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The effect of a small amount of random anisotropy on second-order orientational phase transi- 
tions is analyzed. Randomly directed anisotropy is shown to have the same effect on the order 
parameter that a randomly directed field has on the magnetic moment in the Ising model. Even a 
slight random anisotropy thus has a qualitative effect on an orientational transition. Random 
anisotropy may terminate the phase transition or substantially change the properties of the sys- 
tem near the transition. It may convert a second-order phase transition into a first-order transi- 
tion, accompanied by alarge jump in the order parameter. Some new possibilities thus arise for an 
experimental study of the effect of a random field on long-range order. 

1. INTRODUCTION in ferromagnets but also in other systems in which orienta- 

The magnetic anisotropy in a real ferromagnet always tiOnal phase are 

fluctuates in space to some extent or other. Fluctuations of 
the anisotropy are caused by, for example, structural imper- 
fections of the ferromagnet, which cause a scatter in the crys- 
tal fields at the magnetic ions. If the arrangement of magnet- 
ic atoms is disordered, there will be fluctuations in the 
energy of the dipole interaction, which will ultimately also 
give rise to fluctuations of the anisotropy.' Fluctuations of 
the anisotropy energy are particularly important in concen- 
trated solid solutions or amorphous magnetic materials con- 
taining rare earth ions. 

In an anisotropic Ising ferromagnet, any arbitrarily 
weak random anisotropy will disrupt the long-range order.' 
In most cases, in both crystals and amorphous materials, 
anisotropy of constant direction (uniaxial, cubic, etc.) is 
present, which stabilizes the magnetic order, so that random 
anisotropy has only a weak effect on the long-range order 
and on the phase transition to the ordered state. 

In this paper we show that random anisotropy has a 
qualitative effect on the nature of an orientational phase 
transition even if this anisotropy is small in comparison with 
the constant anisotropy. Random anisotropy can terminate 
a second-order phase transition or substantially change the 
behavior of the system near the transition. It is possible that 
reorientation of the moment will occur, not smoothly, as in 
an ideal crystal, but abruptly, with a large jump in magneti- 
zation and with a rotation of the entire moment through an 
angle of 90". 

The reason for the anomalously strong effect of random 
anisotropy on an orientational phase transition is that ran- 
dom anisotropy acts on the order parameter of the orienta- 
tional transition in the same way that a random field acts on 
a magnetic moment in the Ising model. Random anisotropy 
may act in a similar way on transitions of other types. For 
example, it turns out that random anisotropy can terminate 
a phase transition in the Ising model with a transverse mag- 
netic field. This circumstance opens up some new possibili- 
ties for experimentally studying the properties of an Ising 
magnetic material in a random field. 

We wish to stress that phenomena analogous to those 
which are the subject of the present paper can occur not only 

2. TRANSITION AT ABSOLUTE ZERO 

2.1 Dimensional estimates. We consider the simple 
model of an orientational phase transition in a uniaxial ferro- 
magnet with an anisotropy easy axis. We assume that an 
external magnetic field H is applied along the z axis, perpen- 
dicular to the easy axis (the x axis). In an ideal ferromagnet, 
an orientational phase transition of second order in the mag- 
netic field would of course occur under such conditions: In a 
strong field the moment would be directed along the z axis, 
and at a certain critical field a component M, would arise 
and serve as an order parameter. 

In a real crystal, structural defects unavoidably give rise 
to fluctuations of the directions of the anisotropy axes. Such 
fluctuations are particularly numerous in amorphous mag- 
netic materials, solid solutions, and so forth. Fluctuations of 
the dipole-dipole energy in disordered magnetic materials 
also effectively give rise to fluctuations of the anisotropy 
axes. ' 

The energy density (E ) of a system at T = 0, corrected 
for a random anisotropy, is 

E='I~T.'(Vm)Z-Hmz ( r )  - ' i2Km,2(r)  - D ( m  ( r ) t ( r )  ) Z ,  

(1) 

The energy of the magnetic anisotropy has been broken up 
into two components here: one corresponding to the easy 
axis (the x axis), with a constant (1/2)K, and a fluctuating 
component, with a constant D4K. The unit vectors 6 (r) are 
oriented randomly in space. For simplicity we ignore fluctu- 
ations in K and D. Distances are conveniently expressed in 
units of the average distance between magnetic atoms. The 
exchange parameter Vis then on the order of the Curie tem- 
perature Tc.  

If we ignore the term with the random anisotropy, we 
see that expression (1) describes a second-order orientational 
phase transition at K = H. The magnetization distribution is 
determined by the condition for a minimum of the energy, 
which takes the following form near the transition, i.e., at 
small values of m,  (r): 
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-VV2m,(r)+ (H-K) m,(r) +'l,Hm,S (r) -2D%(r)f,(r) =O. 

(2) 

The fluctuating term 1/2Hm:(r) m:(r) has been omitted 
from Eq. (2). From the equation for my (r) which is analogous 
to (2) we easily see that we have m: (r) -D 2 / ~ 3 1 2  H 'I2. We 
will see below that the condition m; (rn: holds, so that this 
term is in fact unimportant. 

The last term in (2) is the effective random external field 
h (r) which is acting on the order parameter m, (r). Its expec- 
tation value (h ) is zero. We assume that its autocorrelation 
is a &function: 

<h(r )  h (r,) )=hZ6 (r-r,), h2=4/gD2. (3) 

The angle bracket denote a configurational average. The 
problem here is thus equivalent to the problem of a phase 
transition in the Ising model with a random field in the self- 
consistent-field approximation (without thermodynamic 
fluctuations). 

We first consider the paramagnetic phase. The term 
with m: can be ignored if we are not extremely close to the 
transition point. We then find 

r 
mx (r) = h (r') G (r-r') d3r', (4) 

The expectation value of m, (r) is zero, while its variance is 

Perturbation theory is valid under the condition (mf ) 4 t  
= (H - K)/K, i.e., 

t> h'/a/VK'h. (6) 

We now consider a region which is so close to the transi- 
tion point that the opposite inequality holds. We can then 
ignore the second term in Eq. (2). In the equation found as a 
result, we impose the scale transformation 

mz(r) =p@ (r),  r=pL, (7) 

where 

Equation (2) reduces to the equation 

'lz(DS(p)-V2@='7i(p), 

where ( p) is a random function with the correlation func- 
tion 

< 7 i t P ) h ( P t ) ) - 6 ( ~ - ~ i ) .  (10) 

There are no parameters in Eqs. (9) and (lo), so that the 
variance of Q( p) is on the order of unity. We thus have 

The numerical coefficient of (Q2( p)) in (11) cannot be 
found. 

The quantity L)1 determines the scale length for 
changes in m, and in the correlation function (m, (r)m, (r,)). 
In fields satisfying inequality (6), the susceptibility is evi- 

FIG. 1 .  

dentlyx = (2Kt )-I. Substituting in the boundary condition 
t = h 4'3/VK 'I3, and noting that at values o f t  which satisfy 
the inequality opposite (6) the susceptibility is independent 
oft, we find an estimate of the susceptibility in this region: 

x-L21V. (12) 

2.2 Scaling relations. We now transform Eq. (2) to an 
integral form: 

Integrating (1 3), we find a perturbation-theory series in pow- 
ers of h (r), which can conveniently be represented graphical- 
ly. 

In first order in h we have 
1 

mzl = - h(r, )G (r-rt)d3ri. v (14) 

Following Ref. 3, we associate the integral on the right side 
with Fig. la. The straight line corresponds to the Green's 
function G (r - r,), while the cross corresponds to the ran- 
dom field h (rl)/V. The diagrams in Figs. lb  and l c  arise in 
the subsequent orders. An integration is carried out over the 
coordinates of the vertices and of the crosses. 

To calculate the macroscopic susceptibility, we include 
a static external field h, in the right side of (12). The part of 
the moment mho which is proportional to h, is determined by 
the same diagrams, in which one of the crosses is replaced by 
a dot to correspond to a static field. The macroscopic suscep- 
tibility is found from mho by taking an average over the dis- 
tribution ofrandom fields and by dividing by h,. Since we are 
interested in large regions, with dimensions on the order of 
R, we may assume that the distribution of random fields is 
Gaussian. Using (3), we then find that taking the configura- 
tional average reduces to equating the coordinates of the 
crosses in pairs. We thus find diagrams of the type in Fig. 2 
for the susceptibility X. The filled squares correspond to h '/ 
V2, while vertices correspond to 3H /2 V. For the susceptibil- 
ity we thus find the usual perturbation-theory series for the 
problem of a phase transition with an interaction q, 4, except 
that the line along whose momenta the integration is to be 
carried out has some squares, whose total number is equal to 
the number of vertices. The structure of the resulting series is 
the same as in the case of a temperature-induced phase tran- 
sition in a magnetic material with a random field.4 The only 

FIG. 2. 
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difference is in the expressions for the vertices. In a tempera- 
ture-induced phlse transition, on the other hand, thermody- 
namic fluctuati. .s criuse a renormalization of the vertices; 
for a phase transition at absolute zero, the vertices are not 
renormalized. 

It is easy to see that the perturbation-theory series for 
the susceptibility goes in powers of the parameter 
~h 2 v - 3  %d-6 (d is the dimensionality ofthe space), so that we 
can write the following scaling formula for the susceptibility: 

In the limit x 4  the susceptibility should remain finite, 
since the random field shifts the transition. We thus find the 
estimate 

X(lC+O) NT7d/(6-d)/h41(6-diK2/(6-d) 1 (I6) 

which agrees with (12), as it should. 
The first Hartree diagram (Fig. 2a) makes a contribu- 

tion of order (h ,/V ,)( K / V ) ( ~ / X ~ - ~  ) to the eigenenergy part; 
correspondingly, and anomalous point in the susceptibility 
(the nature of this anomaly will be discussed in the following 
section of this paper) shifts by an amount of order 

~H,/H,--h4l(Gdl/K(~-d~/(6-d)Vd/(~-d)~-(~~~). (I7) 

The same estimate for AHc can be found by following Ref. 5, 
where a disordered antiferromagnet in a magnetic field was 
studied, and determining H, by equating the argument of 
the function f ( x )  in (15) to a constant of order unity. 

Figure 3 shows the simplest diagrams for the moment 
correlation function Q (r) = (m, (O)m, (r)). We thus find the 
following expression for the Fourier transform of the func- 
tion Q (r): 

By analogy with (16) we find 
Q(k) / k=o ,  x = O ~ V 2 d / ( 6 - Z d ) / K 4 / ( 6 - d ) h ( 2 d - ~ / ( 6 - d )  (I9) 

From the dimensional estimates we easily find a generaliza- 
tion of Eq. (8) to a space of arbitrary dimensionality: 

L = V 3 / ( 6 - d l K - l / ( 6 - d ) h - 2 / ( 6 - d i ~  (20) 

Comparing (19) with (17) and (20), we note that, at small 
values of x, we would have 

Q(k=O) -(m,Z>Ld. 

It follows that Q (r) is approximately constant at r < L and 
falls off rapidly (probably exponentially) at r)L.  

The quantity Q (k = 0) could be measured directly in 
experiments on diffuse neutron scattering. 

FIG. 3. 

3. DOES AN ORDERED PHASE EXIST? 

As we have already mentioned, the orientational phase 
transition model in a disordered ferromagnet which we are 
considering here is equivalent to the Ising model in a random 
field. It has been shown elsewhere4*"' that the critical be- 
havior of such a system in a space of dimensionality d is the 
same as the critical behavior of an ordered system of dimen- 
sionality d - 2. It was shown in Ref. 9 for the case of an Ising 
model with a transverse field that quantum fluctuations do 
not alter this conclusion. It follows that a random field dis- 
rupts the order in both two-dimensional and three-dimen- 
sional Ising ferromagnets. 

However, simple qualitative arguments2 show that the 
lower critical dimensionality for the Ising model with a ran- 
dom field is d, = 2. At d<2, the spins tend to break up into 
domains oriented in opposite directions. An attempt1'-l2 to 
show that domain walls of complex shape cause d, to in- 
crease to three was criticized in Ref. 13. The numerical simu- 
lation of Ref. 14 again leads to the conclusion dc = 2. So far, 
extensive experimental have failed to definitely 
resolve which dimensionality is the critical one. Most of the 
experimentalists accept d, = 3. 

It follows that in the case of an orientational phase tran- 
sition random anisotropy terminates the transition if d(2 
and may do so even if d = 3. At any rate, we should expect 
experiments to reveal a shift of the phase-transition point (or 
shifts of structural features in physical quantities) and a 
rounding of maxima, as has been seen for an Ising system in a 
random field. ''-I9 

Regardless of what the lower critical dimensionality is, 
there must be a transition region (crossover) between two 
regimes: that in which the field h (r) has little effect [inequa- 
lity (6) holds] and that near H = Hc + AHc. This transi- 
tion region has a width of order K < (m; ), and it is to this 
region that the expressions derived for the physical quanti- 
ties in the case x = 0 in the preceding section apply. 

We will now show that this model of an orientational 
transition is equivalent to a model with a random field even if 
the condition H < K  holds far from the critical point. In the 
absence of a random anisotropy under the condition H < K  
there are two equilibrium orientations of the moment, corre- 
sponding to the following angles from the x axis: a, = arc- 
sin( H /K)  and a, = a - a,. Fluctuations of the angles 
around a, and a, caused by the random anisotropy are of 
order D /K( 1 and can be ignored. The energy of the magnet- 
ic system can then be written 

where the angles pi can take on the values a, and a,, and $i 

is a random angle. The exchange term cannot be written as 
the square of a gradient here, since the angle a, is generally 
not small. 

We now introduce the pseudospin a i ,  which has the 
value 1 ifpi = a, or - 1 if $i = a , .  It is then easy to see that 
expression (21) takes the following form, within an inconse- 
quential.constant: 
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E = S' eon2 a, ~ , , o . o ,  - x h . o . .  
',I 

h,=-'/,DS2 sin 2$, sin 2a,. 
(22) 

We have obtained the Hamiltonian of the Ising model with a 
random field. The termination of the orientational phase 
transition would mean that under the condition H < K the 
system breaks up into domains in which the spins are orient- 
ed at angles a, and a,, so that the average moment along the 
x axis is zero. 

There is yet another important consequence here. We 
know that in a uniaxial ferromagnet with random anisotropy 
a long-range order will exist ifK > h (h  / V)d'(4 - ) . It follows 
from the discussion above that an arbitrarily weak trans- 
verse field will give rise to an effective random field along the 
anisotropy axis, so that the long-range order will definitely 
be disrupted in a two-dimensional ferromagnet and possibly 
in a three-dimensional ferromagnet. 

Fishman and Aharony5 have proposed a method for 
implementing the Ising model with a random field. Their 
suggestion stimulated many of the experimental studies 
which we have already cited. We see that a uniaxial ferro- 
magnet with random anisotropy to which a transverse field 
is applied is another implementation of this model. 

Analogous phenomena may occur in a cubic crystal. 
This question will be studied separately. 

4. ORIENTATIONAL TRANSITION AT A NONZERO 
TEMPERATURE 

The model of Ref. 1 also describes an orientational tran- 
sition induced by a temperature change in a constant mag- 
netic field if the anisotropy constant K depends on the tem- 
perature. As before, we may ignore thermodynamic 
fluctuations if the Ginzburg criterion 

a= (T-T,) /T,=?.KZT,2/BV3 
holds, where T, is the temperature of the orientational phase 
transition, and B = (dK /dr),= ,. On the other hand, the 
criterion for the applicability of a perturbation theory in a 
random anisotropy, (6) ,  is rewritten in this case as 

Two situations are possible. 
1) The random fields are so weak that a perturbation 

theory for them becomes inapplicable only in the critical 
region near T,, where the Ginzburg criterion no longer 
holds: 

h<k'(T,/V)". (24) 

The effect of random fields in the critical region can then be 
taken into account by the approach of Ref. 5. 

2) The random fields are so strong that the limit oppo- 
site (24) holds. In this case there is a broad region along the T 
scale in which the results of Section 1 are valid. In a narrow 
region near the renormalized transition temperature T,, 
where the Ginzburg criterion is violated, a decrease in T is 
accompanied by a transition to a critical region in a highly 
inhomogeneous system (highly inhomogeneous because of 
the random field). 

A temperature-induced phase transition may also occur 

in the absence of a magnetic field, if a crystal has two special 
axes. In the simplest model for such a transition," the free- 
energy density is written in the form 

~ ( r )  = v ( v ~ ~ , ) ~ + K ~ ~ , ~ + K ~ ~ ~ - D ( ~ ( ~ ) ~ ) ~ ~  (25) 

An orientational phase transition occurs in the XZ plane. As 
in the preceding case, the component my is always small and 
has no effect on the orientational transition; it has accord- 
ingly been omitted from (25). 

We assume K, > 0 and that the sign of K, depends on T. 
In the absence of the slight anisotropy of the free energy, 
expression (25) corresponds to two phase transitions: one in 
which K, changes sign from positive to negative, and a com- 
ponent m, arises; and one in which K, + 2K2 changes sign 
from positive to negative, and m, vanishes. Obviously, at 
both small values of m, and small values of m, we can re- 
write the random anisotropy in (25) in the form - hm, 
where m is the order parameter of the orientational transi- 
tion. The results derived previously regarding the behavior 
of the system near the phase-transition point therefore apply 
to this case also. 

5. FIRST-ORDER PHASE TRANSITION INDUCED BY A 
RANDOM FIELD 

In this section we show that the random anisotropy may 
cause a second-order orientational phase transition to be- 
come a first-order phase transition. 

We consider a biaxial ferromagnet with K, <O and 
K, + 2K2 > 0. If D(K,, K,, the spins are oriented primarily 
along the favored axes, which are determined by a minimum 
of the crystalline-anisotropy energy (Fig. 4): 

0 , = a r ~ c o s ( I K , 1 / 2 K ~ ) ' ~ ~ ,  0,=n-0,. (26) 

We introduce two Ising variables: s, and ui . We have si = 1 
if the spin Si is directed along axis 1, or we have si = - 1 if it 
is directed along axis 2; we have ui = 1 if the spin is directed 
in the upper half-plane, or oi = - 1 if it is in the lower half- 
plane. The energy of the system, which is the sum of the 
exchange energy and the random-anisotropy energy, can 
then be written 

h,=-'/,DSZ sin 20, sin 2$,, 

where the angle $i is the angle made by the axis of the ran- 
dom anisotropy and the x axis. 

If 8, > 45", the expression in parentheses in the first 
term in (27) is positive for arbitrary si and sj, so that a mini- 

FIG. 4. 
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mum of the energy is reached in the case ai uj = 1. In terms 
of the pseudospins si, expression (27) represents the energy 
of an Ising ferromagnet in a random external field. Let us 
assume that the dimensionality of the space is such that the 
random field disrupts the long-range order in the Ising mag- 
netic material. All the spins are then directed in the upper (or 
lower) half-plane, but they are scattered in a random way 
along axes 1 and 2, so that we have (m, ) = 0 and (m, ) #0. 

If B < 45", it is convenient to introduce pseudospins ui 
such that ai = 1 if the spin lies in the right-hand half-plane 
in Fig. 4 or a, = - 1 if the spin Si lies in the left-hand half- 
plane. Arguments analogous to those above lead to the con- 
clusion that in this case the spins are oriented in the right- 
hand (or left-hand) half-plane, so that we have m, = 0, 
(mx ) #O. 

Thus, for values of the anisotropy constants corre- 
sponding to B = 45" the magnetization rotates abruptly from 
the z axis to the x axis. Thermodynamic fluctuations smear 
out this abrupt change. However, the interval (A0 ) in which 
the transition from m, = 0 tom, = 0 occurs is very narrow. 
It is not difficult to see that the condition AB-T/VId- ' 
holds, where 1 is the size of a domain. This quantity is smaller 
than the parameter h /V, in terms of which the actual Hamil- 
tonian is transformed into Ising Hamiltonian (27), so we will 
not discuss the behavior of the order parameter in the inter- 
val AO. 

6. ORIENTATIONAL TRANSITION WITH AN EASY-PLANE 
ANISOTROPY 

If an external magnetic field is directed perpendicular 
to the easy plane, the moments in an ordered ferromagnet 
may undergo a reorientation from an axis to a plane. A ran- 
dom anisotropy, like a random field, disrupts the long-range 
order in the plane at d < 4 (Ref. 2), thereby terminating the 
orientational transition. 

In the equation of motion for the order parameter m, 
= (m, , my) at T = 0, a random anisotropy is, as in Section 1, 

equivalent to a random field ha (r): 
H -vvzrn, + ( H - K )  ma $- 7 mL2ma-ha ( r )  3 

L (28) 

ha ( r )  = ~ D Z ,  ( r )  i z  ( '1 ,  "2 &ma?. 

Here a = x, y. 
Equation (28) can be solved exactly for a spherical mod- 

el, in which the number (n) of components of the vector m, 
goes to infinity, and the correlation function of the random 
fields becomes 

(ha ( r )  h, ( r )  >= (h2 /n )  6,,6 (r-r,) . (29) 
In this case m: is the sum of an infinite number of terms m i ,  
so that the fluctuations of m: are infinitesimal. Replacing 
m: in (28) by the expectation value (m: ), we find the follow- 
ing expression for the Fourier transform ma (k): 

ma ( k )  =ha ( k )  [Vk2+H-KI-'/,H<mLZ>] - I .  (30) 
where (m: ) is found from the self-consistency condition 

The correlation function of the transverse components of the 
moment is 

h2Ao 
Qae ( r )  = (ma (0) me ( r )  ) = 6ae 7- e-rf-b 

8 n V n  ' 
where 

Finally, the homogeneous susceptibility is x = A:/V. 
It follows from (3 1) and (33) that the length A, and thus 

the susceptibility are finite at any value of H - K and in- 
crease monotonically with decreasing H. The dependence of 
m:, A, and x on H - K, as in Section 1, is determined by the 
relation between ( H - K)/K and h 4 1 3 / ~ ~  'I3. 

H-K XI3 
a) I>->- 

K VH'" ' 

In this region we can use perturbation theory, so that (m: ) 
and A, are determined by (5) and (4). 

In this case we can discard H - Kin  comparison with Hm: 
in (3 I), so that we have 

K-H h"3 
c) I>>->----. 

K  VH'" 

In this region, which corresponds in the case h = 0 to an 
ordered phase, m: , the length A,, and x continue to increase 
with increasing K - H in the following way: 
<mlz>=2 (K-H)/H+hkH/[2(8n) (K-H) 'V3],  (35) 

A,=16n (K-H)  V2/h2H. 

Extrapolating (35) to (K - H ) / K z  1, we find, in order of 
magnitude, the scale length A, = V2/h found by Imry and 
Ma.2 

To see how the magnetization distribution changes at 
finite values of n, we seek a solution of Eq. (28) with an accu- 
racy of l/n. Rewriting (28) as 

-VVzma+ (H-K) m a t  i/zHm,2ma 

=ha (r)+1/2H((mLz)-miz) m, 
(36) 

and iterating on the second term on the right side, we find, in 
place of (3 I), 

In case a) the coefficient of l/n in parentheses is small in 
comparison with unity, so that the results of the spherical 
model agree with the perturbation-theory results and hold 
for arbitrary n. In case b) the coefficient of l/n is 1, and we 
have 

There is an exponential dependence of Qa8 on the distance at 
r<A,n. 

In case c), the coefficient of l/n is large, so that the 
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expansion in l / n  is valid only at sufficiently large values of n. 
We note in conclusion that the correlation function 

QaB (r)  can also be found in the spherical model for a Heisen- 
berg magnetic material with a weak random field without an 
external magnetic field. The correlation function falls off 
exponentially over distance with a correlation radius of 
8n-Vz/h 2. 

Note added in proof ( 1  3 February 1985). The experimental 
and theoretical results recently found for Ising magnetic 
materials in a random field [see, for example, J. Villain, 
Phys. Rev. Lett. 52, 1543 (1983) and the bibliography 
there] indicate that the termination of the orientational 
transition discussed in the present paper should also be ob- 
served in three-dimensional magnetic materials if the ran- 
dom fields are "turned on" while the system is still in the 
disordered phase. 
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