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The dynamics of hexatic smectic B liquid crystals and smectic C liquid crystals with a slight 
anisotropy in the layer is studied. The mode associated with the orientational degrees of freedom 
of the molecules is taken into account. A complete system of nonlinear, nondissipative, hydrody- 
namic equations is found. This system of equations is used to construct an effective action which 
makes it possible to determine the thermal fluctuation effects. The most important effects are 
those associated with the displacement of smectic layers. The terms in the effective action which 
are linked with the displacement of the layers are calculated. These terms are used to renormalize 
the orientational-mode spectrum. The renormalization-group equations for all these terms are 
derived and solved. The orientational-mode spectrum is calculated with allowance for the fluctu- 
ation contribution. 

1. INTRODUCTION 

The presence of a layered structure is a feature common 
to all smectic liquid crystals.' Although the smectic liquid 
crystals have a rigid-body order along the direction perpen- 
dicular to the layers, the layers can slip past each other as 
fluids. The fluctuations in a system of this sort are known2 to 
destroy the long-range order, which is absent only in an infi- 
nite system. In the case of a finite system or, equivalently, in 
the case of finite wave vectors, the properties of a smectic 
liquid crystal can be correctly described as a rigid-body-or- 
dered system. 

In the study of nonlinear properties of smectics, the 
function W(t, r) can be used to describe the displacement of 
the layers. In this function the equation W = const specifies 
the position of a layer, and the vector V W determines the 
direction of the normal to the layer. 

We will consider primarily the so-called hexatic smectic 
B liquid crystals.' In these systems the layer has a long-range 
orientational order for the coupling with a sixfold symmetry 
(from which the name is derived). The hexatic order can be 
specified by a single parameter-an angle that describes the 
orientational symmetry in the smectic layer. This angle is 
measured from an arbitrary axis in the plane of the smectic 
layer which is specified by a unit vector n. 

A similar situation also applies to smectic C liquid crys- 
tals. In smectic C liquid crystals, the molecules are tilted 
with respect to the normal to the layer. The layer thus exhib- 
its an anisotropy which we can describe in terms of the direc- 
tor n within the layer, 

1 l2=1 ,  r1YW=O, (1) 

Because of the constraints (I), the vector n contains only one 
independent parameter which can be expressed in variation- 
al form as 

2 
?IT= , --- W l  inVl.Vl6n. (2) 

The variation of the director n can now be described by the 
relation 

Using definition (2) and constraints (I),  we find the following 
expression for the commutator of the variations: 

As we have mentioned above, in hexatic smectic B liq- 
uid crystals, the rotational symmetry breaks down in the 
layer, so that there are restrictions imposed on the relative 
rotation of molecules in the layer. Because of the presence of 
a sixfold symmetry axis, we cannot introduce an anisotropy 
vector in the layer, but we can determine the arbitrary direc- 
tion with respect to which the rotation of the molecules is 
specified. This rotation can be described by a nonholonomic 
angle p,  whose transformation properties are the same as 
those of the angle for smectic C liquid crystals which was 
introduced above. Specifically, relation (4) is correct. 

The part of the energy density of a hexatic smectic B 
which is attributed to symmetry breaking can be written to 
lowest order as 

Es=' lg$[  ( 7  W)2-1-2  J 2 + i / 2 ~ ( C 2 W ) 2 i  i / 2 ~ ( V q ) 2 .  (5) 
Here p, x ,  and a are the elastic moduli, and I is the spacing 
between the layers. The presence of a sixfold symmetry axis 
rules out the invariants which are anisotropic in the plane of 
the layer and which have the order of interest to us. The 
situation is slightly different in a smectic C. In principle, 
these smectics have anisotropic terms of the type (nVV W)2, 
which are attributed to the presence of two distinct direc- 
tions V Wand n. However, anisotropic terms of this sort, like 
the terms of the type (VpV W)2, are small, because the viola- 
tion of the displacement invariance and of the rotational in- 
variance in the layer is only slight. The first small term is 
characterized by the parameter (c: /c:) - l V 3 ,  where c, is 
the velocity of propagation of the second sound which is 
associated with the oscillation of the layers, and c, is the 
velocity of propagation of ordinary (first) sound. The second 
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term is characterized by a small angle of inclination 
(8- lo-' - of the molecules with respect to the nor- 
mal to the layer. These anisotropic effects are disregarded 
everywhere below. Within this error margin, our results are 
equally valid for a smectic C and a hexatic smectic B. For 
definiteness, we will discuss primarily the hexatic smectic B 
phase, which we will simply call smectic B. 

As we can see from ( 5 ) ,  at equilibrium we have Wo = z/ 
I. This expression corresponds to a system of equidistant lay- 
ers which are perpendicular to thez axis. The fluctuations of 
W near this equilibrium value govern3v4 the logarithmic re- 
normalization of the moduli p and x .  Here 

Here L = - In [min(k,l, k 21 2 ) ]  is the major logarithm. 
The layers of thickness I appear in the argument of this loga- 
rithm because smectics can be analyzed macroscopically to 
within dimensions of - I .  It is quite obvious that the fluctu- 
ation corrections to the modulus a are small. In the dynamic 
process, the fluctuations of W give rise to a strong ( cc W - ' )  

divergence of the kinetic coefficients which determine the 
attenuation of both the first and second In this 
study we consider the spectrum of a mode which results 
from rotational symmetry breaking in the layer and which 
determines, in particular, the optical properties of the smec- 
tic C and B phases. 

2. NONLINEAR HYDRODYNAMIC EQUATIONS FOR A 
SMECTIC B LIQUID CRYSTAL 

To derive nondissipative hydrodynamic equations for 
smectic B liquid crystals, we will use the Poisson-bracket 
method (see the review by Dzyaloshinski'i and Volovik9) with 
one important modification. The standard Poisson brackets 
satisfy the Jacobi identities. The Poisson brackets for the 
variables which describe the hydrodynamics of smectics B 
and which satisfy the Jacobi identities cannot be construct- 
ed, however, without the use of a p-conjugate variable such 
as the intrinsic angular momentum of the nematic liquid 
crystals. This rapidly relaxing variable, however, should be 
excluded from the hydrodynamic equations. This exclusion, 
a very cumbersome operation, is possible only after the in- 
troduction of the kinetic terms9 It would be much simpler to 
ignore this variable altogether and to lift the requirement 
that the Jacobi identity for the Poisson brackets that contain 
the order parameter be satisfied. As a result, the Poisson 
brackets would generally acquire reactive coefficients which 
cannot be determined from general considerations. 'Op" 

The complete set of hydrodynamic variables of a smec- 
tic B consists of the momentum density j, mass density p, 
specific entropy o, the smectic variable W, and the orienta- 
tional degree of freedom p .  The system of Poisson brackets 
for the first four variables has the standard form 

The construction of a common j and p bracket is nontrivial. 
First, the constraints (1)-(3) should be taken into account 
and, secondly, the stress-tensor symmetry must be arranged. 
These two requirements uniquely determine the Poisson 
bracket 

{j i (r l )?  ~ ( r ? ) )  
=-v,cps (rl-r2) -eiknVk6(rl-~Z) v n w ( r 2 ) / I  V W I .  (11) 

In the case of a smectic C, Poisson bracket (1 1) contains an 
auxiliary term 

Vh6 (rl-r2) (niZh+nhli) 11(r2), (12) 
where the unit vector 1 = [V Wn]/IV W I, along with n and 
V W, forms the triplet at the right. In a smectic C, however, 
the corresponding reactive coefficient p contains a small 
term, -19, and within our error margin can be discarded. 
The Poisson bracket { j, n )  can then be written 

It is easy to show that constraints (1) are the first integrals of 
a system of equations which is formulated by making use of 
Poisson brackets (7)-(13), so that constraints (1) are compati- 
ble with (7)-(13). 

The energy density E of a smectic B is a function of the 
variables 

E=E ( j ,  p, o, VW, VVW, Vcp). (14) 
As was noted above, the anisotropic terms appear only in the 
sixth- and higher-order gradient terms because of the sym- 
metry of the layer of a smectic B. 

The pressure can be expressed by 

Here v = aE /dj is the velocity. The hydrodynamic equa- 
tions derived from (7)-(1 l )  are 

Equations (19) consists of the following parts: 
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The right sides of the dissipationless Eqs. (16)-(19), which 
were derived by means of Poisson brackets, must be supple- 
mented with the kinetic terms which can be written out in a 
standard fashion. 

It is easy to see that expression SO,e,,, Ti, determines 
the infinitesimal transformation of energy density (14) due to 
a rotation through an angle SO,. Consequently, the antisym- 
metric part of Ti, vanishes by virtue of the rotational invar- 
iance of E. The second term on the right side of (19) can 
always be expressed as the divergence of a symmetric tensor: 

V I  V,Sjik= C k  Vj (S~~k+ej~mem~~Sisr+'/2ewe~rsSIIsr). 

Accordingly, if the energy density (14) depends arbitrarily 
on its arguments, the right side of (19) reduces to the diver- 
gence of a symmetric stress tensor. Since the use of (12) does 
not break the symmetry of the stress tensor, all arguments 
advanced in this section also apply, within 
6' '- lo-' - to a smectic C. 

Let us consider those parts of the stress tensor which are 
related to the order parameter and which arise from energy 
density (5), when the second term is included in the right side 
of (19): 

T ~ : ~ ) = ' / ~ P [  ( V  W)2-1-2]  ViWV,W-xVkVwViW 
-xViV2WVnW+ ( P ' W ' + V n ( ~ V 2 W V n W )  ]6ik (22) 

[ P ' ~ '  is the W-dependent part of the pressure (15), whose 
explicit form is unimportant in our case] 

(23) 
Expressions (22) and (23) are now explicitly symmetric. 

3. EFFECTIVE ACTION 

Having now the nonlinear hydrodynamic equations for 
a smectic B at our disposal, we can construct, following the 
procedure outlined in Ref. 12, the effective action I, which 
allows us to study the dynamic fluctuation effects in the sys- 
tem under consideration. Since the variablesp, a, and j fluc- 
tuate only slightly in a smectic B, we can drop them by fol- 
lowing the procedure described in Ref. 7. As a result, we find 

I= 5 dtd",P ( p . .  p2 ,  W. rp). (24) 
The reactive part of the Lagrangian is 

Here p1 and pZ are the auxiliary Bose fields which are cou- 
pled to Wand p, respectively. The dependence of the effec- 
tive action I on the Fermi fields used in Refs. 7 and 12 can be 

dropped in this case, since the determinant resulting from 
integration over these fields is equal to unity in the perturba- 
tion theory because of the analytic properties of the Green's 
functions and because of the regularization. 

Expression (25) for the Lagrangian density, which is de- 
scribed by the reactive part of the hydrodynamic equations, 
must be supplemented with a term which is related to the 
kinetic terms in the hydrodynamic equations. We can then 
calculate the correlation functions of the fields W, q,,pl, and 
p, taking an average over the relevant products with a weight 
exp(iI). The nonvanishing pairing expectation values (of the 
Fourier components) are 

( W ( O ,  k ) p ,  ( a ,  k i ) ) = -  ( 2 n ) % ( o + o , ) 6 ( k + k , ) G l ( o ,  k ) ,  
(bV ( o ,  k )  w ( o f ,  k , )  >=- ( 2 n ) 4 6 ( ~ ) - l - ~ i ) E ( l i + k t )  Dl ( 0 ,  k ) ,  
( ~ ( 0 ,  k ) p Z ( o i ,  k , )  )=- (2n)'6 ( o + o i ) 6  (k+k , )G2(o ,  k ) ,  

(26) 
( ~ ( o ,  k)cp(oi,  k , )  )=- (2n)46(m+(~)1)6(k+kt)D2(o,  k ) .  

Since the variable q, is defined only in terms of its variation, 
we should define the Fourier component p (w, k) more accur- 
ately. This component can for example, be defined by 

We should emphasize that the expectation values of (pp) are 
zero. The functions Dl  and D, determine the pairing correla- 
tion functions of the fluctuating quantities and the functions 
Gl and G, determine the susceptibility of the system to the 
external forces which should be added to the right sides of 
Eqs. (17) and (18). Accordingly, GI(@) and G,(w) are analytic 
functions in the upper half-plane. 

Substituting expressions (22) and (23) into Lagrangian 
density (25), we find the reactive part of the effective action 
for a smectic B in first approximation. Retaining only those 
terms that describe the strongest fluctuation effects and sim- 
plifying the expression, we find the terms 

Here and elsewhere in the present work, the subscripts z and 
1 refer to the components directed respectively along the z 
axis and at right angles to it. In (28)-(31) we have f, = 1, 

Expressions (28)-(3 1) must be supplemented with that part of 
the Lagrangian density which is governed by the dissipative 
terms, 
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Here r is the kinetic coefficient. 
Expressions (28) and (34) determine the effective action 

for the smectic variable W, whose renormalization was dis- 
cussed in detail in Ref. 7. For the coefficients a and b we 
found 

act L-'/s and b  oc La's, (36) 
consistent with the logarithmic behavior of elastic moduli 
(6). The coefficient a in expression (3 1) is renormalized exact- 
ly the same way as the coefficient in (28). This coefficient is 
renormalized by analogy with the renormalization of all co- 
efficients of the factors (V W)' - I - 2  (Ref. 7). We can express 
the coefficient g in (34) as 

g 2 = b  l n ( b / b o ) .  (37) 

We should emphasize that the dissipative term (34) is of a 
purely fluctuation origin. Accordingly, g = 0 at the normali- 
zation point b,. Let us also consider the expressions for the 
Green's functions which are associated with the smectic 
variable,' 

G, ( a ,  k )  = a / ( 0 2 - - q 2 i - 2 i g a k L 2 ) ,  (38) 

4TkL4 
Dl (o ,  k )  =- -[ ( 0 2 - ~ 2 ) 2 + 4 g 2 0 2 k 1 4 t ] - i .  

pk212 (39) 

Here 

q2= (akz2+bk4)  k12/k2 

4. FLUCTUATION CORRECTIONS TO THE ORIENTATIONAL- 
MODE SPECTRUM 

It is quite obvious that the fluctuation effects associated 
with the orientational mode in a smectic B are weak effects. 
We will therefore disregard the fluctuations of the variables 
p,  and p. In the smectic B and smectic A phases (Refs. 6 and 
7), the smectic variable Wis thus the only quantity that fluc- 
tuates appreciably. The large fluctuation of W is due to the 
absence of elastic moduli in the variation of W, which are 
quadratic in the gradients and which are responsible for the 
rigidity in the plane perpendicular to thez axis. Accordingly, 
a typical wave vector q for a smectic mode, as we can see 
from expression (40), is estimated to be 

q J q - l q a l .  (41) 

At the same time, under actual experimental conditions we 
find q, -q for the orientational mode. We should therefore 
first consider several terms in the effective action for the 
smectic variable. These terms are small with respect to pa- 
rameter (41) and are therefore irrelevant in the renormaliza- 
tion of the smectic-mode spectrum. 

Because of the fluctuations, terms (28) and (30) in the 
Lagrangian density, which have "tails"p,V W, generate the 
corrections 

Here 

In (42) we have dropped a term proportional to A,,  which we 
will no longer need. The purely fluctuational origin of the 
terms in (42) and (43) can be seen in theg-factor in (44), which 
vanishes at the normalization point. We should emphasize 
that terms (42) and (43) appear because of the power-law 
diagrams and are then renormalized in a logarithmic man- 
ner. The renormalization of these terms is analyzed in the 
Appendix, in which we show that the logarithmic behavior 
ofg in Bi is the same as its behavior in (34), so that the coeffi- 
cients f, and f, in (42) and (43) are constants. We will show 
below that f ,  = f ,  = 1 follows from the fluctuation-dissi- 
pation theorem. 

Upon renormalization, the terms in the Lagrangian 
density generate a series of new terms in a logarithmic man- 
ner. The generation (and renormalization) of these terms is 
due to the following pairings (see the Appendix): 

Here dg represents a change in g due to an infinitesimal shift 
of the ultraviolet cutoff. First, the terms that appear can be 
represented in the form of expressions (3 I), (42), and (43), in 
which f ,, f ,, and f ,  become functions of gVf (a/& ) - I .  

Secondly, the new terms that appear can be represented in 
the form 

Here f ,, f ,, f ,, and f ,, are also functions ofgV;(d /dt )- '. 
Since the terms (47)-(50) are of a purely fluctuational origin, 
the initial values of these functions vanish. 

In the terms presented above, the functions f are renor- 
malized because of the following pairings: 

Using rules (45) and (46) to describe the expectation values 
(5 I), we find the following differential equations for the func- 
tions f :  
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d f ,  16T d - I  

- d g  = i ( - f 5 f5 -2 i f5 f i+2 i f , f 5 )  v:( %) , 
Pg 

d f i  d - d f ,  / d -1 

- = f 5 ( )  dg ' - = 2 f 5 V  dg ) , (52) 

d f  9 2' "-l 
- = i f 5 Z V , , z  , 
d g  

dfto 4 T  - d - l  

- dg = i  ( - f A j  & - f A f 8 + f 4 f 8 )  vZ2( %) . 
P 

Here Ylg)= f ( -g) .  
Solving now these differential equations with the initial 

conditions at g = 0 
ji=f5=J6=1, fi=fi==f9=fl0=0 

(they are determined by the initial values), we finally find 

5. CONCLUSION 

We can now direct our attention to the orientational- 
mode spectrum. The initial part of the effective action for 
this mode is given by expressions (29) and (35), the fluctua- 
tional part is given by expressions (49) and (50), and the func- 
tions f, and f ,, in (49) and (50) are given in (53). In the 
Gaussian approximation of interest to us, the nonholonomic 
nature of the variable p is unimportant, and we find the ex- 
pressions 

o+2igkZ2 
G z  (0 ,  li) = 

d-hk2kL2-4hrgk2kZ2+2igk,2of  2 i h W  ' (54) 

The relation 

can easily be verified by direct integration. Using (32), we 
find that this expression is the same as the single-time corre- 
lation function (pp ) which can be found from the energy 
density (5). Expression (56) is a consequence of the fluctu- 
ation-dissipation theorem. 

As we have already mentioned, the orientation-mode 
spectrum is determined by the poles of the Green's function 
G,(w, k). It is evident from expression (54) that there are two 
intervals of wave vectors. In the first interval, which is speci- 
fied by the inequality h 'I2kkl sgk t, the spectrum is deter- 
mined by the initial equations for p, 

In the second interval, which is determined by the inverse 
inequality gk :$h 'I2kkl, the spectrum is determined by the 
fluctuation effects. This spectrum is 

There are two branches of the spectrum in (57) and (58) be- 
cause the orientation mode includes oscillations of two de- 
grees of freedom: the oscillation of the variable q, and the 
oscillation of one of the parts of the transverse component of 
the velocity v. 

Keeping in mind that smectics C have been studied ex- 
perimentally much more thoroughly than hexatic smectics B 
(see Ref. 13, for example), we will estimate the parameters 
for this particular case in the expressions obtained above. 
The quantity h is estimated to be 

h=a/p-KBZ/p. (59) 

Here K is the Frank modulus, and 0 is the angle of inclina- 
tion of the molecules with respect to the normal to the layer. 
As regards g, at L )  1 we find 

g=L'1$( i /5b0 In L)'", (60) 

consistent with (36) and (37). Forb, we find 
K cZ2 

6,- -- 
p ci2 a (61) 

From estimates (59) and (61) we see that both h and 2, in 
comparison with K /p, contain a small parameter of the same 
order of magnitude, 

The boundary between the two indicated regions in k space 
is thus determined only by the propagation direction of the 
orientation mode, although the fluctuation region increases 
slowly (on a logarithmic scale). The spectrum is determined 
by h ' I 2 r  in the region in which the initial spectrum (57) is 
applicable. In this region we find k, z k ,  according to the 
estimates presented above. At h ' I 2 r  < 1 spectrum (57) de- 
scribes the propagation of waves in accordance with the 
square dispersion law. The damping of these waves is gener- 
ally of the same order of magnitude as that of the frequency. 
At h 'I2 > 1 spectrum (57) describes two diffusion modes. The 
fluctuation spectrum (58) describes two diffusion modes. 
The damping of the first mode is much stronger than that of 
the second and is devoid of any initializing parameters of the 
orientation mode. 

Experimental data of Ref. 13 show that the typical re- 
laxation time ofthe director in a smectic Cis 10- '-10-2~ for 
characteristic dimensions k- lo4 cm-'. Using (57) and (59), 
we then estimate the coefficient r to be 

1'-lo3-10' c/cm? 

On the other hand, estimate (59) yields h - cm4/cZ. Ac- 
cordingly, h 'I2r < 1 for the data obtained in Ref. 13. 

APPENDIX 

We should first recall what a renormalization involves. 
If the fluctuation effects on the scale k -' result from fluctu- 
ations with a wave vector q)k, we can find an effective distri- 
bution function for a characteristic dimension k - ' by elimi- 
nating the fast variables. In our case, we should break up the 
variables p ,  and W into slow and fast variables pi and W ' 
(the fast variables have a characteristic wave vector q) and 
then integrate the distribution function exp(iI ) over the fast 
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variablesp; and W '. We thus obtain logarithmic corrections 
to I, justifying the use of the inequality q)k. If we restrict 
ourselves to a second-order expansion of I in fast variablesp; 
and W', then the integral overp; and W '  will be Gaussian, 
consistent with the single-loop approximation in perturba- 
tion theory (which will be used exclusively below). We recall 
that a zero-charge state applies to smectics; i.e., L -' is a 
small real parameter of the expansion in the loops, where L is 
the major logarithm. 

Turning our attention to specific calculations, we first 
point out that by virtue of estimate (41) we can set the ratio 
q:/q2 equal to unity in all intermediate integrals, and we can 
set q, equal to q,,. We will use the following term of the 
expansion of A i  in fast variables: 

Using Wick's rule for pairing, we find 

Here the D functions are generated by the expectation values 
of the fast variables and are given by expression (39). Because 
of the logarithmic nature of integral (A.2), we can assume 
that the arguments of the D functions are the same. Averag- 
ing q,, q, , over the angles gives us 1/2gfSij. As a result, we 
find an integral which was analyzed in the Appendix of Ref. 
7 and which allows us to renormalize r .  Recalling the rela- 
tion 7 = 4Tg/pl (see Ref. 7) and transforming from an inte- 
gral over dL to a differential, we find relation (46). 

Let us now consider the expectation value ( A  ] B  J ), 
where A ,! is given by expression (A. I), and B J is found from 
(44) by substituting the fast variables W ' andp; for the varia- 
bles Wandp,. Averaging in accordance with Wick's rule, we 
find 

Here k = - iV, and the expressions for the Greens func- 
tions are given in (38) and (39). The zeroth term of the expan- 
sion in k /q in expression (A.3) vanishes upon integration, so 
that the k, dependence in the integrand in (A.3) remains in 
force. The dependence on the outer frequency w and on the 
component k, of the wave vector in (A.3) may, however, be 
dropped. Integrating in (A.3) over the frequency, which re- 
duces to taking the residues in the D poles, we find the fol- 
lowing expression, in which the terms linear in k, are re- 
tained: 

Here 

v**=igqzic, c= (qz-g2q4) ' ! I .  (A.5) 
Decomposing (A.4) to the first order in k,/q,, we find the 
logarithmic integral 

Let us integrate (A.6) over the angle in the plane q, and 
transform to the variables 7 and X, 

q,=qa-''I sin X, q2=qb-'~' cos X. (A.7) 

Integrating the resulting expression over the anglex, we fin- 
ally find 

Since (see Ref. 7) 

we find from (A.8) relation (45) of the text proper, after trans- 
forming from an integral to a differential. 

We will use the following terms of the expansion of the 
effective action in the fast variables, which is defined by (28): 

I I  = - j d t d ' r a l ~ ~ ( % ) - l  plVzW'vkIVf, (A. 10) 

Applying Wick's rule to describe the expectation value of the 
fast variables, we find the fluctuation correction to B ,  

>! [G1 (v, kfq)  G, (--v, q)Dl (v, 4) - Dl (v, k+ ~ ) G I ~ ( - V ?  q) 

Here k = - iV. The zeroth term of expansion (A. 12) in k /q 
vanishes upon integration, so that the k dependence in the 
integrand of (A. 12) remains in force. The dependence of the 
wave vector on the component k, in (A. 12) can, however, be 
dropped (as we have done with the dependence of the wave 
vector on the outer frequency w). Integrating in (A. 12) over 
the frequency v,  we find the following expression in which 
the terms linear in k are retained: 
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+ [ 1 6 E ~ + ' ~ g q ~  (gg2v+'-ibq2qk+gv+'qk) ] - I  

+ ( v +  -+ 2;-)} V,W. (A. 13)  

Decomposing (A. 13) to first order in k /q, we find the loga- 
rithmic integral 

(A. 14) 

Integrating (A. 14) over the angle in the plane q,, switching 
to the variables 77 and x in (A.7), and then integrating over 
the angle X ,  we find 

(A. 15) 

Comparing (A. 15) with (A.9) and with expression (44), we see 
that (A. 15) gives an exact renormalization ofg in expression 
(44). 

Finally, one more comment is in order. At first glance, 
it may seem that terms like those in (42) and (43) can be found 

from (28) and (30) by using exactly the same logarithmic 
method that was used for renormalizing B j  . The factor B ; 
in (A. 12) in this case is replaced by p; V W '. A straightfor- 
ward calculation shows, however, that the logarithmic part 
of the corresponding integral vanishes. In summary, the 
terms (42) and (43) appear only because of the power-law 
diagrams, as we have pointed out in the body of the paper. 
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