak potential re- 
lief of the substrate, the energy of the adsorbed film can then 
be written 

Here A is the elastic constant of the adsorbed film, a is the 
period of this film, b is the period of the substrate, u is the 
displacement of an adatom along they  axis, and w is the 
amplitude of the potential relief of the substrate. A detailed 
description of the model and many examples of experimental 
systems which it describes are given in the reviews in Refs. 2- 
4. A soliton in this model is a density wave of width I,- b (A / 
w ) " ~  along they axis, which is extended along the x axis. 
This wave is described in the continuous approximation by 

Direct substitution easily shows that the energy of the soli- 
ton does not depend on its position on the surface. An indi- 
vidual soliton can thus be described by the Hamiltonian 

Herep (x) is the displacement of the soliton along they axis at 
the point x, and J -  (Aw) '''a is the corresponding elastic con- 
stant. 

Steps on the surface of the crystal are typical defects, 
and their effects on adsorption, diffusion, etc., have been 
studied by many investigators (see the review by Wagner9). 
Steps would not necessarily be natural defects of a crystal 
surface (growth steps); they can also be produced artificially, 
and this can be done with a high density on so-called vicinal 
 surface^.^ We consider steps which extend along the x axis, 
i.e., in the same direction as the soliton. This model corre- 
sponds completely to the experimental situation on aniso- 
tropic crystal faces, where incommensurable, crystals of the 
type under consideration here are ob~erved .~  If the direc- 
tions of the steps instead make some angle with the direction 
of the soliton, the problem essentially reduces to the point- 
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FIG. 1. Pinning of a soliton by an isolated potential well. The well is 
indicated by the parallel solid lines. The region of the soliton is the hatched 
region. The dashed lines show the localization band. 

defect problem studied in Ref. 6. Fluctuations of the dis- 
placement of a step from the x axis are unimportant, as we 
will show below (Section 3), since the soliton itself fluctuates 
much more substantially. As a rule, steps are potential wells 
for adatorns9 The simplest model potential of a step is 

Substituting the single-soliton solution (2) into this expres- 
sion, we find an expression for the soliton pinning potential: 

We see that a step is a well (or barrier) of width -Io for a 
soliton and extends along the x axis (Fig. 1). The local nature 
of the step potential is its most characteristic feature. For 
convenience in the calculations, we choose a potential of a 
slightly different form, but one which is still localized in a 
band of width I,; specifically, we choose a potential of Gaus- 
sian shape. The contribution of the step potential to the Ha- 
miltonian of the soliton-step system is then 

V= J dxuO exp ( - q p ' / 2 i t ) .  

The same functional dependence of the defect potential on 
the coordinate y was used in Refs. 5 and 6. 

3. We consider the situation in which there is only a 
single defect: a potential well extended along the x axis. The 
Hamiltonian of the problem is then of the form H = Ho + V, 
where Ho and Vare defined in (3) and (6). For the analysis it is 
convenient to reduce the problem to a 1D quantum-mechan- 
ical problem. The rules by which this transformation of the 
problem is made are as fo l l~ws . '~~"  The Hamiltonian H is 
associated with the quantum-mechanical Hamiltonian 

The field correlation function p is expressed in terms of ma- 
trix elements, 

where En are the energy levels of Hamiltonian (7). Clearly, a 
soliton will be at the bottom of the well at T = 0. As the 
temperature increases (correspondingly, as the quantum 
fluctuations grow), the amplitude of the soliton fluctuations 
grows, and the energy of the ground state vanishes, E o 4 .  In 
a one-dimensional well, however, there is always a level with 
an energy l 2  

If v(p ) corresponds to (6), we have the following expression 
for Eo: 

The presence of a level in the well means that outside the well 
the wave function decays exponentially; i.e., the soliton is 
localized near the well at any temperature. The width (I, ) of 
the localization region (Fig. 1) is determined by the argu- 
ment of the exponential function in the wave function of the 
bound state. In the high-temperature limit we have 

I,= ( 2 / n )  '"T21J~oZo. (11) 

The correlation function G (x) behaves in accordance with 
exp( - lxl/r, ), where r, (Fig. 1) is the distance over which a 
soliton is trapped by the well potential: 

r,=T3/lnJvO2Lo2. (12) 

We will now show how the same results can be derived 
by a renormalization-group approach. We return to the Ha- 
miltonian H = Ho + V in (3) and (6). The free energy F is 

Expanding (1 3) in powers of V/T, we find the average energy 
of the pinning by a well: 

We make a transformation analogous to the renormaliza- 
tion-group tran~formation'~ in (14). In p we pick out a quan- 
tity p,,  as follows: 

9, 

2n 
p=po+pl. T I =  dqrp,eiqx, go  = -. (15) 

90 

We integrate over p, in (14) and change the scale: 

xT=5x,  t;=qo/q,. (16) 

Since the potential is of Gaussian shape, its shape is not 
changed by this transformation; there is simply a renormal- 
ization of u, and I,: 

The physical meaning of (17) is simple: The probability for 
finding a soliton in a well is -Idl,  and the corresponding 
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binding energy for the binding of a "piece" of the soliton of 
length <a with the well is of order <av,l,Jl, where I is deter- 
mined by the expression for a freely fluctuating soliton. It 
can be seen from (17) that the integration over the short- 
wave components leads to an increase in pinning potential 
(6). The energy (E ) of the fluctuations of the free soliton de- 
scribed by Hamiltonian (3) decreases in accordance with 

At a certain < = <, the energies E and V become compara- 
ble. Equating them, we find expressions for <,, i.e., for 
r, =<,sand I,: 

We thus find values of I, and r, which agree with the exact 
values in (1 1) and (12). This example shows that the renor- 
malization-group approach makes it possible to derive the 
correct results in the high-temperature limit through an 
analysis of a perturbation-theory series. 

How do fluctuations of the displacement of the well 
affect the results derived above? Here it is convenient to take 
the renormalization-group approach. The step is a one-di- 
mensional entity, and its fluctuations can be described by a 
Hamiltonian of the type in (3). Its stiffness J, , however, must 
be significantly greater than J ,  because the interaction ener- 
gy between substrate atoms is at least an order of magnitude 
greater than the adatom interaction energy (the difference 
would be by several orders of magnitude in the case of an 
inert-gas adsorbate). The fluctuations of the displacement of 
the step are thus determined by the same law as that which 
determines the displacements of the soliton, (17), but these 
fluctuations are considerably smaller in amplitude. Since the 
displacement of a step results from a diffusion of substrate 
atoms, this process is exceedingly slow at temperatures not 
too close to the melting point of the substrate. We may thus 
treat the steps as frozen defects with respect to a soliton. 
Formally, we can introduce a dependence on the well coordi- 
nate, p,(x), in the potential (6), using the substitution 

We take the average of free energy (13) (the defects are fro- 
zen) over p, with a Hamiltonian of the type in (3). As a result 
we find an increment in the expression for 1 in (17), a term 
Ta(5 - 1)/n-J, , which is small in comparison with the contri- 
bution from the soliton fluctuations. We will therefore as- 
sume everywhere below that the steps do not fluctuate. 

4. It was shown above that a soliton is always localized 
at an isolated potential well. If the wells are arranged in a 
strictly periodic fashion, however, the soliton becomes delo- 
calized. This result can be understood easily by considering 
the quantum-mechanical analogy. A level of an isolated well 
is "smeared out" into a band in a periodic potential relief, 
and the wave functions become delocalized. If, on the other 
hand, the strict periodicity in the arrangement of wells is 
disrupted, we know that a localization will occur (Ref. 14, 
for example). A soliton will therefore be localized even if 
there is a finite density of randomly positioned steps. 

The expressions for the width of the localization band 

will of course depend on the particular potential, the tem- 
perature, and so forth. In this section of the paper we consid- 
er the high-temperature case, in which the width of the local- 
ization band is significantly greater than the average 
distance between steps. Since the effect arises in second or- 
der in v,, the results do not depend on the sign of v,. In this 
case the energy of the interaction with the substrate is 

Here p, represents the coordinates of the steps. We take the 
renormalization-group approach. The first nonconstant cor- 
rection to the free energy arises in second order in v,, and is 
given by the following expression, before we take an average 
over the step coordinates p,: 

Here the angle brackets denote an average over the fields e, 
and $with Hamiltonian H, in (3). If (Section 3) the condition 
I, )I, holds, where I, is the average distance between steps, 
the averaging over the positions of the steps reduces to an 
integration over p,. As a result we find 

In deriving (21) we have implicitly assumed I, )I,, which is 
obviously irrelevant to the conclusion that localization oc- 
curs. We now use the fields p and $ simultaneously to carry 
out the transformation described in Section 3. As a result we 
find 

Repeating the arguments in Section 3, we find expressions 
for the width of the localization band, I,, and the trapping 
distance r, : 

As in the preceding section, these results can be de- 
fended on the basis of 1D quantum mechanics. For this pur- 
pose we use an expression for the localization distance of a 
particle in a "white noise" potential. This question is ana- 
lyzed in detail in the book by Lifshits et a1. l4  In the units used 
in Ref. 14, the Schrodinger equation is 

If the localization length (corresponding to 1, in our case) 
satisfies Ic%Is, potential (25) may be regarded as a white 
noise. It is customary to characterize such a potential by the 
quantity l4  
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which can easily be calculated. As a result we find, for poten- 
tial (6), 

The localization length is14 I, = 4Ec /D, where E, is the en- 
ergy of a particle. In these units, the energy of a particle 
localized in a region of size I, is E, -1, -'. We thus find an 
expression for I, which is the same as (23). 

In summary, it fullows from these calculations that soli- 
tons localize at line defects, even at high temperatures. This 
circumstance has some experimentally verifiable conse- 
quences. One concerns the soliton density index. At a com- 
mensurable-incommensurable phase transition, the soliton 
density n varies with the chemical potential of the gas in the 
chamber, p, in accordance with either n a ( p  -,u,)~ or 
n a In- '( p - p, ) with s = 0 (Refs. 2-4). Herep, is that val- 
ue of the chemical potential at which solitons first form. The 
soliton density index s is determined by the extent to which 
the soliton interaction energy falls off over distance. For a 
clean substrate at T = 0 we would have s = 0 (Refs. 15 and 
2-4), since in this case the solitons interact exponentially 
weakly. If the substrate is ideal, and 7' #O, the interaction 
between solitons is of a power-law nature because of thermal 
fluctuations, and we haves = 1/2 (Refs. 16 and 2-4). For a 
substrate with point defects at T # O  we haves = 5/6, since 
in this case the fluctuations caused by the nonuniform ar- 
rangement of defects d ~ m i n a t e . ~  In the case of a substrate 
with a significant density of line defects, e.g., a vicinal sur- 
face,9 localized solitons will interact exponentially weakly 
even at high temperatures. This circumstance may give rise 
to a behavior n a In-'( p - p, ), by analogy with the case of 
the exponentially weak interaction at T = 0 on a clean sub- 
strate. l5 

The localization of a soliton means that an infinite soli- 
ton cannot move over the substrate even in an arbitrarily 

weak random potential. In this case, displacements of a soli- 
ton can occur only as a result of its rupture, followed by a 
motion of the resulting "pieces." We will not go into this 
process in detail here; we simply note that in the limit T+O 
the activation energy for the displacement of a soliton, even 
in a weak potential relief, is determined by the soliton rup- 
ture energy, as in the case of strong pinning by defects." 

I wish to thank V. L. Pokrovskiifor a discussion of these 
results. 
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