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Classical homogeneous S U  (2) e U (1) fields with a spontaneously broken symmetry are analyzed 
numerically, and the region of energies corresponding to stochastic motion is determined. The 
frequency spectrum of massive and massless fields is calculated for dynamic and stochastic mo- 
tion. 

INTRODUCTION 

The Yang-Mills gauge fields1 currently play a leading 
role in elementary particle physics, and there is much inter- 
est both in the quantization of Yang-Mills (YM) fields and in 
the characteristic features of their dynamic In 
this connection we may mention the stochastic behavior of 
classical homogeneous YM fields that was recently discov- 
ered in Refs. 7-1 1. The mechanism of stochastic instability 
in the homogeneous models for classical YM fields involves 
the locally unstable behavior of the trajectories in phase 
space and is characteristic of nonlinear oscillatory systems 
with finitely many degrees of Although the ho- 
mogeneous YM field models are a particular case of models 
with inhomogeneous fields, they are still of significant inter- 
est and their properties have been discussed in detail in Refs. 
7-1 1 for classical YM fields. Here we merely note that the 
homogeneous models permit extensive numerical simula- 
tions for analyzing the characteristic role of YM field non- 
linearity in systems with finitely many degrees of freedom. 
These models also have the important property14 that an 
inhomogeneous YM field cannot be integrable unless it is 
integrable in the homogeneous case. 

We note that the condition that the field be homogen- 
eous in fact entails the long-wavelength approximation: 
;1#A -I, where /Z and A are the dimensionless wavelength 
and the amplitude of the field." We note also that it is gener- 
ally a nontrivial matter to pass from homogeneous to inho- 
mogeneous fields, because the number of degrees of freedom 
becomes infinite. However, various simplifications are pos- 
sible even here (for instance, one can specify periodic bound- 
ary conditions,15 in which case only finitely many modes 
actually contribute to the dynamics). 

The energy threshold for stochastic instability depends 
in general on the number of degrees of freedom of the system 
and tends to increase with the latter. This suggests that an 
analysis of homogeneous models might be useful for deriving 
upper bounds on the energy densities corresponding to the 
onset of chaotic behavior in systems with nonlinear fields. 

We also note that homogeneous models may play a role 
in the quantization of gauge fields. Since stochastic behavior 
implies a violation of the invariance of certain integrals of 
motion, one is faced with the familiar problem of determin- 
ing the spectrum of the Hamiltonian even for homogeneous 
systems (cf. Ref. 16 and the bibliography there). In particu- 
lar, examples are known of homogeneous classical YM fields 

for which stochastic behavior is universal, i.e., occurs for 
arbitrarily low energy densities (cf. Refs. 11 and 17). This 
implies that in these cases the quantum harmonic oscillator 
approximation is invalid even for low energies. 

We are interested in generalizing the homogeneous 
models of classical YM fields so that they correspond more 
closely to the ones now employed in field theories. In parti- 
cular, we consider how to generalize the S U  (2) e U (1) field 
system in the boson long-wave sector. Analysis of this sys- 
tem may be useful in deriving a characteristic upper bound 
for the energy densities needed for onset of chaos (e.g., in 
quantum chrornodynamics (QCD) and in electroweak inter- 
actions. 

In what follows we consider the onset of random behav- 
ior in the homogeneous S U  (2) e U (1) model with a spontan- 
eously broken symmetry and numerically calculate the 
threshold energy density above which the motion becomes 
chaotic. We study the field dynamics and stability with re- 
spect to variations in the initial conditions, and we numeri- 
cally calculate the frequency spectrum of the fields for sever- 
al energy densities. 

2. FUNDAMENTAL EQUATIONS 

We start with the Lagrangian used in the standard Sa- 
lam-Weinberg S ( U )  e U (1) model (Ref. 2), which involves 
only the three-color Yang-Mills boson fields A ; (a = 1, 2, 3) 
and a colorless abelian field B, (fi = c = 1): 

9 , , " = d , A V a - d , A ~ + g e a b c A ~ A y C ,  (2.1) 

G,,=d,B,-d,B,. 

The spin operators Sa are generators of the group S U  (2) and 
satisfy the commutation relations 

[Sa, S b ]  =ieabcSc. 
The complex field p is the two-component Higgs field with 
the potential 

The Lagrangian (2.1) gives rise to the following equa- 
tions of motion: 
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where A, = (A A ,  A ;, A i). If the contributions from the 
spatial derivatives of the fields are small compared to the 
nonlinear terms (i.e., gA/1$1, where /1 is the characteristic 
length), we may keep only the time derivatives in the equa- 
tions of motion (2.3)-(2.5). If we choose the Coulomb gauge 
A, = B, = 0, we have 

where i, k = 1,2,3 label the spatial components. In addition, 
the equations of motion (2.6)-(2.8) are supplemented by the 
coupling equations 

3. THE EFFECTIVE HAMlLTONlAN 

The initial system consisting of Eqs. (2.6)-(2.8) and the 
coupling equations (2.9) can be solved conveniently in di- 
mensionless form. Using expression (2.2) for the Higgs po- 
tential, we find from (2.6)-(2.9) that 

d2ai/dt2+a, (aka,) -a, (a,a,) +@+@ai+4@+S@ bi=O, (3.1) 

where 

The quantity r in (3.6) is the radius of the condensed Higgs 
bosons. 

System (3.1)-(3.5) completely specifies the dynamics of 
the homogeneous dimensionless fields ai(r), bi(r), and @(r), 
which in the general case comprise 16 degrees of freedom 
altogether. The system of equations contains two dimension- 
less parameters: E = g,/g = tan(6 ) (where 6 is the Salam- 
Weinberg angle), and the ratio A /g, which determines the 
oscillation frequency of the Higgs field. 

We will simplify the numerical analysis of Eqs. (3.1)- 
(3.5) by retaining only the following field components 

a31, a32, ai3, aZ3, b l ,  b2,  

which correspond (cf. below) to two charged vector mesons 
(w,, ,), two neutral vector mesons (z,, ,), and two photons 
(a,, , ). We also choose the unitary gauge 

@ + ( t )  =(O, T + ~ z ( T ) ) ,  (3.7) 

for the Higgs field3; the coupling equation (3.4) implies that 
the component &(r) must be real-valued. 

Althoughg,/g is known to be -0.55 (Ref. 3), no reliable 
information is available for the mass of the Higgs boson, 
which may be assumed to lie somewhere between 7 GeV and 
lo3 GeV (Refs. 3 and 4). In this paper we will take the Higgs 
boson to be much heavier than the vector mesons and will 
neglect the high-frequency Higgs oscillations 6,(r). In addi- 
tion, we will as usual pass to the new fields 

which describe the electromagnetic, charged vector, and 
neutral vector fields, respectively. In terms of the general- 
ized coordinates q = (ai, wi, zi), system (3.1)-(3.3) takes the 
form 

which is a Hamiltonian system of equations of motion with 
the Hamiltonian 

where p , , , p , ,  and p ,  are the canonically conjugate mo- 
menta. 

System (3.9) is completely equivalent to Eqs. (3.1)-(3.3) 
and is to be solved jointly with the coupling equation (3.5), 
which takes the form 

Wipw,- w2pW,=0 (3.1 1) 

in the new variables. Since the field @(T), in (3.7) was chosen 
to be real, (3.4) is satisfied identically. We note that the total 
energy E of the system [the numerical value of the Hamilton- 
ian H in (3. lo)] is the natural parameter of the problem. 

We numerically solved Eqs. (3.9) simultaneously with 
(3.11) in order to study how chaotic behavior develops from 
the dynamic motion in this system. 

4. NUMERICAL RESULTS 

The initial conditions for system (3.9) are not arbitrary 
but must satisfy the coupling equation (3.11). Moreover, 
(3.11) must be satisfied for all times, which provides a way of 
checking the computational accuracy. In our analysis of 
(3.9) we also used the law of energy conservation E = const 
to monitor the accuracy. In all cases, the error in calculating 
E was less than 1.5%, and the coupling equation (3.1 1) was 
satisfied identically. 

Local instability of the phase space trajectories is one of 
the criteria for stochastic motion in the system. Figure 1 
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FIG. 1. Local instability of trajectories for different system energies E: a)  
E = 0.03; b) E = 0.12; c) E = 5.07 (trace c corresponds to the two trajec- 
tories in Fig. 6). 

shows the typical form of the function lnp(r) for three values 
ofE. The distance between the trajectories was calculated by 
the formula 

R 

f I 2 ( T ) =  { [ p i i )  ( T ) - P ; ' )  (7) 1 2 +  [qt')  ( T ) - q s ( ' )  ( T I  12}, (4.1) 
6=1 

where the superscripts (I), (2) denote two trajectories with 
similar initial values (7 = 0). The initial conditions for the 
trajectories in the example given below are indicated in the 
captions to Figs. 2 and 6. The calculations show that the 
function p( r )  starts to increase to values - 1 for E ~ 0 . 3 .  Lo- 
cal instability is numerically small or absent altogether for 
low energies E = 0.03-0.12, and the motion is quasiperiodic 
(Fig. 2a). The quasiperiodic motion of the system was the 
dominant feature for these energies; it was observed for all 
initial conditions and persisted for long characteristic times. 
Figure 3a shows the frequency spectrum w,(w) of the motion 
corresponding to Fig. 2a ( T  is the averaging time, i.e., total 
time interval for which the Fourier components were calcu- 
lated). Figure 3a shows that the frequency spectrum w,(w) is 
highly nonlinear even for low energies and has the discrete 
structure characteristic of quasiperiodic motion. The char- 
acteristic frequencies for the charged vector meson w, lie 

FIG. 3. Frequency spectrum w,(o) for the motion w,(r): a)  E = 0.03; b) 
E = 0.48 (curves a, c in Fig. 2); c) E = 5.07 (curve a in Fig. 6). 

within the frequency range found by the linear approxima- 
tion: w,, = 1 [cf. (3.10)]. Most numerical analyses exploit 
the fact that the frequency spectrum for quasiperiodic mo- 
tion is characteristically quite insensitive to increases in the 
computational time T (i.e., the structure of the frequency 
spectrum remains essentially unchanged for times T exceed- 
ing a characteristic value). This type of frequency stability 
was noted for low energies in our numerical simulation, and 
the motion of the electromagnetic field a ( r )  was nearly linear 
for these energies (Fig. 4a; the corresponding frequency 
spectrum is shown in Fig. 5a). We see that the frequency is 
close to the value w, = 0 given by the linear approximation. 

FIG. 2. Dynamics of a massive field w,(r) for a,(O) = 0 . 3 ~ " ~ ,  w,(O) 
=z,(0)=O:a)E=0.03;p,,(0)=0.l/&,~,,(0)=p,~(O)=0.1;b)E=0.27, 

p.,(O) = 0.3/&, p , (O)  = p,(O) = 0.3; C) E = 0.48, p,,(O) = 0.4/&, p , (O)  
= p,,(O) = 0.4. 

FIG. 4. Dynamics of the electromagnetic field a ( r )  = ~ , ( .T ) /E"~ :  a) 
E = 0.03; b) E = 0.27; C)  E = 0.48; d)  E = 5.07. 
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FIG. 5. Frequency spectrum a (o )  corresponding to ~ ( 7 ) :  a) E = 0.03; b) 
E = 0.48; c) E = 5.07 (curves a, c, d in Fig. 4). 

Irregular components of the motion are generated as E 
increases. Fig. 2b, c shows the irregular structure of w,(T) for 
Ez0.3,  and Fig. 3b shows the corresponding spectrum w,(w) 
for E = 0.48. The spectral structure in this case is qualita- 
tively different from the one in Fig. 3a and is typical of con- 
tinuous spectra. The spectrum changes significantly and 
contains more peaks as the averaging time T is increased. 
Figure 4b, c plots the time dependence a ( r )  of the electro- 
magnetic field for E = 0.03 and 0.27; Fig. 5b shows the cor- 
responding spectruma(w) for E = 0.48. Figure 4c shows that 
the electromagnetic field also contains an irregular compo- 
nent which causes nonlinear broadening of the spectral lines 
a(w) at low frequencies. 

The relative amplitude of the irregular component 
grows appreciably as E rises further (Fig. 4d, Fig. 6), and the 
local motion becomes highly unstable. The curve lnp(r) in 
Fig. lc  corresponds to two trajectories with nearly equal 
initial conditions whose motions w,(r) are shown in Fig. 6a, 
b. The difference in the initial conditions was 
lAa,(0)1 = ~ o - ~ E ' ' ~ .  Figure 3c shows the spectrum for w,(T) 

corresponding to Fig. 6a. 
The process a,(r) and its spectrum are shown in Fig. 4 

and Fig. 5c, respectively, for the same values of E. According 
to Fig. 5c, the continuous component in the frequency spec- 
trum of the electromagnetic field increases significantly with 
27 
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FIG. 6 .  Dynamics o f  a massive field w,(T)  for E = 5.07: a) a,(O) = 0 . 3 ~ ~ ' ~ ;  
b) al(0) = 0.300 01 E " ~ ;  the other initial conditions are the same: 
a,(O) = 0.3 E ' / ~ ;  w,(o) = z,(o) = O; p,,(O) = 1.3/E1l2; p , , (~ )  = p , ( ~ )  = 1.3. 

note that threshold energies E- 1 are reasonable, because 
the dimensionless quantity H (3.10) is the only parameter of 
the system and the numerical factors are - 1. The numerical 
analysis reveals that for energies Ez0 .3 ,  the interaction en- 
ergy term in the Hamiltonian (3.10) has the same order of 
magnitude as the energy of the noninteracting fields [the 
quadratic part of the Hamiltonian (3. lo)]. This indicates that 
the nonlinearity, which is generally neglected in the stan- 
dard perturbation theory, is important in the randomization 
process for system (2.1). 

We now use the characteristic threshold energy E z 0 . 3  
for onset of chaotic behavior in the above model to derive an 
order-of-magnitude estimate for the threshold in terms of 
the dimensional energy density g,,, for the original model 
with the Lagrangian (2.1). Let us estimate, e.g., the energy 
density contained in the field component 

fi. 

1 dAsi Es' = 
5. CONCLUSIONS c d t  . 

The above numerical analysis shows that the transition Using (3.6) and (3.8), we get the order-of-magnitude estimate 

from regular to chaotic motion occurs for energies Ez0.3.  Zt,,,='/& (E,') '='/,, ( g r 2 )  ( d w l / d ~ )  ' 
Although this value is clearly only approximate, it gives the ='I2 (g /GF) '  ( d u ; , / d ~ ) ~ = i O ~ ~  ( d w , / d ~ ) ~  ~ e ~ / c m ~ .  (5.1) 
correct order of magnitude for the energy above which the 
random component of the motion becomes significant. We The numerical analysis gives the estimate (dw,/dr) - 1/4 for 
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the derivative dw,/d.r at the threshold Ez0 .3 .  The energy 
density threshold for stochastic behavior in system (2.1) is 
thus gth, - 6.25. lo4' GeV/cm3 in order of magnitude. 
Expression (5.1) shows that g,,, is determined primarily by 
the large constant factor and can probably not be significant- 
ly decreased in the electroweak theory by decreasing the 
threshold for stochastic behavior (e.g., by increasing the 
number of degrees of freedom). If we recall that the range 
r,,,, of the weak forces is - 3 X 10-l6 cm (Ref. 18), our up- 
per bound for g,,, is well within the experimentally accessi- 
ble range-an energy of -200 GeV must be concentrated in 
a volume z r;,,, . 

Our estimate for gth, thus gives an idea of the energy 
density needed for the onset of chaotic behavior in 
electroweak interactions. Off course, such rough estimates 
may differ considerably from the actual thresholds. For ex- 
ample, it is clear that the threshold may change significantly 
if the variation of the fields and their interaction with fer- 
mion fields are allowed for; in addition, quantum effects may 
be important. 

With regard to the problem of quantizing homogeneous 
Hamiltonians of the type (3.10), we note that (3.10) corre- 
sponds in the quantum case to the Schrodinger operator 

implies a continuous spectrum, the corresponding spread in 
the particle masses is also continuous. The above discussion 
this implies that electroweak interactions with highly non- 
linear fields should give rise to a random time component of 
the electromagnetic field which should be detectable experi- 
mentally by standard correlation analysis. 

We close by mentioning some alternative methods for 
treating the time-varying component of the Higgs field. We 
have assumed that the Higgs field is massive compared to the 
other fields (i.e., of higher frequency); simple estimates show 
that allowance for this field does not change the threshold 
for stochastic behavior in our case-the Higgs field is essen- 
tially involved only in the spontaneous symmetry breaking. 
However, if the frequency of the Higgs boson is slightly 
greater than or comparable to the frequencies of the other 
fields, it is necessary to solve system (3.1)-(3.5), including 
Eq. (3.3). In this case the Higgs boson may either decrease or 
increase the threshold E (the latter case corresponds to "sto- 
chastic pulling" of the system toward higher frequencies as a 
result of resonant interactions). Numerical calculations for 
the case when the Higgs frequency is comparable to the oth- 
er field frequencies are currently in progress. 

We thank D. A. Kirzhnits and I. F. Ginzburg for help- 
ful discussions of these results. 
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