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The expansion of a cloud of fast protons in a cold plasma, accompanied by the excitation of AlfvCn 
waves, is analyzed on the basis of quasilinear theory. Self-similar solutions are derived for the 
cases of nonrelativistic and ultrarelativistic particles. Various nonlinear mechanisms which may 
operate to reverse the direction of resonant particles and to trap them near a shock wave are 
examined. 

1. The mechanism by which cosmic rays are accelerated of the cold plasma. The derivative of the distribution func- 
by shock waves in the interplanetary medium, which has tion f (w,p, ) with respect top, on the right sides of (1) and (2) 
attracted considerable interest in recent years, is essentially is evaluated along the lines of diffusion of resonant particles: 
a version of Fermi acceleration.' The acceleration by this W A  w = g  -- 
mechanism occurs as the particles repeatedly cross a shock p , ( 8 ,  u1) =const, 

k (4) 
front; fast particles are trapped near the front as a result of 
their scattering by small-scale irregularities of the magnetic 
field. Krymskii2 and Bell3 have shown that this acceleration 
gives rise to a universal power-law energy spectrum which 
agrees quite well with observations. 

Bell3 was the first to suggest that the role of the small- 
scale magnetic-field irregularities which scatter the particles 
might be played by Alfvtn turbulence excited by fast protons 
as they disperse across the wavefront into cold plasma. The 
scattering of these protons by the AlfvCn waves which they 
themselves excite causes the distribution function of the fast 
particles to approach isotropy and results in the trapping of 
these particles near the shock front. 

In the present paper we use quasilinear theory to ana- 
lyze the dispersal of a cloud of relativistic protons in a cold 
magnetized plasma, accompanied by the excitation of Alf- 
vCn waves. 

2. The initial system of equations for this problem can 
be written as follows if we assume that the protons excite 
only AlfvCn waves which propagate along the magnetic 
field: 

This system of equations is written for waves which are 
polarized along the direction in which the electrons gyrate in 
the magnetic field. The condition for the resonance of these 
electrons with fast ions corresponds to the anomalous 
Doppler effect: 

~ V T = ~ k + m H i r r ~ i ~ 2 / 8  or k p z ~ m i m a i ,  (3) 

since the frequency of the waves which are excited satisfies 
uk = kvA (uHimic2/$, where v, = Ho/(4~nomi) '124c and 
uHi = eH,/m,c are the AlfvCn velocity and the ion cyclo- 
tron frequency, respectively, calculated from the properties 

where 8 = (m:c4 + ( p:   pi)^^)'/^ is the energy of the parti- 
cles. Figure 1 shows lines of diffusion in thep, ,p, plane, The 
quantity wmin(pz) = (mtc4 + p ~ ~ 2 ) " 2  is the minimum value 
of w at the givenp, . 

Since the number density of relativistic protons is low, 
n, (no, a small change in the density of the cold plasma is 
sufficient to restore quasineutrality, and the polarization 
electric field can be ignored. We can then write the initial 
distribution function along lines of diffusion, w = const, as 
follows: 

where f, is the distribution function of the protons of the 
expanding cloud. 

The proton distribution function (5) is unstable with re- 
spect to the excitation of AlfvCn waves through the anoma- 
lous Doppler effect, since it is obvious that under the condi- 
tion v, z z / t  the condition df /dp, > 0 will hold. The 
quasilinear diffusion of resonant protons in the field of these 
waves causes the distribution function of these protons to 
approach isotropy and thereby determines the dynamics of 
the expansion of the proton cloud. The results of the solution 
of the corresponding problem are given below. 

The analogous problem for hot electrons, whose relaxa- 
tion in a cold plasma involves the excitation of plasma waves 
by these electrons, was solved previously by Ryutov and Sag- 
d e e ~ . ~  We will draw extensively from their results. As in Ref. 
5, we assume that on the time scale of the dispersal of the 

FIG. 1. Lines of diffusion of resonant particles on thep, ,p,  plane. 
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cloud the instability is fast, and a solution can be sought 
through an expansion in the parameter& = (yt )-'(I, where 
y is a typical growth rate of the instability, found from (2). 
This solution method is an analog of the standard gasdyna- 
mic approach in which the solution of the kinetic equation is 
found through expansion in the reciprocal of the collision 
rate (Ref. 4, for example). To lowest order in &, the distribu- 
tion function f is equal to that stable functionfm for which 
the right sides of (1) and (2) vanish. Let us determine this 
function more specifically. For w<m, c2/(l - z2/t 2~2)1'2, 
there are no particles at all, since on such lines of diffusion 
the condition u, <z/t holds. We thus have 

f=O, u.<m,c2/ (I-z2/c2t2) ' " .  (6)  

We assume m, c2/(1 - z2/c2t 2)112 < w((m?c4 + dc2)lI2, 
where ?r is the maximum longitudinal momentum of a reso- 
nant particle, found from resonance condition (3): 
n-m, w ,  /k,,, . The interaction with the waves then gives 
rise to a plateau along the line w = const for all values ofp, 
on this line; i.e., 

f=h(t. z.  Z U ) .  p,,,<p,<pmox= ( W ~ / C ~ - ~ , ~ C ~ ) ~ ' ~  (7) 

The height of this plateau is found from the conservation of 
the number of particles on each line of diffusion. Integrating 
(1) overp, from p,,, top,,, (w), and using IH, l 2  = 0 at the 
lower limit and u, = 0 at the upper limit, we find 

The solution of this equation under the condition p,, 
gp,,, , which satisfies the obvious initial and boundary con- 
ditions f = O a t  t=Oand f=$,(w,p, =O)atz=O, is 

i.e., the relaxation front on the line w = const moves at a 
velocity +c(l - m : ~ ~ / w ~ ) ' / ~ .  An expression for the spectral 
energy density of the Alfvtn waves excited during the expan- 
sion of a proton cloud in a cold plasma is found from the 
energy integral of quasilinear equations (1) and (2) .  Ignoring 
in (2) the term which describes the drift of Alfvtn waves (the 
group velocity of these waves is low in comparison with the 
scale velocity of the relativistic protons), we find, by the stan- 
dard approach, the following expression for the spectral den- 
sity of magnetic-field fluctuations: 

ffi t m  

3. We first consider the case of a power-law energy dis- 
tribution of the relativistic particles-a simple case but the 
one most important for applications. The energy distribu- 
tion observed in the cosmic rays is %' - 2.5 and corresponds to 
a momentum distribution 

f Q  (8) =K/&"." (8'-mi2c" I:'. 

Determining the constant K from the normalization condi- 
tion .f fodp = n, , and using (9), we find 

In this case expression (10) leads to the following expression 
for the spectral energy density of the waves in the long-wave 
region (kc < w, ): 

As time passes (6 < +c(w, '/(k 2 ~ 2  + wHi 2))112, the steady- 
state spectrum shown in Fig. 2 is established: 

The spectral density has an integrable singularity 
(lH, l 2  cc k -'I2) as k + 0, i.e., in the limit of high energies of 
the resonant particles. Nevertheless, the relaxation length 
for these particles-the distance over which their distribu- 
tion function becomes isotropic-turns out to be extremely 
large, and it increases rapidly with increasing energy of the 
particles. From diffusion equation (1) and (12) we find the 
following estimate of the relaxation length: 

This solution, which corresponds to the approximation ~4 1, 
i.e., z)l,,, , is evidently inapplicable at high energies of the 
resonant particles. The question of whether effective "trap- 
ping" near the shock wave of the highest-energy component 
of the cosmic rays can occur apparently cannot be solved in 
the quasilinear theory. The induced scattering of AlfvCn 
waves by thermal plasma particles may prove important. As 
usual, this scattering causes a spectral pumping of energy to 
long wavelengths, k + 0, which is responsible for the scat- 
tering of high-energy particles. 

Another important question which essentially cannot 
be solved in the quasilinear theory involves the diffusion of 
resonant protons to the region of small values of the longitu- 

FIG. 2. Spectral density of the waves in the steady state. 
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dinal momentum, - p,,, <p, <p,,, . If the interaction with 
the AlfvCn turbulence is to in fact result in a trapping of the 
resonant protons near the shock front, the direction in which 
these particles are moving must be reversed. In the short- 
wave part of the spectrum, however, which is the part re- 
sponsible for the diffusion at small values ofp, , the cyclotron 
absorption of AlfvCn waves by the cold plasma becomes im- 
portant, and the excitation of these waves becomes impossi- 
ble. Achterberg6 has analyzed various nonlinear mecha- 
nisms for a diffusion of resonant particles at small values of 
v, . One of these mechanisms involves nonlinear broadening 
of a wave-particle resonance (Dupree broadening), which is 
described in our case of AlfvCn waves by 

where D, is the coefficient for the diffusion of the resonant 
particles among the waves, determined from (1). The cyclo- 
tron absorption in the cold plasma has the consequence that 
the wave numbers of the AlfvCn waves are restricted to 
k<miwHi/pmin, wherep,, = ami v,, u, is the thermal ve- 
locity of the ions of the cold plasma, and the numerical factor 
a is a-2-3. Accordingly, if the direction of the resonant 
particles on a line w = const is to be reversed, the nonlinear 
mechanism must cause a particle to pass through a region of 
width Au, zpminc2/w. From a comparison with (14) we find 
the following condition under which the nonlinear broaden- 
ing is effective: 

The energy spectrum of the short (kc > w,) AlfvCn waves 
can also be found without difficulty from Eq. (10). The result 
is 

Here $({) = (1 - (2{/~)')-"~ - 1. As time elapses, and we 
have {(c/2, $({ ) -+ 0, we find the following result for the 
integral in (16): 

A steady-state wave distribution is established; this distribu- 
tion has a rather rapid decay ( -  l/k 3, on the side of large 
wave numbers. This distribution is also shown in Fig. 2. Sub- 
stituting IH, 1' from (16) along with v, = c into condition 
(1 5), we find that the direction can reverse is possible only for 
relativistic particles of sufficiently high energy 

A second mechanism which may be involved in reversing the 
direction of the resonant particles is a magnetic-mirror 
mechanism. This mechanism, also proposed by Achter- 
berg,6 is based on the circumstance that the long-wave 
(kc < w, ) part of the spectrum of Alfven waves gives rise to a 
rather slow modulation (on the scale of the ion Larmor radi- 

us) of the magnetic field and to the formation of magnetic 
mirrors for particles with a low longitudinal velocity. The 
increase in the transverse momentum of a relativistic parti- 
cle for this type of modulation of the magnetic field is 

and it follows from the condition Z? = const that the mag- 
netic mirror is capable of stopping particles with a velocity 
V, = pmin c2/w if 

Comparison of (18) and (15) shows that the mirror mecha- 
nism is more important, primarily because in the spectrum 
described by (12) and (16) most of the energy is in the long- 
wave region; another contributing factor is the greater effec- 
tiveness of the mirror mechanism at high energies of the rela- 
tivistic particles. 

Substituting IH, l 2  from (12) into condition (18) and in- 
tegrating over k in the long-wave part of the spectrum, we 
find that the mirror mechanism causes trapping of particles 
with energies 

If the direction in which the particles are moving is reversed, 
an instability of the AlfvCn waves will also occur in the re- 
gion of negativep,, but in this case the instability involves 
the normal Doppler effect. The interaction with these waves 
gives rise to a plateau along the lines of diffusion, w = cost, 
at - p&, <p, <PA,, where 

For the case under consideration, with 

the average proton velocity is 

pzc2 
( u z ) = {  j dp ,p ,  dp,h}-I jdp ,p ,  dp,-- I h r u , .  (20) 

The relaxation front in Eq. (8) moves at the same velocity, 
u = (c2/2w)( PA, - pLax ) = uA . Under the condition that the 
region v, -0 is traversed, the proton trapping near the shock 
front is thus quite effective. 

4. A distinctive feature of this solution is that there is no 
lower boundary k = k,,, on the spectrum, at which 
IH, l 2  = 0, in the long-wave part of the spectrum. Accord- 
ingly, the platzau is established on the distribution function 
at all possible values of p, for each line of diffusion 
w = const. A solution of another type occurs when a cloud of 
relativistic protons with a Maxwellian distribution function 
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where 

expands in a cold plasma. In this case, a will be shown below, 
the spectral density vanishes (IHk l 2  = 0) at k<kmin. Accord- 
ingly, a plateau is established at all values ofp, on the lines of 
diffusion for which w<(m:c4 + $c2)lJ2, where a = miwHi/ 
k,, . The distribution function at these values of w is found 
from Eq. (9). 

On lines of diffusion with w > (mtc4 + $c2)'I2 a pla- 
teau is established only atp, <a;  at a <p, <p,,, (w) the pro- 
ton distribution function is the same as the initial function, 
f, (w, p,), since there is no resonance with waves at these 
values ofp,. We thus have 

At these values of w, a discontinuity occurs atp, = a on the 
lines of diffusion. Integrating Eq. (1) over p,, we find the 
following equation for this case, instead of (9): 

For the values of w under consideration here, the height 
of the plateau, h ( t ,  z, w), is determined along with its bound- 
ary a(t, z). A second equation is found from energy integral 
(10) of the initial system of quasilinear equations. Setting 
p, = a in this equation, we find the following equation from 
the condition I Hk / 1 = k,,, = 0: 

System of equations (23), (24) can be used to determine h (t, z, 
W) and a(t, z). 
As in Ref. 5, we seek a self similar solution of these equa- 
tions: 

where 5 = z/t is the self-similar variable. In this solution, as 
in the solution discussed in the preceding section, the num- 
ber of resonant particles in the region z > 0 increases linearly 
with time, in accordance with a constant flux density of par- 
ticles across the boundary. An important distringuishing 
feature of quasihydrodynamic equations (23), (24)-as well 
as of Eq. (18)-is that these equations were derived to lowest 
order in the parameter E = 1/yt and therefore do not contain 
a relaxation length, just as the equations of ordinary gasdyn- 
amics do not include a collision rate. As has been pointed out 
el~ewhere,~ it is this distinguishing feature of the quasihy- 
drodynamic equations of the quasilinear theory which al- 
lows us to seek a self-similar solution. The self-similar for- 
mulation of the problem puts Eqs. (23) and (24) in the form 

In the last of these equations, 

is the maximum value of 5, found from (9). We note that 
h (5mm # 0. 

We have examined the solution of system (261, (27) in 
the two limiting cases of nonrelativistic and ultrarelativistic 
protons. In the nonrelativistic case, we can use the approxi- 
mation w = mic2 in Eq. (26), and this distribution function h 
can be written in the form 

h (Z, w) =Ag( , )  ~ x ~ ( - z L ' / T R ) .  P8) 
For g({ ) and for the upper boundary of the plateau along the 
velocity scale, u(5 ) = a({ )/mi we find the system of equa- 
tions 

where 

A similar system of equations was solved in Ref. 5. The solu- 
tion is 

Under the condition mivA u<TR, we find, in particular, 
from these equations an expression describing the shift of the 
upper boundary of the plateau:u2z 3TR 5 /mi uA . In the op- 
posite limiting case, miuA u)TR, this expression becomes 
u z 25. 

In the ultrarelativistic case we assume ac>TR %micZ. 
We can then set w z w,,, z a c  in Eq. (26). As before, we seek 
the distribution function of the resonant particles in the form 
(28). Integrating over w in (271, we find the following system 
of equations from (26) and (27): 

Again, there is no difficulty in solving system (3 1). Under the 
condition av,  4 TR , the solution is 

where the variable T = 2g /c has the range 0<? < 1, and the 
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FIG. 3. The solution of Eq. (33) (the solid curve) and the discriminant 
curve for this equation (the dashed curve). 

function Z(T) satisfies the differential equation 

I-T d"[z(l-r)--- = 
d~ 1::2 2 ( 1 - ~ / 2 ) "  

Figure 3 shows the solution of Eq. (33). At r & l  we have 
z - (3 /2~)"~ .  Also shown in this figure is the discriminant 
curve of Eq. (33): 

ZD (T) = (712 (1-7) (I-T/2) ) I h .  

which has the property that on this curve we have dz/ 
d r  + w for any solution of Eq. (33). A solution which runs 
above the discriminant curve at small values of .r obviously 
cannot intersect this curve, and for such a solution we have 

z + cc as T -+ 1. The asymptotic law by whichz(7) increases 
at T =: 1(f z c/2) can easily be found from Eq. (33): 

Consequently, in the limit f + c/2, which [as follows from 
(9) ]  corresponds to particles with an infinitely high energy, 
w + w , the upper boundary along the longitudinal-momen- 
tum scale of the relaxation region also increases without 
bound, IT + cc . In other words, as in the case in the preced- 
ing section, the distribution function at these values of f be- 
comes isotropic for essentially all values ofp, . The question 
of the reversal of the direction of the resonant particles is also 
resolved by analogy with the approach in the preceding sec- 
tion for the case of a power-law energy distribution of the 
resonant particles. 

We are indebted to A. A. Galeev for useful discussions. 
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