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A quasiclassical theory of inelastic transitions between atomic Rydberg states, accompanying the 
scattering of a neutral particle by the weakly-bound electron, is presented. The Fermi pseudopo- 
tential model is used to analyze n- and I-mixing processes, taking into account the change AE in 
the energy of the highly-excited atom in these transitions. It is shown that the total cross sections 
for the n-tn' and nl-tn' elastic transitions with a large energy change AE (for which 
[A, = nA&/ V,, 1 ] where VE is the relative velocity of the colliding atoms) falls rapidly with 
decreasing principal quantum number n, reaching a maximum for (A, =: I), and tends to the 
quasielastic limit as AE is reduced for large values of n(A, g 1). General analytic expressions are 
obtained for the behavior of the cross sections and rate constants for the n-tn' and nl-tn' transi- 
tions throughout the range of validity of the model. It is shown that these expressions include 
previously published results on the quasielastic I-mixing of highly-excited states as special cases. 
Numerical calculations have been carried out of the cross sections for collisional quenching of 
Rydberg levels of atomic hydrogen and alkali metals in inert gases in the presence of the resonance 
defect, and the results are compared with existing experimental data. These results are used as a 
basis for a qualitative explanation of experimental data on the quenching of ns-states of Na and Rb 
atoms for which a substantial reduction is observed in the cross sections as compared with the 
quasielastic quenching of nd and nf levels. 

I. INTRODUCTION 

The development of methods for the selective excitation 
and detection of Rydberg states1 has recently led to intensive 
studies of collisional quenching of highly-excited atoms by 
neutral particles (a review is given in Ref. 2). Until recently, 
the greater part of experimental and theoretical research has 
been directed toward the mixing of Rydberg states in the 
orbital angular momentum (nl-tnl ' )  in situations in which 
the resonance defect ( A E ~ , ~ ,  , ) is unimportant, so that one can 
speak of quasielastic I mixiiig. 

The theory of this process is now essentially complete. 
It is based on the free-electron model proposed by Fermi3 
and subsequently developed in on the broadening 
and shift of atomic Rydberg levels in a buffer gas. According 
to this model, the quasielastic nl-tnl' transitions are due to 
the scattering of the incident neutral particle by the quasi- 
bound (quasifree) electron in the excited atom, and their in- 
teraction is described by the zero-range p~eudopotential.~ 
For the 1-mixing process, the free electron model was imple- 
mented by quasielastic methods within the framework of 
perturbation theory,"8 the impulse appro~imation,~- '~ the 
strong coupling methods,13-l5 the Born appro~imation, '~ 
and the adiabatic description.16 Existing theory"16 and the 
approximate formula constructed in Ref. 17 are, on the 
whole, in good agreement with experimental data on the 
quasielastic quenching of nd and n f levels of  odium'^-^^ and 
nf levels of rubidiumZ1 in inert gases. 

There is, however, a substantial group of experimental 
on the quenching of atomic Rydberg nl levels of 

alkali metals with low values of the orbital angular momen- 

tum 1 (the s levels of s o d i ~ m , ~ ~ , ~ ~  thep levels of potassium,24 
and the s, p, and d levels of r u b i d i ~ m ~ ~ - ' ~ ) ,  which existing 
theory is unable to describe. This is due to the large quantum 
defect 6, of these levels and, correspondingly, the substantial 
change in energy during collisional quenching. In this situa- 
tion, quenching occurs preferentially with transition to the 
n'l ' state that is the closest in energy to the initialnl level (i.e., 
with mininum resonance defect (AE~ , ,~ , ,  , = E ~ , , ,  - E,,), SO 

that, as a rule, it gives rise to a change not only in the orbital 
angular momentum I, but also in the principal quantum 
number n. The presence of the resonance defects AE means 
that the quenching process can no longer be regarded as 
quasielastic. 

There is practically no theory of nonresonant quench- 
ing of atomic Rydberg nl levels by inelastic nl-tn'l ' transi- 
tions. There is only a numerical c a l ~ u l a t i o n ~ ~  of the cross 
sections for n and I mixing, which applies to the region where 
the energy defect is small, i.e., AE < VE/n) where V, is the 
relative velocity of the colliding atoms. For the quenching of 
ns levels of rudibium in helium, this calculation has demon- 
strated that, even when AE is small, there may be an appre- 
ciable reduction in the cross sections for this process as com- 
pared with the quasielastic case (AE = 0). As far as large 
values of the energy defect are concerned (AE 2 V,/n), the 
very possibility of using the free-electron model in cross- 
section calculations in this essentially inelastic region has 
been in doubt (see Refs. 12 and 29). 

The first calculations of the rate constants for inelastic 
transitions with a change in the principal quantum number 
(n-tn') were reported in Refs. 30 and 31 for the case of a 
uniform distribution of atoms over degenerate I sublevels 
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within each of the hydrogen-like levels n and n'. These calcu- 
lations were performed by the semiclassical method, using 
the Pitaevskii originally put forward for the migra- 
tion of a highly-excited electron over energy levels in the 
course of three-body recombination. The most general ac- 
count of this is given in Ref. 3 1. However, analytic formulas 
for the behavior of cross sections and rate constants of in- 
elastic n+nl transitions were not obtained in Refs. 30 and 3 1 
(with the exception of the quasielastic region of high values 
of n for which it may be assumed that (AE,,, = 0). In the 
general case, the rate constants for n-tn' transitions were 
therefore determined in these papers by numerical methods. 
moreover, there is a need for a more rigorous verification of 
the results of semiclassical t h e ~ r y . ~ ~ , ~ ~  There is therefore a 
need for an analytic examination of transitions with a change 
in the principal quantum number and for calculations of 
cross sections and rate constants for inelastic nl-tn' transi- 
tions from a given selectively excited nl level to all the degen- 
erate sublevels I ' of another energy level n'. This latter case is 
of particular interest because it is amenable to direct com- 
parison between theoretical results and the experimental 
data mentioned above 22-28 on nonresonant quenching of 
Rydberg nl levels with large quantum defect 6,. 

The development of a theory of nonresonant n and I 
mixing of Rydberg states in the free-electron model, using 
the impulse approximation, has encountered considerable 
difficulties that have arisen in the calculation of atomic form 
factors (see Refs. 12, 29, and 33). However, it will be shown 
below that this model can be used for inelastic transitions if 
we introduce the zero-range Fermi pseudopotential and the 
classical approximation to the wave functions of the Ryd- 
berg electron, and adopt a procedure similar to that used by 
Omont6 for the quasielastic I-mixing process. This approach 
has enabled us to obtain general analytic formulas for the 
n-tn' and nl-tn' cross sections and rate constants, which 
contain explicitly the energy defect AE, the principal quan- 
tum number n, and the relative velocity VE of the atoms. The 
essential point is that these formulas simultaneously de- 
scribe the behavior of cross sections both in the usual quasi- 
elastic region (A&( VE/n) (where they become directly equi- 
valent to the results reported in Ref. 6) and in the previously 
uninvestigated inelastic (nonresonant) region in which 
(AE 2 VE/n). This brings out the physical parameter 
(RE = n&/V,, that characterizes the degree of inelasticity 
of collisional quenching. It is precisely this parameter that 
defines the quasielastic region (RE ( 1) in which the n-tn' and 
nl-tn' transition cross sections increase with decreasing 
principal quantum number (a a n-3) and the inelastic region 
(RE)l), in which the cross sections fall rapidly 
(ann, a n7an,,,, a n3). The inelastic transition cross sections 
reach their maximum for RE z 1. 

We have used the formulas obtained above to calculate 
the cross sections and quenching-rate constants for highly- 
excited states of hydrogen H(n) and alkali metals Na(ns), 
Rb(ns) in the inert gases He and Ar. We have also developed 
an explanation for the ob~erved~'-'~ substantial reduction 
[by up to two orders of magnitude in the case of the system 
Na(ns) + Ar; see Fig. 41 in the collisional quenching cross 

sections of Rydberg nl states with large resonance defects 
AE, as compared with the quasielastic case AE = 0. 

2. FORMULAS FOR INELASTIC TRANSITION PROBABILITIES 

Collisional transitions between Rydberg levels 
(nl-tn'l ') in an atom A(n1 ), due to the scattering of an inci- 
dent ground-state atom B by a weakly-bound electron e- 
(Fermi mechanism), will now be described in terms of the 
zero-range pseudopotential (we shall use the atomic system 
of units in which e = me = f i  = 1): 

V (r,  R)  =2nL6 ( r -R) ,  (1) 

where r, R are the position vectors of the outer electron e- 
and the atom B relative to the atomic residue (core) A+,  and 
L is the scattering length of a free electron on the same atom 
B. 

In the classical description of the relative motion of the 
two heavy particles A+ and B on a rectangular trajectory 
R(t ) = p + VEt (where R '(t ) =p2 + V i t  ') with velocity 
VE = ( 2 ~  /p)'I2 (E is the energy of relative motion and p is 
the reduced mass) and impact parameterp, the probability of 
an nl-tn'l' transition in first-order time-dependent pertur- 
bation theory34 is given by 

The frequency(wnl,,,,, = E ,,,, - E,,) is determined by the 
change in the energy of the highly-excited atom in the course 
of the nl-tn'l' transition under consideration. The matrix 
element of the perturbation (1) over the Coulomb wave func- 
tions 

Y .l,=R,l ( r )  Ylm(O,, vcp,) 
of the Rydberg electron with principal quantum number n, 
angular momentum quantum number I, and magnetic quan- 
tum number m, has the following form: 

We shall use the quasiclassical approximation (see, for exam- 
ple, Ref. 34) for the radial wave functions of the highly-excit- 
ed electron: 

wherep, is the electron momentum, +, is the phase, r, , ,  are 
the turning points, and I = I + f .  This enables us to assume 
that we are dealing with a purely hydrogen-like situation and 
to take into account the quantum defects 6, and 6,. of the 
initial (nl ) and final (n'l ') levels. In the latter case, the value of 
n in (4) and all the subsequent formulas must be replaced 
with the effective quantum numbers n,, = n - 6,. 
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In the coordinate system in which the core A+ is at the 
origin, the Z axis is perpendicular to the plane of collision of 
particles A+  and B, and theXaxis lies along the vectorp, the 
angles 8, and p, at the point r = R are given by 

OR=x/2, cp~=arctg ( V E t l p ) ,  

so that the expression for the nl-tn'l' transition probability 
can be written in the following form (see Ref. 6): 

Henceforth, we shall use expansions for the quantities 
R ' - R and (p,, - p, ) in the integrand, neglecting terms of 
order higher than two in T: 

R'-R=tVE sin cp,, sin v R = V E t / R ,  

R  ( ( P R v - c P R )  =tVE cos ( P R ,  cos ( P R = ~ / R .  (11) 

This is justified because most of the contribution to the inte- 
gral (10) is due to time intervals T = t ' - t that are small in 
comparison with the characteristic time (T,,, -n2/V, for a 
collision between atoms A(n1) and B. 

m - 
3. n+n'TRANSITIONS 

Y,,,, (:, o ) 1 j d t  j dtr  e r p [ i w n l , , , , ~  ( t - t f )  1 
-_ _ _  We must now determine the probabilities and cross sec- 

tions for inelastic collisional transitions (ann, #O) between 
COS (DR COS (DR'  COS @Rf C O S  (DR.' 

xexp[i(rn-m') ( ( P R - T R , )  I Rydberg levels (n-n') of an atom when different I sublevels 
R2R" (pRpR,pRfpR ') " corresponding to a given n are equally populated. This situa- 

(5) tion occurs even for relatively low buffer-gas densities be- 
, , 

If we use the quasiclassical expression for the spherical har- cause of the high cross sections for the quasielastic 

m ~ n i c s ~ ~ :  ( w ~ ~ , ~ , , ,  = 0) I-mixing processes (see, for example, Ref. 2). 

I The most interesting quantity is then the total probability 
(6) wnn, (and cross section unn, ) of the transition from level n to 

we can sum over the magnetic quantum numbers m and m' 
in (5), having replaced the sum by integration with respect to 
m and m' as follows (see, for example, Ref. 36, Vol. 1): 

i 
exp [-- i (q, ,  - q R )  ml dm 

esp  [- i (vR, 
_ (lL -- m2)' 

m=. -1 -1 

where J,(z) is the zero-order Bessel function. Next, starting 
with the exact expression for the phase of the quasiclassical 
wave function for an electron in the Coulomb field: 

n': 

summed over finite I ' and averaged over the initial I degener- 
ate states of the highly-excited atom. 

If, in (12), we replace the sum of the probabilities w ~ ~ , ~ , ,  , 

(10) over the angular momenta I and I '  by integration with 
respect to 1 and 1 ', and use (1 1) to evaluate the corresponding 
integral (see, for example, Ref. 36, Vol. 11), we obtain 

where (el = (1 - 1 2/n2)"2 is the eccentricity of the orbit, we = 
s in{kR[  (R' -R)Z+R2 ( ( P R V - ( P R )  2 ] 1 h )  sin ( k R V E ~ )  

=%z 
1 

obtain the following expression for the phase difference [ (R' -R)  '+R2 ( ( P R , - ( P R ) ~ ] "  VET 
8, , - a, to within terms of the second order of small 
quantities in the difference R ' - R: k - -  - (  --- 1 )I2 . (13) 

@,, -@,= (3) ( R r - R )  +O [ ( R f - R ) ' ] ,  
dR 

The transition probability in which we are interested is then 
given by 

d@R 2  1  
R-  (9 )  wnn, ( p )  

As a result, neglecting the rapidly-oscillating terms m rn 

s in(kRVEt)  sin (kR' V E r )  
cos(8, , + 8,) in (5), we obtain the following formula for = 5 j dt 1 dr  erp ( i w , . ? ~ )  --- 

n Z n 8 - -  _ _  ITE T V,T the probability of the collisional transition nl-tn'l ': (14) 
co rn 

LZ 
w n l , n ' l f  ( p )  = j % I dt' exp [ 1 , (t'-t) ] Next, since we are assuming a rectilinear trajectory for the 

n2nB(21+1)-_R -_ 
I relative motion of particles A+ ands B, we have 

. -. 
1 

and, substituting k, = k ;, and using the dimensionless var- 
XI, [l(cpR,-cp,) 1 ,  I' cos [pRJ (R'-R) ] J ,  [tJ(cpR,-rp~) 1. (10) iables (x  = R /2n2,y = p/2n2, and z = k ,  V,T, we obtain 

P R  
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8L2 ( x - x 2 )  J sin2 z 
wnnr (I) = -J dx dz- c o s [ a ( x ) z ] ,  

n n V E  li (.2- yy I!> O z2 

where 

The integral with respect to z in (15) assumes the following 
values: 

d z S ~ c o s [ a ( x ) z ~ =  '/,n 1 I -a  ( x )  /21, a ( x )  (2, 
a (XI >2, (17) 

and is therefore nonzero fory<x<x,, wherex, is determined 
from the condition a(x,) = 2, i.e., 

The total cross section for the n-tn' transition is ob- 
tained by integrating w,,,(p) (15) over 2 v d p  in the range 
O<p<2n2xo, using (16) and (17): 

Reversing the order of integration in (19), and evaluating the 
corresponding integrals, we finally obtain 

It is readily seen that, in the limit of high quantum 
numbers n>(An/ VE)'I2 (i.e., low frequencies unn, for which 
A, ( I),  we haveFnn, (AE)-tl, and formula (20) becomes iden- 
tical with Omont's result6 for the quasielastic I-mixing pro- 
cess (n' = n andun,, =0):  

When n,,, = 0.95(An/~,)"~, so that A, = 1.1, the cross 
section given by (20) has a maximum whose height is propor- 
tional to the total cross section a,, = 4n-L for the elastic 
scattering of a free slow electron by the incident atom: 

For the quantum numbers n<(An/~,)"~,  i.e., for AE)l, 
equation (20) yields 

Correspondingly, the inelastic n-n' transition cross section 
undergoes a rapid reduction with decreasing n in this range: 

which is in contrast to the rapid increase unn, cc nP3 in the 
cross section for the quasielastic transition. 

Integrating (20) over the Maxwellian distribution of 
heavy particles, we obtain the following formulas for the rate 
constants for the excitation (n'-n) and deexcitation (n-tn') 
of Rydberg atoms by collision with the neutral particle 
(n > n'): 

oe1 
k,,, ( T )  =(VEonn,  (VE) )=c-- @ n n '  ( A T ) ,  

n1"VTn3 

n2 
k,!, ( T )  = - n" k,,! ( T )  esp  ( -o , , , /T) ,  (244 

where D - , is the parabolic cylindrical function, erfc is the 
probability integral (see, for example, Ref. 37), and 
A T  = nunn, /VT, and VT = (~T/,LL)"~ is the thermal velocity 
of the colliding atoms. Figure 1 shows a graph of the func- 
tion Qnn, (AT).  We can now use (24) to determine the asymp- 
totic form of the function Qnn, (AT) for A T >  1 and its behavior 
for AT--& 

@,,, (AT) =2/nhT5, A T B l ,  
@,,, ( X T )  = 1 - 8 h ~ / 3 ~ ' ,  hTK1. 

which leads us to the following limiting expressions for the 
rate constants for the n-tn' (n > n') deexcitation of the atom 
in the essentially inelastic (A,) 1) and quasielastic (A ,g 1) 
regions: 

k,,, ( T )  =oe1ln'"VTns, hT<l. (25b) 

We have used (24) to calculate the rate constants for the 
excitation of hydrogen atoms in collisions with helium 
atoms: H(n) + He-+H(n + 1) + He (Fig. 2), which, on the 
whole, turns out to be in good agreement with Flannery's 
 calculation^.^^ The residual discrepancy between the results 
in the essentially nonresonant region n 5: 15 can be explained 
by errors due to the purely classical description of the mo- 
tion of the outer electron. It is also clear that. even for transi- 

FIG. 1. Graphs of @",,.(/I,) (curve 1) and p ",,", (A,) (curve 2) calculated 
from (24b) and (38b), respectively. 
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FIG. 2. Rate constants for n+n + 1 transitions between neighboring 
Rydberg levels of hydrogen atoms in collisions with helium atoms: 
H(n) + He+H(n f 1) + He at 300 K. Curves 1,2, and 3 correspond to the 
Fermi excitation mechanism n-n + l(u,, = 4?rL = 5.6 A2); 1-present 
results [calculated from (24)l; 2-semiclassical calculation3'; 3--quasi- 
elastic result(wnn, = 0 in the weak coupling approximation [see (25b)l; 4- 
competing mechanism of n-n - 1 deexcitation (calculated in Ref. 38 in 
the dipole range of quantum numbers n < ( p V,/M, + )-'I2. 

tions between neighboring levels (An = I), the quasielastic 
(i.e., ignoring the energy defect AE,,, = An/n3) results re- 
ported by Omont6 [formulas (21) and (25b)l become invalid 
beginning with some sufficiently high values n 5 50 for 
which A, 2 0.5. In this region, the cross sections and rate 
constants for the n-mixing process must be calculated with 
the above general formulas (20) and (24). Figure 2 also shows 
a comparison between the rates of the two possible inelastic 
mechanisms for n-tn f 1 transitions that rely on the scat- 
tering of the incident He(ls2) atom by the weakly-bound 
electron and by the atomic residue H+  of the highly-excited 
atom H(n). It is clear that the second mechanism predomi- 
nates for low (n 5 10) and high (n -40) values of n. When 
n 5 10, this is due to the considerable speeding up of the He 
atom and the proton H+ in the potential well describing 
their interaction, which leads to the absence of the reduction 
(5 < n < 15) in the cross sections for the n+n - 1 deexcita- 
tion (curve 4) with a reduction in the principal quantum 
number (this effect is examined in Ref. 38). When n -40, this 
is explained by the high transport cross section a,, (300 
K) = 60 A2 for the scattering of the He atom by the proton, 
which determines (see Refs. 38 and 39) the n- and I-mixing 
cross sections for n - ( p V,/M, + ) -  'I2. The Fermi mecha- 
nism investigated here for the inelastic n+nf transitions pre- 
dominates in the quantum number range 10 5 n 5 30. 

4. n/+n'TRANSlTlONS 

We shall now determine the cross section o,,~,,, for the 
collisional transition from a given atomic nl state to all the 
sublevels I ' of another energy state n' +n. This cross section 
is of particular interest for current experiments on the colli- 
sional quenching of selectively excited atomic Rydberg 
states with given principal and orbital quantum numbers n, I 
in a buffer gas (see, for example, Ref. 2). If we sum the proba- 
bilities (10) over all the possible values of the orbital angular 
momentum I ' in the final state with the aid of (13), and use 
(1 1) for the probability of a transition with an energy change 

w , , ~ , ~ ,  = E,,, - of the highly-excited atom, we obtain 

) s i n  (tl?~) 
~ e n p ( i w , , , , ~ r )  J ,  (I*) cos (pR- R R 

Next, we assume again that the path is rectilinear, i.e., that 
dt = RdR / V,(R -p2)1'2, and transforming to the dimen- 
sionless variablesx = R /2n2, y = p/2n2, andz = k ,  V,T, we 
obtain 

Ca 

s i n  z x J d z  - cos  (az )  cos  ( p z )  ( y z )  , 
0 

where x,,, = (1 f el)/2 are the turning points, the a (x)  is 
given by (16) with w = wnrn, ,  and the functions p (x,y) and 
y(x,y) have the form 

The integral with respect to z in (27) can be written in the 
form36 

4 m 

d z  1 d z  J - s i n  z cos (a;) cos ( p z )  I0 ( y z )  = - j - s i n  ( b k z )  b ( 1 2 )  
0 k = l  O 

2 4 i{ arcs in(b , !y ) ,  O<lb,l<y, (29a) 
k= 1 ' l zn  s i g n  b,, O<y< 1 bkl , (29b) 

where b,,, = 1 f p - a and b,,, = 1 + p + a .  The quantity 
b,,, (x,y) is positive for all the possible values of x, y, which 
follows directly from (28a). 

From the standpoint of physical applications, there is 
considerable interest in the collisional decay of s, p, d, and f 
states with low values of the orbital angular momentum1' 
I@. We can thus substitute y(x,y) = 0 in (27)-(29) for all 
values of x, y. In that case, integrating the probability (27) 
over 2n-pdp, and using (29b), we obtain the following expres- 
sion for the corresponding nl-tn' cross section (for I(n): 

2L2 
= - d~ dy Y 

n 3 v ~ 2 C ( s , y ,  [ (x" y') (x-x2) ] 'I2 

The integral in this formula is evaluated over the range of 
variation of the variablesx, y (O(yg 1, y(x< I), that consists 
of the two regions G,(x,y) and G2(x,y) in which the two quan- 
tities b,(x,y) = 1 + P - a and b2(x,y) = 1 - 8 - a respec- 
tively are positive [see (16) and (28)l: 
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Gi ( x ,  y )  = {max [O, g. (x)] < ( x 2 - y z )  1'2<x, O G x G x O } ,  
G, ( x ,  y )  ={O< ( x Z - y 2 )  "'<min [ x ,  -g. ( x ) ]  , O < x G x . } ,  

(31) 

where x, is given by (18) and 

in which = (6, + An)/n3, and An = n' - n. Trans- 
forming in (30) from integration with respect to x ,  y to the 
new variables x, f, where 6 = (x2 - y2)1i2, and using (3 I), we 
obtain 

5. X 

Evaluating the integrals in (33), and using (32), we obtain the 
final result for the cross section for the collisional transition 
nl+n' with an energy change AE,,,, of the highly-excited 
atom: 

where B, is the incomplete beta-function (see, e.g., Ref. 37). 
For high quantum numbers n>(jS, + Anj /~ , ) "~ ,  i.e., 

for A, 4 1, we have f,,,,,,, -1, so that the general formula (34) 
leads directly to Omont's result6 for the total cross section 
for the quasielastic (w,,,,,,, = 0) quenching of the nl level in 
the limit of weak coupling between states: 

For given relative velocity V, of the atoms, the cross section 
(34) is a maximum for n,,, = 0.9(16, + Anl /~ , )"~ ,  and is 
then given by 

This is much lower than the corresponding cross section for 
the quasielastic nl-tn transition for the same n. The reduc- 
tion in the cross sections for inelastic nl-n' transitions with 
a reduction in the principal quantum number n (i.e., an in- 
crease in the separation AE,,,,,, = (6, + An)/n3 between the 
initial state nl with quantum defect 6, and the final degener- 
ate states n'l ' of another energy state n') in the region of low 
values of the principal quantum number ngn,,, is described 
by the following formula: 

and, consequently, occurs more slowly than in the case ofthe 

n-n' transitions. This expression takes into account the 
asymptotic behavior of (34b) for A,) 1: 

fn,, nc (As) =8/3zh3. 

The average (for given gas temperature T)  cross section for 
the nl-n' transition, which is of particular interest for ex- 
periments on nonresonant quenching of atomic Rydberg nl 
states, will now be obtained after averaging anl,,, (V,) [see 
(34)] over the Maxwellian distribution of the velocities of the 
colliding particles A(n1 ) and B. In the case of the nl-tn' deex- 
citation of the atom (when E , ~  > E ~ , ,  where 
E,, = - 1/2(n - 61)2, E,,, = - 1/2nI2) we have 

2" 
~ ~ 1 , ~ ~  (AT) =- exp ( $) D - 3  ( %) +LV (AT), 

x1/2 li 2 

where C = 0.577. . . is the Euler constant, 
(V,) = 2 v T / ~ l i 2  = (~T/T,u)"~ is the mean thermal veloc- 
ity, r is the incomplete gamma-function, and ,F1 and ,F2 
are, respectively, the confluent and generalized hypergeo- 
metric functions (see, for example, Ref. 37). Figure 1 shows a 
plot of p,,., (AT). Its asymptotic behavior for large and small 
values of the parameter R = nwnl,,, / VT = 16, + An l/n2 VT 
as follows: 

These expressions readily yield the behavior of the mean 
cross section for the nl-tn' transitions both in the quasielas- 
tic (A,( 1) and the inelastic (AT% 1): 

Figure 3 shows the theoretical [calculated from (38)] 
and data on the quenching of Rydberg ns 
levels of rubidium by helium atoms [the electron-scattering 
length on the He(ls2) atom is L = 1.19 a.u.; Ref. 401. The 
cross section for this process is largely determined by 
Rb(ns) + He--+Rb(n - 3,If > 2) + He transitions for which 
the resonance defect = (6, + An)/n3 = 0.15/n3 is a 
minimum (for rubidium atoms, the quantum defect is S, 
= 3.15). It is important to draw attention to the fact that the 

cross sections (34)-(39) for transitions from ns levels to all the 
sublevels I ' ofanother level n' (including states with I ' = 0, 1, 
2,) are practically exact for n> 1, including the cross section 
a(ns+ni, 1 ' > 2) in which we are interested here. This is due 
to the low statistical weight g,, = 21 ' + l(nf2 of the final 
n's, n'p, and n'd states, and the reduction12 in the partial 
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FIG. 3. Cross sections for the quenching of ns and nf levels of rubidium by 
helium atoms. Curves 1 and 2-present results [calculated from (38)] 
showing the average cross section ( u , , , ) ~  for the 
Rb(ns) + He-+Rb(n - 3,l' > 2) + He transition at 520 K and 296 K, A- 
e ~ ~ e r i m e n t ~ ~ s ~ ~  at 296 K, ~ - - e x ~ e r i m e n t ~ ~  at 520 K. Curve 3--calculat- 
ed,17 0--experimental2' cross section (u ,~ ,  ).for the quasielastic transi- 
tion Rb(nf) + He-+Rb(n,ll f 2 )  + He. Curve 4--calculated from (39a) at 
296 K for the quasielastic nf+n transition in the weak coupling approxi- 
mation. 

cross sections for the inelastic nl-+nfl ' transitions with de- 
creasing I '. The good agreement between our results and ex- 
perimental data shows that the appreciable reduction in the 
cross sections for the quenching of ns states of rubidium as 
compared with the quasiresonant (Sf( 1) quenching of nf 
states is due to the energy defect of the ns-n - 3, l '  > 2 tran- 
sition, which is substantial (see Fig. 3) even for n 5 30-40 for 
whichAT = 0.15/n2 VT 2 0.5. We note also that our data are 
practically identical with the numerical cal~ulations'~ per- 
formed for the weakly-inelastic region (n234). 

Differences between nonresonant and quasiresonant n- 
and I-mixing of atomic Rydberg states can be seen particu- 
larly clearly in experiments on the quenching of ns (Refs. 22 
and 23), nd (Refs. 18 and 20), and n f (Ref. 19) levels of sodium 
in inert gases (see Fig. 4). In this case, there is a smaller 
compensation of the quantum defect 6, of the ns levels by the 
change An = n' - n in the principal quantum number dur- 
ing the quenching process, so that the energy defect 
AE = (6, + An)/3 is higher than for the quenching of Rb(ns) 
atoms. The quenching of the ns states of sodium is largely 
due to the ns-tn - 1, 1'22, transition for which 
AE,,, - = 0.35/n3 [for the Na(ns) atoms, the quantum de- 
fect is 6, = 1.351. There is also a contribution (less than 30% 
even for n - 30-40) due to the ns-n - 2,11>2 transition for 
which AE ,,, _ , = 0.65/n3. 

To calculate the cross sections for the n and I mixing of 
atomic Rydberg states in the argon atmosphere, we must 
include both the short-range interaction of the Ar atoms 
with the outer electrons and the polarization interaction 
between these atoms. The result is a reduction of the total 
elastic scattering cross section re, (E )  (as compared with the 
value4'ue, = 4z-L for E = 0, L,,, = - 1.4) for an ultraslow 
electron on the Ar atom, which occurs as the energy E in- 
creases (Ramsauer effect) and the principal quantum num- 
ber n decreases for a quasifree electron. We have taken this 

FIG. 4. Cross sections for the quenching of the ns and nd levels of sodium 
by argon atoms. Curve 1-present results on the mean cross section 
(u,,, - , ) of the transition Na(ns) + Ar+Na(n - 1),1>2) + Ar [calcu- 
lated from (38) at 450 K]; O--experimentz2 at 425 K, A--experimentz3 at 
450 K. Curves 2 and 3-theoretical data1' and calculationsz0 based on the 
approximate formula given by Hickman" for the quasielastic quenching 
cross section (a,,,, ). for the quasielastic quenching of nd levels of Na in 
argon; and A--corresponding experimental for this process at 
430 K and 450 K, respectively. 

effect into account by introducing a simple dependence of 
the cross section u,, on n, i.e., instead of u,,(E = 0) = 4z-L ', 
we substituted the e ~ ~ e r i r n e n t a l ~ " ~ ~  cross section o,,(E) into 
(38) at the kinetic energy E = 1/2n2 of the electron in orbit. 
This method was successfully used in Ref. 17 to describe 
quasielastic quenching. 

It is clear from Fig. 4 that the experimental data22*23 on 
the quenching of Na(ns) atoms in argon are satisfactorily 
reproduced by our formulas (34)-(39), based on the Fermi 
model and describing inelastic nl-tn' transitions. We note 
that an increase in the energy defect in the ns+n - 1,11>2 
transition in Na by a factor of only two as compared with the 
ns-n - 3, 1 ' > 2 transition in Rb leads to substantially 
greater differences between the nonresonant and quasireson- 
ant quenching of Rydberg levels (see Figs. 3 and 4). 

Estimates of the cross section for the competing nonin- 
ertial quenching of Rb(ns) atoms in helium, performed by 
analogy2' with Ref. 38, show that this mechanism is unim- 
portant throughout the range n<45, which was examined 
experimentally in Refs. 26-28. A similar treatment of the 
system Na(ns) + Ar core provides a small contribution near 
the cross section maximum at n,,, = 32, and even a smaller 
contribution for n < n,,, . However, the role of this mecha- 
nism increases with increasing principal quantum number n, 
so that, in the quenching of the ns states of Na in argon, it 
may become important even for n -40-50 and predominant 
for higher values of n. 

5. CONCLUSIONS 

The analysis performed in this paper has shown that the 
behavior and magnitude of the cross sections for nonreson- 
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ant collisional quenching of Rydberg levels nl with large 
quantum defect Sl are qualitatively different as compared 
with the previously investigated nonresonant case 6, ( 1. The 
position of the maximum n,,, = ( /aI  + A~/ /v , ) " '  in the 
former case is shifted toward higher values of n, and the 
height of the maximum, 6:; [see (36)], is substantially 
smaller than the corresponding I-mixing cross section3' and 
is very dependent on the energy change AEN VE/nmax of the 
highly-excited atom during the quenching process. Even for 
relatively low values of AE, for example, for the quenching of 
ns levels of Rb in helium, the maximum cross section 6," _ ,  
is lower by a factor of three as compared with the quenching 
of ns levels (see Fig. 3) As the energy defect AE increases, the 
differences between nonresonant and quasiresonant pro- 
cesses become particuarly important. For example, in the 
quenching of ns levels of Na in argon, the maximum in the 
cross section occurs at n,,, = 32 instead of n,,, = 8 (as for 
the nd levels), whereas the cross sections @? and 6"" al- 
ready differ by two orders of magnitude (see Fig. 4). 

For large values of the principal quantum number, 
n>n,,, , the cross sections for inelastic transitions tend to 
the quasielastic limit of weakly coupled states (u -K3) ,  due 
to the reduction in the energy defect AE = 16, + An l/n3 with 
increasing n. For n(n,,, they fall rapidly and it is found that 
u ,~ ,  cc n7 and cc n3 for n-n' and nl-+n' transitions, re- 
spectively. The essential point is that this reduction in cross 
sections for n <n,,, (like the very appearance of the maxi- 
mum) is explained by a different physical factor from the 
quasielastic case, for which AE = 0. It is due to the sharp 
reduction, compared with the size of the electron orbit, in 
the range of impact parameters (p,,, -2n2/(1 + A i)(2n2 
for A,) 1) in which collisions between Rydberg atoms and 
incident particles are nonadiabatic and, in contrast to I mix- 
ing, the process of nonresonant quenching of Rydberg levels 
can be described by perturbation theory in the entire range of 
quantum numbers. 

The cross sections for the quenching of the ns levels of 
alkali metals in inert gases, calculated from the theory of 
inelastic transitions developed in this paper, are in good 
agreement with existing experimental data22,23s2"28 (see 
Figs. 3 and 4). We may therefore conclude that the results of 
these experiments on the nonresonant quenching of highly 
excited states can be described, as in the quasielastic case, by 
the Fermi model, and their explanation does not require the 
use of other mechanisms, as suggested in Refs. 22 and 23. 

On the other hand, there are many cases in which the n- 
and I-mixing process is dominated by a competing mecha- 
nism involving the scattering of the incident atom by the ion 
core of the highly-excited atom. In experiments on the colli- 
sional quenching of the Rydberg levels of an atom A(n1) by 
atoms B of a second gas, this mechanism may be significant 
in the following situations. 

(1) High values of the principal quantum number n (Ref. 
39). The reason for this lies in the reduction in the total Fer- 
mi cross sections6 

with increasing n and the resultant rapid reduction in the 
total cross sections for the quenching of highly-excited states 
by the nonintentional mechanism (see Refs. 38 and 39 for 
further details): 

where &'2B and d+.B are, respectively, the transport and 
total elastic cross sections for the scattering of atom B by the 
core A+, and 4 + s ~ ( V ~ ) ) &  + s ~ ( V ~ ) .  for thermal velocities 
V,. We note that (41a) and (41b) can be obtained in the well- 
known "shakeout" model of a quantum system (see, for ex- 
ample, Refs. 35 and 44). For the collision between Rydberg 
atoms and neutral particles, this model can be used3' for 
A&( VE/RBA+ n 2 ~ R B A  (where RBA+ - ( & + 3 B / ~ ) " 2  is the 
characteristic size of the region of interaction between parti- 
cles A+ and B). Comparison of (40) with (41)~ '  will show that, 
beginning with a certain value no, the noninertial mechanism 
become more effective (for n > no) than the usual Fermi 
mechanism. The specific value of no depends on the relative 
velocity VE and masses MA,  MB of the colliding atoms, as 
well as on the ratio of cross sections u',LsB and At 
thermal collision velocities, this occurs for n > 40-50 (see, 
for example, curves 3 and 4 in Fig. 2) and, in many cases, for 
higher values (n 2 100). 

(2) Nonresonant quenching of Rydberg levels for which 
this process is accomplished by a substantial change in the 
energy A E ~  V,/n. It follows from our results that, in this 
range of energy defects AE, there is an appreciable reduction 
in the Fermi cross sections for the n-tn' and nl-+nl transi- 
tions compared with the case of precise resonance for which 
AE = 0 [see (22), (23), (36), and (37), and Figs. 2-41. Hence, 
for inelastic transitions with an energy change AE, the nonin- 
ertial mechanism [see (41)] may become important for values 
of the principal quantum number n smaller than in the quasi- 
elastic case. For example, in the nonresonant (inelastic) 
quenching of H(n) atoms in helium, this occurs for n 2 30 (see 
curves 1 and 4 in Fig. 2). We note that, for the reasons stated 
above, the noninertial mechanism should begin to be appre- 
ciable in experiments on the quenching of nl levels of atoms 
for high values of n, at first for levels with h i ~ h  quantum 
defect 6, (not equal to the integer 1 An 1 )  and then for 6, (1. 

(3) Relatively low values of n in the case where the inter- 
action between atom B and core A+ forms a deep potential 
well and high bottom vibrational energy (n-5-10 for 
H(n) + He).38 The behavior of the cross sections for inelastic 
n-n' and nl-tn' transitions due to the scattering of atom B 
by the core A+  in the essentially nonresonant region 
Ae 2 VE/RBA + is then radically different from the opposite 
limit of electron "shakeout." This is due to the sharp rise in 
the relative velocity of particles A' and B as they speed up in 
the potential well, which produces a substantial increase in 
the role of the noninertial mechanism. In addition, there is a 
further important mechanism that relies on the interaction 
between the outer electron and the dipole moment of inner 
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electrons in the quasimolecule (BA+ + e-), induced during 
the collision. Both mechanisms may be considerably more 
effective than the traditional Fermi mechanism (see Fig. 2). 

In conclusion, let us examine the validity of the Fermi 
pseudopotential model in the analysis of inelastic collisional 
transitions between atomic Rydberg levels. The model as- 
sumes that the scattering of atom B by the weakly-bound 
(quasifree) electron e- and by the atomic residue (core) A+ 
occurs independently. This is true if the principal contribu- 
tion to the cross section for a transition with an energy 
change AE is due to nuclear separations R (AE) and, conse- 
quently, distances r, (AE) - R (AE) between the core A+ and 
electron e- that substantially exceed the characteristic di- 
mensions RE,+ and RE,- of the regions of interaction 
between atom B and atomic core A t  and electron e-. The 
length r B e  is of the order of the de Broglie wavelength 
#, (AE) - l/qn (AE) of the electron during its motion at dis- 
tances r, (AE) from the core for which the above transition 
takes place [q, (AE) is the corresponding electron momen- 
tum]. According to the analysis of n-n' and nl-n' transi- 
tions performed in this paper, the quantity R (AE) - 2n2x0 (or 
2n2x, ) is given by (1 8) and (32) [see also (19) and (33)], so that 
the above conditions assume the form 

For quasielastic transitions AE( VE/n (and A, g 1), the quan- 
tity r, (AE) is of the order of the atomic orbital radius r, - 2n2 
and the momentum of the electron is q, - l/n. For an essen- 
tially inelastic transition with Aa) V,/n (and ,IE( I), small 
distances r ,  (AE) - 2n2//2 [and, correspondingly, small im- 
pact parameters ~ ( A E )  - r, (AE)] contribute to the cross sec- 
tion, so that the momentum q,(A&)- [2/rn(h&)] 'I2 of the 
electron becomes large as it speeds up in the Coulomb field of 
the ion core A+, but the wavelength is reduced: 
#,(A&)-n/AE gn. Conditions (42a) and (42b) then lead to 
the following restrictions on the permissible values of the 
energy AE in inelastic transitions: 

where, since R,, + - (d+3B/.rr)"2) 1 au, condition (43a) 
must, in fact, be satisfied. For the specific systems that we 
have examined, we have Ab = 6 . 1 0 ~ ~  au [H(n) + He], 
Ab = 4-lop4 au [Rb (ns) + He], and Ab = 10W4 au [Na(ns) 
+ Ar], which coincides with the estimated limiting energy 
Ab reported previously in Ref. 7. Condition (43a) leads to the 
following conditions for the principal quantum number: 
n )  12, 7, and 13, respectively. 

One further condition for the energy defect AE follows 
directly from the well-known expansion (see Ref. 40) for the 
elastic-scattering amplitude of a slow free electron e- on the 
atom B in powers of transferred momenta Q (see also Refs. 9, 
12, and 29): 

Q-qn ( A t )  -Ae/V,<4L/xm, (44) 

where a is the polarizability of atom B. This corresponds to 
the scattering length approximation in the free-electron 
model, and shows that we can neglect the long-range (polar- 
ization) part of the interaction potential between the electron 
e- and atom B compared with the short-range part defined 
by the zero-range Fermi pseudopotential. 

1q-l, e lnltlal . . .  expressions (26) and (27) for the nl-tn' transition probabilities 
were obtained above by using the quasiclassical revresentation 16) for the , , 
spherical harmonics Y,, and by-replacing summation over quantum 
numbers m and 1 with the corresponding integration [see (7) and (13)l. 
This is formally valid for 1) 1 (see, for example, Refs. 34 and 35) and, 
consequently, is certainly justified in the summation of partial probabili- 
ties over the final degenerate states m' and 1 '(when the main contribution 
to the total nl+n' transition probability is provided by large values 
1 ' - n'). However, such approximations work well in practice even for low 
values of I. In particular, in the case of an ns level, they lead to precisely 
the same result [see (26) and (27) where y = 0 and, correspondingly, 
Jo(yz)=1]2 as when the quantum-mechanical expression 

1 Y,(B,q, ) I  = i r i s  used for the angular part of the initial-state wave func- 
tion. 

"The only difference as compared with Ref. 38 (which investigated nonin- 
ertial n-tn' transitions for equally populated 1 sublevels) is that, in the 
present case, we are interested in cross sections for nl+nl transitions for 
fixed initial-state orbital angular momentum I. When the cross sections 
for such transitions were estimated in the dipole region 
n((u V,/M, + )-lI2, the Kramers formula for the radial matrix elements 
of the position vector of the highly-excited electron in the Coulomb field 
was replaced with the quasiclassical  expression^^^ for the quantities 
(nl lrln1,l & 1). 

3'We recall that the quasielastic cross section for the quenching of atomic 
Rydberg states is a maximum for n,, -(L/V,)'" (Ref. 6), i.e., 
n,, = 8-15 for thermal collisions with inert-gas atoms (see Ref. 2). The 
quantity n,, then separates the region of strong coupling in which 
n 5 n,, and the cross sections are determined by the size of the electron 
orbit ua n4, from the region of weak coupling in which n>n,,, pertur- 
bation theory is valid, and uo: nP3 (see Figs. 3 and 4). 

4'Formula (4la) is valid in the dipole regionpn2( 1 (wherep = AV, + is the 
electron momentum corresponding to the change A VA + 5 p  VE/MA + in 
the velocity of the core A+ during collision with atom B) and formula 
(41b) determines the limiting value of the total cross section for the 
quenching of a Rydberg level for n> l/p 2 lo3. The "shakeout" param- 
eter44 N (defined as the ratio of the de Broglie wavelength of the electron 
in orbit, 7E, -n, to the de Broglie wavelength of the same electron calcu- 
lated from the transferred momentum *, - l/p,) becomes large: 
N-+,,/*, -- 1, so that the total shakeout probability in the shell n ap- 
proaches unity ( W, +l)  and, correspondingly, the total quenching cross 
section O, becomes equal to o $ + . ~ .  
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