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The role played by effects of a vector nonlinearity in the three-dimensional stability of one- 
dimensional drift and ion acoustic solitons of a magnetic plasma is analyzed. These effects are 
shown to be important if the soliton amplitude is not too small. They shut off the instability of ion 
acoustic solitons propagating at a large angle from the magnetic field. They have a more complex 
effect on drift solitons, stabilizing transverse perturbations but destabilizing oblique perturba- 
tions. 

1. INTRODUCTION 

The existence of a fairly large variety of solitons in a 
magnetized plasma has now been demonstrated theoretical- 
ly. These solitons propagate either exactly or nearly across 
the equilibrium magnetic field (see Ref. 1 and the bibliogra- 
phy there). Such solitons are pertinent to the problem of 
plasma confinement in a magnetic field. Their stability must 
accordingly be analyzed. A first step in this direction was 
taken by Pet~iashvili,~ who continued the general approach 
which he and Kadomtsev had p r~posed .~  One aspect of this 
approach is that the stability of one-dimensional solitons 
with respect to two- or three-dimensional perturbations is 
analyzed on the basis of equations whose nonlinear terms are 
the same as those in the corresponding one-dimensional 
equations. 

In the present paper we wish to point out that in this 
magnetized plasma case the approach of Refs. 2 and 3 is, 
generally speaking, not sufficient; nonlinear effects of an es- 
sentially multidimensional nature are important in this case. 
These effects are of the same nature as those which figure in 
vortex theorye4 They are characterized by terms [Va, 
Vb 1, #O, where a and b are functions determining the wave 
field, and z is the direction of the equilibrium magnetic field. 
We refer to these terms as a "vector nonlinearity," while the 
nonlinearity which is conventionally incorporated in the 
general theory of the stability of solitons is the "scalar non- 
linearity." This terminology was introduced in Ref. 1. In the 
same paper, the problem of steady-state waves was analyzed 
with a simultaneous treatment of both types of nonlinearity 
(a similar problem was studied in Ref. 5). 

According to Ref. 1, a problem of this sort has solutions 
of two types: solutions of the type b = b (a), which corre- 
spond to a situation in which the vector nonlinearity vanish- 
es identically (the case of scalar solitons or simply "soli- 
tons"), and solutions ofthe type b # b (a), for which the role of 
the scalar nonlinearity is unimportant (the case of vector 
solitons or "vortices"). In this sense we may say that it is 
unproductive to incorporate the vector nonlinearity in the 
problem of steady-state solitons (because this nonlinearity 
vanishes identically). In the stability problem, on the other 
hand, the situation is radically different: Instead of the 
steady-state solutions of the type bo = b,(a) we are dealing in 
this case with a solution of the type b = b,(a) + 6, where 

a = a, + 6, and 6 and 6 are perturbations of the functions a 
and b [6 2 6  (a)]. In this case we have [Va, Vb 1, #O, so that 
vector-nonlinearity effects play a nontrivial role. 

Vector-nonlinearity effects are crucial to the nonlinear 
mechanism for the generation of convection cells in a mag- 
netized plasma6*' and to the theory of the turbulence of such 
 plasma^.^-'^ The incorporation of this nonlinearity in soliton 
stability theory thus fills an obvious gap in the nonlinear 
theory of magnetized plasmas. The analogy in terms of wave 
properties between a magnetized plasma and a rotating liq- 
uid" suggests that vector-nonlinearity effects may also be 
important in the problem of the stability of scalar Rossby- 
wave solitons in such liquids (such solitons were studied in 
Refs. 5, 12, and 13). 

It is clear that incorporating nonlinear effects of the 
type [Va, Vb 1, in the problem of the linear stability of one- 
dimensional solitons is meaningful only for solitons which 
are propagating at some angle from the magnetic field. In 
this connection there is a series of papers, going back to one 
by Zakharov and Kuznet~ov, '~ on the stability of ion acous- 
tic solitons which are propagating strictly along the magnet- 
ic field (see the bibliography in Ref. 15). Obviously, vector 
nonlinearity plays no role in this case. 

To make our analysis more specific we consider the sim- 
ple and quite familiar example of drift-ion-acoustic waves 
propagating nearly across the magnetic field.2.16,17 The 
three-dimensional nonlinear equation for these waves is giv- 
en in Section 2. It is simplified for the case of small perturba- 
tions of a one-dimensional soliton in Section 3. A dispersion 
relation for three-dimensional perturbations of a soliton in 
the case with a vector nonlinearity is derived in Section 4 and 
analyzed in Section 5. The results are discussed in Section 6 .  

2. THREE-DIMENSIONAL NONLINEAR EQUATION FOR 
DRIFT-ION-ACOUSTIC WAVES 

We assume a plasma in a uniform magnetic field Bollz. 
The plasma pressure is negligible in comparison with the 
magnetic pressure, and the ion temperature is negligible in 
comparison with the electron temperature Te . The equilibri- 
um plasma density no and the electron temperature are non- 
uniform along x;  i.e., we have Vn,, VTe Ilx. We consider 
waves in this plasma with typical frequencies which are 
small in comparison with the ion cyclotron frequency, and 

469 Sov. Phys. JETP 61 (3), March 1985 0038-56461 '85/030469-07$04.00 @ 1985 American Institute of Physics 469 



we assume that the electric field of these waves is a potential 
field: E = - Vp, where p is the electrostatic potential. We 
are assuming that the waves are quasineutral, thereby ignor- 
ing effects of the finite electron Debye length, which are tak- 
en into account in Refs. 14 and 15. These are standard as- 
sumptions for the elementary theory of drift-ion-acoustic 
waves. l8 

These waves are described in the linear approximation 
by the dispersion relation 

It is assumed that the waves are propagating along they axis 
at a velocity u and along the z axis at a velocity u/a. Here 
c, = ( ~ , / m ~ ) " ~  is the ion acoustic velocity, V. = cTexn/ 
e, B, is the electron drift velocity along the density gradient, 
x, = 8 In nddx is the reciprocal of the scale size of the den- 
sity inhomogeneity, e, is the electron charge, mi is the ion 
mass, and c is the velocity of light. The typical frequencies of 
waves of the type in (2.1) are low in comparison with the ion 
cyclotron frequency wBi = ei Bdmic, where ei = - e, is 
the ion charge. 

In working with (2.1) we are treating both the case of 

u=v*, (2.2) 

which corresponds to the approximation ac, < V . ,  and the 
case of purely ion acoustic waves of a homogeneous plasma, 
V. + 0, which are propagating at some angle from the mag- 
netic field (a # oo ), 

u=acs. (2.3) 

The nonlinear equation for the waves of type (2.1) is 
derived in Appendix A. This equation is 

Here Gq, is that part of the nonlinear equation which figures 
in the theory of two-dimensional steady-state x, q waves1: 

h 

where the operator D is defined in the standard way, 

and the coefficients A and S are 

the function Z is 

p; = T, /miwBi is the square of the ion Larmor radius cal- 

culated from the electron temperature, V., = V. x,/xn is 
the electron drift velocity along the temperature gradient, 
and x, = d In T, /ax is the reciprocal of the scale dimension 
ofthe electron temperature gradient. We assume p = p (x, q, 
z, t ) where q=y - ut + az. 

The second term on the right side of (2.6) describes the 
vector nonlinearity. Here a question posed in Section 1 
arises: What role does this nonlinearity play in the problem 
of soliton phenomena in a magnetized plasma? It follows 
from (2.4), in accordance with the discussion in Section 1, 
that this role depends on the nature of the phenomena. If, for 
example, we are interested in steady-state two-dimensional 
(x, q )  phenomena, with (8 /at ), = (a /b'z), = 0, then we see, 
in view of the discussion in Appendix A of the effect of the 
operator [Vp, V], on the functions p ,  that (2.4) implies 

In the case of analytic functions p (functions which have no 
discontinuities in their higher-order derivatives1), this equa- 
tion can be integrated; it reduces to the equation 

which now has no vector nonlinearity. (This point was first 
demonstrated by Petviashvili.') Equation (2.11) therefore 
holds for both a weak and a strong vector nonlinearity, and 
in this case there is no need to determine the relative impor- 
tance of the various terms on the right side of (2.6). This 
question does, however, arise in the case of time-varying 
and/or three-dimensional problems, in which we would 
have (d /dt ), # 0 or (a /dz), #O. I t  may turn out that the sec- 
ond term on the right side of (2.6) is negligible in comparison 
with the first. In such a case we would find from (2.4) 

Here E = A pi ;  i.e., according to (2.7) we have 

& = I -  V,/U-a2c,'/uZ (2.13) 

and, analogously, q = S p i .  Equation (2.12) was derived by 
Petviashvili2 for the case ac, 4 V. . 

We will write (2.12) in a simpler form, noting that the 
quantity E, the dimensionless dielectric constant, is a small 
parameter in our problem. For this reason, we can use the 
approximation u = u, on the right side of (2.12), where u, 
satisfies the dispersion relation [cf. (2. I)] 

E (uo, a )  =O. (2.14) 

We regard (2.14) as an equation for u,, which determines the 
function u, = u,(a). We can then use the concept of the lon- 
gitudinal wave group velocity v, = du,,/da, which in our 
case is 

Transforming to a coordinate system which is moving along 
the z direction at a velocity v,, i.e., replacing z by the new 
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variable = z - v, t, we put (2.12) in the form 

As is usual in problems of this sort, we have assumed (a /at )< 
to be small, and we have ignored terms on the order of (6' 2/ 

a t  2)c and (a /at )< 8 /ac. We now replace 7 by the new variable 

From (2.16) we then find 

The canonical form of this equation, 

where x ,  and x, are coefficients, differs from the three-di- 
mensional Kadomtsev-Petviashvili equation. 

3. INITIAL EQUATION FOR SMALL PERTURBATIONS OF A 
SOLITON 

In (2.4) we set p = po + @, where p0 = p0(7) and 
@ = @ (7, t, x, z)  are the steady-state and perturbed parts of 
the potential. For the steady-state part we find the equation 
[cf. (2.1 I)] 

We assume 

p exp (-iot+ik,x+ikllz), (3.2) 

where w, k,, and k ,, are the frequency and transverse and 
longitudinal wave numbers of the perturbation. We find the 
following equation for @: 

where the operator so is defined by (cf. (2.6)] 

d Do - + ik, - CVO' , avo 
arl 

uBo 7 90 = -. 
5 rl 

We see from (3.4) that the vector nonlinearity is clearly 
important under the condition 

k L ~ i $ o l u B o ~ f ,  (3.5) 

where @, is a typical value of the soliton potential. (In Sec- 

tion 5 we will show that in some cases the vector nonlinearity 
is important at even smaller values of k, .) From (3.1) we have 

where @,(l) is the solution of the dimensionless equation 

with the variable 6 =S '127/ Po, and the dimensionless small 
parameter S is defined by 

6=Apo2= 1 - V./u-a2cS2/uz. (3.8) 
From (3.6) we find the estimate 

and from the expression for we find an estimate of the scale 
size of the soliton, 

In our analysis we are assuming k,A < 1. Using (3.5), (3.9), 
and (3. lo), we then find that the vector nonlinearity clearly 
plays an important role in our problem if k, lies in the inter- 
val 

This double inequality is noncontradictory if 

In the case of drift waves, with u - V. , condition (3.12) 
means 

where L, - l/x, is the scale size of the plasma gradient. For 
tokamaks we would have po-0. 1 cm and L, - 10 cm, and 
condition (3.13) would hold even at S > 1 %. The level of the 
potential fluctuations observed experimentally is typically 
on the order of 3% (Ref. 19, for example). It follows, in parti- 
cular, that the treatment of the stability of drift solitons in a 
tokamak should incorporate the vector nonlinearity. Our 
analysis is also pertinent to ion acoustic solitons which are 
propagating through a homogeneous plasma at a large angle 
from a magnetostatic field, a(1. In this case we have 
u-ac,, so that condition (3.12) means 

6">a. (3.14) 

It is also clear that at sufficiently large soliton amplitudes, 
6- 1, the interval of the parameter a in which the vector 
nonlinearity is important extends to values on the order of 
unity. Quasineutral ion acoustic solitons with S - 1 and a - 1 
were studied in Refs. 20 and 2 1, but their stability was appar- 
ently not studied. 

4. DERIVATION OF A DISPERSION RELATION FOR 
PERTURBATIONS OF A SOLITON 

We now seek solutions of Eq. (3.3), and, corresponding- 
ly, we derive the relation among w, k, , and k ,, : the "disper- 
sion relation" for perturbations of the soliton. To simplify 
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the calculations we put Eq. (3.3) in dimensionless form. We 
replace 7 by 6, introduced above, while @ is replaced by the 
function 6, defined by analogy with (3.6): 

We also introduce 

where the prime means the derivative with respect to 6. 
Equation (3.3) then becomes 

We solve (4.3) in the spirit of Refs. 2 and 3, assuming that a, 
K Kl are small, but, going beyond Refs. 2 and 3, we assume 
that the productpK, is of order unity. We write 6 as a series 
in these small parameters: 

The function @, is derived in the same way as in Ref. 2: 

where A is an arbitrary constant [we are taking into account 
the Fourier representation of (3.2)]. The function @, turns 
out to be 

where 
E 

and $=Kip@,. The functions in the integrands are evaluat- 
ed at 6 = f, where f is the integration variable. The integrals 
are understood as functions of their upper limits. An ortho- 
gonality condition on @, (a dispersion relation) is found by 
integrating the corresponding third-order equation with a 
weight (e'" l)/iK,p. This equation is 

The quantities a, (i, k = 1,2) are calculated in Appen- 
dix B, where the explicit expression for the function @,g)  
which follows from (3.7) is taken into account: 

CDo=3/2 ch2 ( g / 2 ) .  (4.11) 

As a result we find 

al1=az2 = - j d l  (1-cos $1 G ( E l ,  
( K I P )  

1 (4.12) 
a12 = -1 d m  sin $G ( 5 )  , 

2 ( K , P ) ~  

It is interesting to note that the coefficient a/;) is com- 
plex [see (4. lo)], so that dispersion relation (4.8) is also com- 
plex. According to (4. lo), the imaginary part of a\;) stems 
from the finite value of K,p, i.e., the finite value of the trans- 
verse wave number. It is interesting here to note the analogy 
with a result derived by Zakharov2,: The dispersion relation 
in a problem of the Kadomtsev-Petviashvili type3 also be- 
comes complex at finite wave numbers. 

The quantity a in (4.8) is generally not an adjustable 
parameter. According to (3.8) and our assumption 641, this 
quantity is related to u by the approximate relation 

2 (a,,+ a,,) Q'2+a,K,Z=0. (4.14) 

In the case of ion acoustic waves in a homogeneous plasma 
( V ,  + 0), Eq. (4.14) would mean c? = 1. Making use of the 
small value of 6, we find the following dispersion relation 
from (4.8): 

1 
aii=a2,=a12 = - @02G(a)dE=a(o) ,  (4.15) 

2 

where fl' = 0 - K I I  /all2. 

5. ANALYSIS OF THE DISPERSION RELATION 

5.1. The case K,p + 0 

We begin the analysis of dispersion relation (4.8) with 
the limiting case K,p -+ 0, in which the vector nonlinearity 
is not important. In this approximation we find from (4.10) 
and (4.12) 

where 
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The quantity a , ,  on the other hand, does not depend on Kip, ( K I P )  2 a 6 .  (5.9) 
as can be seen from (4.10), so for all K l p  we have 
a, = ~ d { @ ' ~ .  Using ( 5 . 1 )  and (4.14) we can put Eq. (4.8) in 
the form 

For drift waves we would have u - V. and a( 1, and Eq. 
(5.2) would mean 

This result was derived in a different form by Petviashvili.' 
At K, > K , Eq. (5.4) describes an instability which, accord- 
ing to the interpretation of Ref. 2, should give rise to two- 
dimensional circular solitons. In the case K ,  < K it follows 
from (5.4) that the perturbations are stable. This result be- 
comes more understandable when we note that in the limit 
Kl / K  -+ 0 the initial nonlinear equation reduces to the Ka- 
domtsev-Petviashvili equation for a medium with negative 
dispersion and when we recall that one-dimensional solitons 
are stable in such media.3 

For ion acoustic waves in a homogeneous plasma we 
have V. /u  = 0 and 2 = 1 .  In this case we find the following 
dispersion relation from (5.2) [or from (4.15)] in place of (5.4): 

These terms are larger than the usual terms with K :  under 
the condition K :p2  > 8. In dimensional form, inequality 

ives us (5.9) g' 

which is a weaker condition than the first inequality in (3.1 1 ) .  
Let us assume, however, that K, is small enough that 

condition (5.9) does not hold, and the leading terms with K 
in (5.8) are stabilizing, outweighing the destabilizing effect of 
the terms with K :. In this case we find from (5.8) 

We see that an instability occurs for an arbitrarily small val- 
ue of Kip, although the growth rate for this instability is 
small in comparison with the real part of the wave frequency. 

5.3. The case K,p>l 

We now consider the limiting case of a strong vector 
nonlinearity, K, p )  1 .  From (4.10) and (4.12) we find the ap- 
proximate expressions 

This relation describes a transverse instability of the soliton. For a , ,  we find the estimate a,,- ( ~ , p ) - 2  from (4.121, so 
This instability is analogous to that studied in Ref. 23. that this element is small in comparison with a ,  ,, by a factor 

5.2. Case of small but nonvanishing K,p 

.A - 
of lAn(Klp) ,  so we can use the approximation a l , ~ O .  The 
dispersion relation then reduces to 

Assuming K , p g l  and taking into account the small 
terms on the order of K l p  and (K,,u)', we find from (4.10) ( l + 0 4 )  W2=a, ("e)2K~2 -KlI2f (5.13) 
and (4.11) the following in place of (5.1): 2 1n ( 6 K l ~ )  

Here 

In this case, dispersion relation (4.8) reduces to 

where 0. differs from 6 by terms of order (K,p)2,  whose 
paticular form is not important to the discussion below. We 
see that, in contrast with the case K , p  -+ 0 the leading terms 
with K 3 in (5.8) change from stabilizing to destabilizing for 
waves with a finite a# 1 even at rather small values of 
(Kip)', specifically, at 

where 

The most important new point seen in this short-wave 
approximation, Kip) 1 ,  is that the signs of a , ,  and a,, differ 
from those in the case of long waves [cf. (5.12) and (5. I ) ] .  This 
result is important for both drift waves and ion acoustic 
waves. Accordingly, the purely transverse instability 
(K II = 0) which occurs at K l p  < 1 does not occur in this case 
[see (5.13) with K II = 01. In this case, ion acoustic solitons 
are stable even if K l i  # O ,  since we have a = 1 and thus 
f (a) = 0 for these solitons, according to the discussion above. 
In contrast with these solitons, drift solitons may be unstable 
at finite values of K II . With a = 0 and sufficient small values 
ofK II , the instability results from the complex nature off (u), 
because of the imaginary nature of a"' [see (5.12)]. If, on the 
other hand, we have a+ 0 and 

473 Sov. Phys. JETP 61 (3), March 1985 Mikhallovskiletal. 473 



then there should be a more important aperiodic instability 
(in the sense that fi2 < 0). An aperiodic instability can also 
occur in the case of drift solitons with azO, but here the 
condition K ,, / K ,  k K,p would have to hold. It should be 
kept in mind, however, that our analysis does not apply at 
large values ofK ,since we have used the assumption that d / 
dz quite small (Section 2). 

6. DISCUSSION OF RESULTS 

We have derived a dispersion relation for three-dimen- 
sional perturbations of one-dimensional drift-ion-acoustic 
solitons in a magnetized plasma [Eq. (4.8)], and we have ana- 
lyzed this relation (Section 5). It follows from our analysis 
that vector-nonlinearity effects are important in problems of 
this sort if the soliton amplitudes are not too small. These 
effects may qualitatively change the stability picture. In par- 
ticular, a vector nonlinearity can suppress the transverse in- 
stability of drift solitons (K, $0, K,, = 0) which was dis- 
cussed in Ref. 2, and it can also completely stabilize ion 
acoustic solitons. In this connection it is interesting to note 
the experimental fact24 that plane ion acoustic solitons of 
sufficiently large amplitude are stable in a magnetized plas- 
ma (see Ref. 15 for a different interpretation of this fact). In 
the case of drift solitons, perturbations with K , K, # O  may 
grow by virtue of the vector nonlinearity. The instability 
may be aperiodic, while in the absence of this instability an 
oscillatory instability may occur. 

We believe that the approach formulated in this paper 
will also be useful for analyzing the stability of solitons of 
other types in a magnetized plasma, and it may be extended 
to problems involving solitons of Rossby waves in a rotating 
liquid. 

APPENDIX A. 

Derivation of Eq. (2.4) 

In deriving (2.4) we use as the initial equations the con- 
tinuity equation, the longitudinal equation of motion for the 
ions, and Boltzmann's law for electrons: 

don d 
-- +no div V,+ - (nV,) =O, 
dt d z  

n=no esp  (-e,~p/T,). (A31 

Here n is the density of each particle species (the sum of the 
equilibrium and wave components), V, is the ion velocity 
along the magnetic field, and V, is the velocity of the inertial 
motion of ions across the magnetic field. By definition we 
have 

where 

The physical reason for the second term on the right 
side of (A5) is the electric drift of the particles, which occurs 
at a velocity V, = c[e,, Vp ]/Bo, where e, is a unit vector 
along z. Accordingly, this term can also be written in the 
more customary form V, V. We are assuming that the condi- 
tion V, V) V, 6' /dz holds in general. Using this condition, we 
have ignored the term on the order of V,d /dz on the right 
side of (A4). To avoid any misunderstanding, we will explain 
the specific although completely obvious nature of the oper- 
ator V, V. The result of the application of this operator to p 
(or to any function of p ) is identically zero: V, Vp = 0 (cf. 
the discussion in Section 1 of terms of the type [Va, Vb 1 ,  ). 
Consequently, the relations of the type ( V, d / 
dz + V, V)p = V, d p  /dz used in Section 2 are identities, not 
the result of neglecting certain terms and thereby violating 
the original assumption V, V) V, d /dz. 

As in Refs. 1 and 4, we replace y by the self-similar 
variable q, defined in Section 2. In contrast with Refs. 1 and 
4, on the other hand, we assume that p depends on both q 
and x ,  on the one hand, and z and t, on the other; the depen- 
dence p on q is assumed to be stronger than that on the other 
arguments. We write V, in the form (cf. Section 1) 

where V, (p ) satisfies Eq. (A2) in the approximation (d / 
a t  ), , (d /dz), + 0, i.e., 

From (A2) we find an equation for pz : 

where the operator 6 is defined by (2.6). Since d /dt is small, 
as assumed above, we find from (A8) by the method of 
successive approximations 

Substituting (A3), (A6), (A7), (A9) into (Al),  we find (2.4). 

APPENDIX B. CALCULATION OF a, 

With as in (4.11) we have 

Using (Bl), and integrating by parts in (4.7), we find 

E 

( I )  I [ (I-ei*-ilg)G+i$' 5 (I-el*) ~ d ~ ] ,  cDz =- 
( K I P ) ~  
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where G is defined by (4.13). Substituting (B2) into (4.9), and 
integrating by parts, we find (4.12). 
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