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The attenuation factors for low-frequency sound and second sound in pure insulators are calcu- 
lated. The finite lifetime and dispersion of the longitudinal phonons are taken into account. The 
results are compared with results derived previously. 

1. INTRODUCTION 

The absorption of low-frequency sound, at frequencies 
below the reciprocal of the relaxation time (the collision rate) 
of thermal phonons, was first studied in Refs. 1-3. In this 
case the sound may be regarded as an external factor which 
alters the distribution function and energy of the phonons. 
These changes give rise to an irreversible dissipation of the 
energy of the sound waves. This dissipation is determined by 
the temperature and by the rate of change of the entropy of 
the thermal phonons. 

In addition to the external agent-the sound-the pro- 
babilities of various microprocesses in the phonon system go 
into determining the phonon entropy. In pure crystals the 
simplest of these are those three-phonon processes which are 
allowed by the rigorous energy and momentum conservation 
laws. When these interaction processes alone are taken into 
account, one is dealing with the so-called problem of long- 
wave longitudinal phonons, which arises in the calculation 
of the rate of change of the entropy of the phonons and the 
thermal conductivity of insulators. 

This problem has been solved in the model of an isotrop- 
ic, unbounded crystal by taking the four-phonon interac- 
tions into account through anharmonicities of fourth order2 
and of third order in the second Born approximation.4 For 
certain real, unbounded crystals, this problem has been 
solved by taking into account the effect of degeneracy points 
on the probabilities for the three-phonon interactions.' 

The finite lifetime of the longitudinal phonons and their 
dispersion have not been taken into account. 

As is shown below (Section 3), the governing processes 
in this problem are not the four-phonon interactions or inter- 
actions of higher order but the interactions of three longitu- 
dinal phonons; in addition, the finite lifetime and dispersion 
of these phonons are important. We take this interaction into 
account in calculations of the attenuation factors for low- 
frequency sound and for second sound. We compare the re- 
sults with results derived previously. We find that the at- 
tenuation factor for low-frequency sound has a different 
temperature dependence and is smaller in magnitude than in 
Refs. 2 and 3. 

The effect of these processes on the attenuation factor of 
high-frequency sound and on the thermal conductivity was 
studied in Ref. 14. 

2. DISSIPATION FUNCTION 

The energy of a quasiparticle of species j, with wave 
vector k, can be written in the following form for the case in 
which the spatial and temporal changes in the parameters on 
which this energy depends caused by a modulated external 
field are small: 

o J ( k ,  r, t )  =ooj(k) (I+bi(r,  t ) ) ,  (2.1) 

where od(k) is the energy (6 = 1) of the quasiparticle in the 
absence of the modulated field, and I bJ (r,t ) I  ( 1 is the modu- 
lation depth. 

The modulation of the energy causes the distribution 
function of the quasiparticles to deviate from an equilibrium 
Planck function: 

Under the adiabatic conditions 

where TJ and I' = r J g J  are the average relaxation time and 
the mean free path ofthe quasiparticles, and gJ = dw,"/d kis 
the group velocity of the quasiparticles, the interaction 
between quasiparticles causes this deviation of the distribu- 
tion function to relax to a new quasiequilibrium distribution 

Here T = To(l + 8 (r,t )) and u=u(r,t ) are the temperature 
field and the field of the drift velocity of the quasiparticles, 
and To is the equilibrium temperature. 

If the interactions of the quasiparticles obey energy and 
momentum conservation, then 8 and u are determined from 
the equations for stimulated secondary waves (waves of the 
"second-sound" type).8 If momentum is not conserved in an 
interaction, the drift velocity will be zero (u = 0), there will 
be no secondary waves, and energy conservation is used to 
determine 8. 

The amount of energy (Q ) absorbed by the gas of quasi- 
particles from the external modulating field per unit time 
(the dissipation function) is equal to the product of the tem- 
perature and the rate of change of the entropy of the quasi- 
particles. To determine the latter we need the solution of the 
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kinetic equation for N: .  However, we can find a good esti- 
mate of Q without solving the kinetic equation9: 

Q-cT( I Sjl 2/vj>, (2.5) 

where c is the specific heat of the gas of quasiparticles, 

vJ r v J ( k )  = l / rJ(k)  is the quasiparticle collision rate, de- 
fined as a functional derivative of the collision integral," 

I61=JT-ToI/T<l; Ik~/~o, ' (<<l.  

Here (. . .) means an average 

As can be seen from (2.5), the dependence of the collision rate 
V J  on the wave vector k is important in the calculation of Q. 

3. ABSORPTION OF LOW-FREQUENCY SOUND 

Let us use expression (2.5) to estimate the attenuation 
factor for low-frequency sound with a wave vector q and a 
frequency fl, = qV, (V, is the sound velocity) which satisfy 
conditions (2.3): fl,rJ (1, qIJ (1. 

The sound wave changes the elastic properties of the 
medium and modulates the energy of the thermal phonons. 
The modulation depth bJ can be written in the following 
form, as in Ref. 1 : 

(0) bl=hiduik , (3.1) 

where u$' is the strain tensor caused by the sound, while the 
tensor A i', is determined by the crystalline symmetry (the 
Griineisen tensor). In this case, the quantity 6' in (2.6) is 

(3.2) 
where V,, and g,, are the phase and group velocities of the 
second sound. If there is no second sound, we have VII = 0 
and g,, = 0. 

We can determine the characteristic features of the ab- 
sorption of the sound from the model of an isotropic crystal. 
In this model there are longitudinal ( I)  and transverse (t ) 
phonons, whose frequencies (corrected for dispersion) are 

ol, t=kVl, t [l+El, r (k)l, (3.3) 

where V,,, is the phase velocity of the phonons, and the quan- 
tity rl,, (k) is a measure of the deviation of the phonon fre- 
quency from a linear dispersion law. In an isotropic crystal, 
the tensor A is A i', = A'S,, where A' is on the order of uni- 
ty. The phase and group velocities of the second sound, un- 
corrected for dispersion, are" 

Since the velocities V, , V, , V, , and V,, are comparable 
in magnitude, we find the following estimate of Q, averaged 
over a period of the sound wave: 

- c T  1 - 
Q = .. <-;) n,~, e, = p ~ :  (,:;))a, 

PV, (3.5) 

where E, is the average energy density of the sound wave, 
andp is the density of the crystal. 

The sound attenuation factor is given in order of magni- 
tude by 

We write the collision rate vi in the form 

P 

where the sum over p means a sum over the processes in 
which the phonons of species j may participate; v, is the 
collision rate of the thermal phonons, which is given at high 
temperatures ( T  SO) by vo = (T/m V?)oD and at low tem- 
peratures (T(O) by vo = (T/mV:) (T/O)40D; a,'- 1; m is 
the mass of a unit cell of the crystal; O and w, are the Debye 
temperature and Debye frequency; and the function fL(x) 
depends on the type of process ( p )  and the argument x, 
which is wJ/O at T S O  and x = wJ/T at T(O. 

When dispersion is ignored, the rigorous energy and 
momentum conservation laws allow the following three- 
phonon interactions: I*I + t and l e t  + t. The collision 
rates due to these processes were calculated in Refs. 2-4 and 
12. In the region w ( T  we have f ,' a x  for transverse phon- 
ons and f a. x4 for longitudinal phonons. 

If we consider these processes alone, we find that most 
of the attenuation in (3.6) is caused by long-wave longitudi- 
nal phonons, and y, becomes infinite. In Refs. 2 and 3, this 
singularity was eliminated by taking into account four- 
phonon interactions of longitudinal phonons through 
fourth-order anharmonicity and third-order anharmonicity 
in the second Born approximation. The contribution of these 
processes to the collision rate v' at high temperatures is 

and the contribution at low temperatures is 

On this basis, the attenuation factor of the sound was found 
to have a temperature dependence T -'I4 at high tempera- 
tures and T - 2  at low temperatures. The finite lifetime of the 
longitudinal phonons and their dispersion were not consid- 
ered. 

Here we take into account the interaction of three longi- 
tudinal phonons having a finite lifetime 7; = l/v, and dis- 
persion-a case not considered in Refs. 1-5. In this case, the 
8-function in the energy in the expression for the probability 
for the process I + I-I must be replaced: 

The rate of collisions due to these processes is6,' 

where the quantity in parentheses, a measure of the phonon 
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dispersion, is taken for Debye phonons (k, -w,  /V, ) at high 
temperatures, and is independent of the temperature; at low 
temperatures, it is taken for thermal phonons (k, - T/V, ). 

If the dispersion of the longitudinal thermal phonons is 
positive, g;, > VI , or 

( k , , /~ , )  Igl(km) -V1IK1, (3.12) 

the sound attenuation factor is 

in agreement with the results derived in Ref. 1. 
If the dispersion of the longitudinal phonons is nega- 

tive, and we have 

then the attenuation factor is 

T 
. (3.15) 

T T  

Comparing (3.15) with (3.13), we see that in this case a large 
factor 

appears in the attenuation. At high temperatures, T )@, the 
sound attenuation factor has the same temperature depen- 
dence as in Refs. 2 and 3, but its magnitude is smaller by a 
factor of [Igl(k, ) - V, I/v,]"~. 

At low temperatures, TgO, the dispersion has a strong 
effect on the temperature dependence of the attenuation fac- 
tor. This can be seen in the case of a linear chain, for which 
the dispersion of longitudinal phonons is negative, 
g, - - a2k (a is the lattice constant), and Igl(k, ) - V, I /  
V, - (T/O)2, while the sound attenuation factor is 

In contrast with the isotropic model, the presence of 
degeneracy points in a real crystal gives rise, for the longitu- 
dinal phonons, to a dependence of the function f d in (3.7) on 
the frequency of these phonons which differs from the x4 
dependence in Ref. 5. For crystals of higher symmetry we 
have fd -x2, and the sound attenuation factor is determined 
by (3.13). For crystals of low symmetry, fd may be propor- 
tional to x3 or x4. If fd -x4, the attenuation factor will be 
given by (3.13) or (3.15), depending on the dispersion. If 

f,' -x3, and inequality (3.14) holds, the attenuation factor 
will acquire a logarithmic factor 

g' (k,) -Vl mVSZ 

instead of (3.16). 
Under conditions such that second-sound waves can 

propagate through a crystal, the hydrodynamic attenuation 
factor for the second sound, yII, can be determined by an 
approach similar to that taken for low-frequency sounda913; 
the result is, in order of magnitude, 

where a,, = qVII is the frequency of the second sound. 
Comparing y, in (3.6) with yII in (3.20), we find 

so that the attenuation factor for the second sound has the 
same characteristic features as the attenuation factor for 
low-frequency sound at low temperatures. 
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