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Emission and absorption of light by a layer whose thickness is comparable with or smaller than 
the light wavelength in the medium are considered theoretically. The factor by which the spec- 
trum of a thin layer differs from the spectrum of an infinite homogeneous medium is calculated. It 
is shown that the nonequilibrium emission and absorption of light incident on the surface of a 
strongly scattering layer proceed predominantly via waveguide modes. The radiation-brightness 
spectral density integrated over the directions turned out to be a sawtooth function of the frequen- 
cy and of the thickness. The conditions are found under which no equilibrium in the photon 
subsystem is established for thermal radiation, and the radiation distribution becomes essentially 
non-Planckian. It is shown that incandescent lamps can be improved by suppressing the IR part 
of the emission spectrum. The results differ quantitatively from those obtained in classical inter- 
ference theory, since account is taken of the dependence of the phototransitions on the layer 
thickness, a dependence of importance for thin layers. It is shown that as the layer becomes 
thinner its transparency and rate of cooling can decrease greatly. 

In many cases it is necessary to know the changes that 
occur in the emission or absorption spectrum of a body 
whose dimensions become comparable with or smaller than 
the wavelength of the light. This question arises, for exam- 
ple, in investigations of the optical properties of dust, col- 
loids, and clusters distributed in liquid or solid phases, in the 
construction of thin-layer light sources, solar-energy ab- 
sorbers, thermal screens, and others. 

The small-size model considered in the present paper is 
an optically thin layer, for which the problem has the sim- 
plest quantitative solution. 

Such layers were considered theoretically in many stud- 
ies dating back apparently to Refs. 1-3. In most studies, 
right up to the present (see, e.g., Ref. 4), the dependences of 
the emission (absorption) spectra on the observation angle 
and on the thickness were determined only by interference of 
waves multiply reflected from the surfaces of the layer, i.e., it 
was assumed that the probabilities of the phototransitions of 
the emitting centers (or of the volume elements of the medi- 
um if the radiation is not produced by impurities) are the 
same as in an infinite homogeneous medium. Yet the spec- 
tral, angular, and polarizational dependences of the prob- 
ability of phototransition of a center in an inhomogeneous 
medium can be entirely different from those in a homogen- 
eous one. It is known that the probabilities of the phototran- 
sitions depend on the amplitude and form of the electromag- 
netic modes, which are not plane waves in inhomogeneous 
media (e.g., in a layer bordering on vacuum). Therefore the 
phototransition probabilities also differ, generally speaking, 
from those in the case of emission in a homogeneous medi- 
um.536 The layer thickness can then exceeed considerably the 
dimensions of the center (of the radiating complex). 

In Refs 6-8 were determined the phototransition proba- 
bilities, and the fields were quantized, for arbitrary one-di- 
mensionally inhomogeneous media, open planar resonators, 
and waveguides. It was proved that correct field quantiza- 

tion is possible only if the mode-orthogonality relation is of 
the form 

A; ( r )  e (r)A.r ( r )  d3r-C)vvr. 

where E(X) is the dielectric constant; v is the mode number 
and includes the frequency, polarization index, and the two- 
dimensional wave vector in the yz plane. Here A, are the 
stationary solutions of Maxwell's equations for the vector 
potential. 

It has also been shown that relation (1) holds only for 
real E,  i.e., if the absorption and emission of the light is ne- 
glected in the zeroth approximation. Another necessary con- 
dition is that there be no energy flux through the surface that 
encloses the orthonormalization volume in (1). The last con- 
dition is not satisfied by the customarily employed Fox-Lee 
modes, which are essentially nonstationary for thin layers 
because of the outflow of energy from the layer to the vacu- 
um. In our earlier studiesGs as well as below we have there- 
fore introduced absolutely stationary superresonator 
modes"10 that do not attenuate in vacuum (outflowing 
modes) and those that attenuate in vacuum (waveguide 
modes). 

The quantization procedure using (1) was independent- 
ly confirmed by Ujiharal'-l4 for a specific ~ ( x )  dependence. 

Bykov5 has considered an excited atom in a medium in 
which E is a periodic step function ofx. It was shown that the 
radiative lifetime of the atom is then substantially different 
than in a homogeneous medium. 

There are also experimental data on the radiative life- 
time of an excited center in inhomogeneous media. For ex- 
ample, Draxhage, Kuhn, and Schafer15 have shown that the 
lifetime of a center that emits near a conducting mirror de- 
pends on the distance to the latter. A theory based on a mod- 
el of a classical dipole emitting near a conducting plane con- 
firms this r e s~1 t . l "~~  
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A correction factor that accounts for the difference 
between the emission (absorption) spectrum of a thin layer 
and the spectrum of an infinite homogeneous medium is de- 
termined in the present paper. The latter spectrum is as- 
sumed known and undistorted by absorption and reradia- 
tion of photons on the path to the surface. Such a spectrum 
can be obtained not only by recalculation, but also, if the 
absorption coefficient is small enough, by direct experimen- 
tal measurement. The correcting factor is obtained in quite a 
general case, without specifying the mechanism and charac- 
teristics of the excitation, nor the model of the radiating cen- 
ter. 

It is assumed, however, that the layer thickness exceeds 
considerably the size of the center, so that the electron-vibra- 
tional states of the latter and their populations as a result of 
the excitation are the same as in a homogeneous infinite me- 
dium. 

The situation considered for thermal excitation is one in 
which thermal equilibrium is established in the electron-vi- 
brational subsystem, but not in the photon subsystem. The 
outflowing modes (their normalization intergrals) are local- 
ized mainly in the vacuum and their density is infinite even at 
a finite area of the layer. Finite Planck population of these 
modes calls for infinite energy (time). Their population is 
therefore infinitesimally small regardless of the temperature 
of the electron-vibrational system, i.e., no Planck equilibri- 
um is established in them. '' 

In the waveguide modes, if the longitudinal dimensions 
of the layer are large enough, a Planck distribution can be 
established. We shall consider below, however, also the case 
when the layer contains optical inhomogeneities that cause 
intermode scattering of the photon and outflowing modes. If 
the scattering mean free path of a photon in the waveguide 
mode is considerably shorter than the absorption path, the 
population of this mode is likewise in disequilibrium and 
very small. The photons emitted into the waveguide modes 
emerge to the vacuum through the layer surface as a result of 
scattering. 

The theory of thermal radiation from small bodies was 
developed in many studies (see the book by Levin and Ry- 
tov22 and, for example, Ref. 23). It was assumed there, how- 
ever, in contrast to the present paper, that the electromag- 
netic waves (the photon subsystem) are also in thermal 
equilibrium, i.e., the wave absorption length is much shorter 
than the size of the body (this is realized for radio waves and 
metallic bodies). The results of the cited studies differ there- 
fore from those that follow. 

The solution of the Maxwell equations for an isotropic 
one-dimensionally inhomogeneous medium, particularly a 
mutilayered one, when the dielectric constant E depends 
only on x, is made complicated both by the Lorentz gauge of 
the vector potential A and by the Coulomb gauge (divA = 0). 
When seeking solutions proportional to exp( - iwt ) it is con- 
venient to use instead the substitution 

which defines completely the vector A. We then obtain from 
the Maxwell equations 

FIG. 1 .  

H=rot A, 

AA- V ( VA) +E ( x )  wZA/c2=0. 

The coefficients in Eq. (4) are independent ofy and z, so that 
its particular solutions are 

A, ( r )  =f, ( x )  exp (ik,r) , 
Hv ( r )  =g, ( 2 )  exp (ik,r), 

where k ,  is a two-dimensional vector with projections k, 
and k, .  The subscript v of the electromagnetic mode in- 
cludes w, k , ,  and the polarization indexp. The valuep = 1 
corresponds to a direction of f, perpendicular to the inci- 
dence plane that pases through OX and k,.  This direction is 
designated below by the unit vector s; p = 2 means that f, 
lies in the incidence plane. 

We consider a homogeneous dielectric layer of thick- 
ness I with a real dielectric constant E. Located in vacuum on 
both sides of the layer, at very large distance L /2 from it, are 
flat absolutely reflecting mirrors that constitute the superre- 
sonator in which the A, are orthonormalized. 

For a wave with polarizationp = 2, f,, is a two-compo- 
nent vector with projections f, and fT ( f ,  is the projection of 
f on the k ,  direction). Inside the layer, f is defined by the 
following equations: From the equation divD = 0 we get 

It follows from (4) and (7) that 

The field in the vacuum is determined by equations that dif- 
fer from (7) and (8) only in that E = 1. 

A wave with polarizationp = 1 has a single component 
f, and is determined by an equation similar to (8). 

It is convenient to place the origin at the center of the 
layer, so that the plane x = 0 is a mirror-symmetry plane. 
The solutions f, andf, can then be sought in the form of even 
or odd functions of x and only the region x > 0 need be con- 
sidered. 

We denote the parity of the solutions by an index e, 
which is included in v (e = 2 and e = 1 stand respectively for 
even and odd f, andf,). The solution obtained in the layer 
and in the vacuum are matched in the x = 1/2 plane such 
that the tangential components of the electric and magnetic 
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fields are continuous. Cyclicity conditions with large period 
L are imposed in they andz directions. The electromagnetic 
modes are normalized in a volume bounded in they and z by 
the fundamental cyclicity region, and in the x direction by 
the superresonator mirrors. 

It is convenient to choose the normalization constant in 
(1) equal to6,' 

C=2nc2fi/o,. 

We write down the solutions (7) and (8) in the region x > 0, 
using the following notation: 

Outflowing modes ( o / c >  k,) 

Polarization p = 2 

at 0<x<1/2 f,=B, sin [kx+ ( e - l ) n / 2 ]  

at 1/2<x<L/2 f,=D, sin [qx+ ( e - l ) n / 2 ] ,  

where 

D,/B,=sin [k1/2+ ( e - l ) n / 2 ]  { l+uP2 ctg2 [k1/2+ ( e - l )n /2 ] )" .  

(9)  
For p = 1 it is necessary to replace the subscript T in these 
equations by s. From (1) we obtain 

Waveguide modes (w /c  < k, < ~ " ~ w / c ) .  

For these modes, k,  and w are not independent but are 
connected by the dispersion equation 

Polarization p = 2 

at O<xt1/2 f,=B,O sin [kx+ ( e - I )  n /2 ]  

at 1/2<x<L/2 f,=D,0 exp (-1 q lx ) ,  

where 

D,O/B,O=exp ( 1  q 1112) sin [k1/2+ ( e - I )  n / 2 ] .  ( 10) 

Solutions with polarization p = 1 are also obtained by re- 
placing the subscript T by s. The normalization (1) yields 

In the expressions for the phototransition probabilities, as 
will be shown below [see Eq. (19)], the mode parameters en- 
ter in the form of the following factors: 

I sin kl 
I I f . 1 2 d x = I B f 1 2 { - + ( - 1 ) e - )  4 4k ' 

0 

k,2 1 k sin kl 
= I B : I ~ { ( I + ~ ) ~ +  ( - 1 ) ~ ( 1 - < ) - }  k 4k . 

For the outflowing modes we obtain equations of the same 
form, but with B and B O, replaced by B, and B, . 

We consider now phototransitions in an a radiating cen- 
ter (impurity atom, cluster, or volume element of the medi- 
um in the case of intrinsic radiation). 

The energy operator for the interaction of radiation 
with the charges of a radiating complex consisting of an im- 
purity center and the medium molecules surrounding it and 
strongly interacting with it is of the form 

Here ei, mi, and pi are respectively the charge, mass, and 
momentum of the ith particle (electron or ion); R is the coor- 
dinate of the complex. The complex is much smaller than the 
wavelength of the light. 

Let la) and Ib ) be stationary electron-vibrational states 
of the complex in the absence of an electromagnetic field. 
The matrix element of the phototransition Ib ) + la) with 
emission of a photon into the mode v is equal to 

It is assumed that the states la) and lb ) of the complex are 
the same as in an infinite homogeneous medium, so that only 
A, (R) depends explicitly on I in Eq. (12). 

The per-second probability of the phototransition 
1 b ) + la) with emission of a photon into the mode v is equal 
to 

wherepEa is the number of finite electron-vibrational states 
per unit energy interval. Emission of a given photon &Iv is 
possible in phototransitions from different initial states Ib ) 
into different states la) for which the energy difference is 
E, - E, = &Iv. The superior bar in (13) denotes averaging 
over the initial states I b ) and summation over the final states 
la).  The excitation conditions are assumed such that the 
populations of the different states prior to the phototransi- 
tion are the same as in an infinite medium. In this case we 
have7 

where D (a) is independent of l or R, while A, does depend on 
I and R. 

Equation (14) is valid also for an infinitely thick layer 
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when the entire volume of the superresonator is filled with 
matter. The modes are then determined by the same formu- 
las (9), but with I --+ L. The number of modes of given polar- 
ization and parity in an inerval dw with any direction of the 
wave vector in the half-space k > 0 is 

pm (0)  do= (L3~''02/4n2c3) do.  (15) 

Using (14) and ( 1  5 )  we can express the per-second probability 
dPof spontaneous emission, in the interval dw, of a photon of 
any polarization, parity, and direction: 

2hD (o )  
dP=4PVp, ( a )  do= ------ ~ ' " o  do. 

nc  

On the other hand, dP can be written in the form 

where r is the average radiative lifetime of the center in a 
thick layer. Identifying (16) with (17) we obtain7 

D (o) =ncp ( o )  /Zfio,c~'~. (18) 

The quantities p(w) and r can be determined from experi- 
ments with a thick layer. Equation (18) determines D (w)  in 
this case. 

We return now to consideration of radiation of thick 
layers. If the centers are uniformly distributed in the layer 
and have a density no, the number per second of spontaneous 
emissions of a photon into the mode v by the layer is obtained 
from Eq. (14): 

The values of the integral in this equation are given for all 
mode types in Eq. (1 1) .  

To determine the number of photons radiated per sec- 
ond into the frequency interval dm, we write down the 
numbers of the modes in the interval d o .  For outflowing 
modes with fixed polarization and parity we have 

Here dfl is the solid angle subtending the three-dimensional 
vector k(q,  k,). 

In the case of waveguide modes, as can be seen from 
( lo ) ,  we separate, by specifying the polarization p and the 
parity e,  one of four dispersion laws-the equation that con- 
nects w with I k ,  /. Solving it for I k ,  I we obtain a number of 
roots, which we number by the integer subscript j: 

For the dispersion branch defined by the indicesp, e,  and j, 
the density pi,. (w) of modes with arbitrary direction k ,  IX is 
given by 

The energy radiated per second from a unit layer area 
through its two lateral surfaces into all the outlowing modes 
in the interval dw is 

dW=2n60noL-2p. dw j j P. d 3 1  sin 6 d 6 .  (23) 

The spectral density of the energy radiated per second from a 
unit area into a waveguide mode is given by 

where v, is a multidimensional index that includesp, e,  j, and 
kT - 

The frequency dependences of (23) and (24) were calcu- 
lated with a computer. The results can be represented in the 
form 

The factor d W ,  expresses the power radiated in the interval 
dw by a thick-layer volume 1 cm2 in area and I long. The 
same power, minus the absorption along the path to the sur- 
face, is radiated from 1 cm2 through both surfaces of the 
thick layer. The factors Q (a)  and Qo(a) correct d W ,  for the 
case of small thicknesses and determine the singularities of 
the spectrum in this case. 

Plots of Q (a) and Qo(a) are shown in Fig. 2 for E = 8 and 
in Fig. 3 for E = 16. The tabulation was carried out in the 
interval O<a<r, where the layer thickness is comparable 
with or smaller than the wavelength in the medium, and the 
effects considered are significant. All four dispersion equa- 
tions for the waveguide modes [see ( l o ) ]  have one root (21) 

FIG. 2 
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FIG. 3 

each in this interval. The Q,(a) dependence was tabulated for 
arbitrary E>, 1. The approximation E) 1 was used in the tabu- 
lation in the expression for Q (a). The case of large E is of 
greatest interest, since the depth of the modulation of the 
spectrum by the factors Q (a) and Q,(a) decreases with de- 
creasing E. It can be easily seen that at E = 1 we have 

Qo(a) = 0 and Q (a) = 1. 
Expanding the expression for Q (a) in the limiting case 

when E) 1 and ~ ' / ~ a (  1, we obtain Q (0) = 2/3&11'. 
We consider now some consequences of the results. 
1. The radiative lifetime T, of an excited center in a thin 

layer exceeds the radiative lifetime 7 in an infinite medium: 

where the integral is less than unity, since Q (a) + Q,(a) < 1 
and p(w) is normalized [see (17)].2' 

For example, for a narrow radiation line, when we can 
putp(w)=S(w -w,)in(27),wehaver/~~ =Q(a l )+Qo(a l ) ,  
where a,=(& - 1)112w,1/2c. It is seen from Fig. 3 that T/ 

~ , = 0 . 7 7  at a,=1.55, r / r l=O. l  at a1=1.6, and T/ 

rl = 0.2 at a ,  = 2. The assumption that 7, = T, usually 
made in elementary interference theory, is thus incorrect for 
thin layers with I SA, where A is the light wavelength in the 
medium. At I)A we have Q + Qo + 1 and TI+ T, i.e., the 
.phototransition probability ceases to depend on I. 

The probability of phototransition of the center into the 
interval dm in thin layers differs from the case of an infinite 
medium by the factor Q (a) + Q,(a), which determines the 
thickness dependence of the probability and alters substan- 
tially its frequency dependence. The frequency w and the 
thickness I enter in the factor Q, only as the product wl. At 
E) 1 this applies also to Q. 

2. In the presence of scatterers in the layers, if the per- 
second probability of scattering a photon from a waveguide 
mode into outflowing ones exceeds its absorption probabil- 
ity, all the photons radiated into the waveguide modes 

emerge to the vacuum through the lateral surface. The spec- 
tral density of the power radiated through both sides per 
square centimeter is given by the sum of (25) and (2), i.e., 
introduction of the scatterers increases the radiation power. 
The correcting factor in this case is not Q but Q + Q,. 

3. As seen from Figs. 2 and 3, for most frequencies we 
have Q,(a) > Q (a), i.e., radiation via waveguide modes pre- 
dominates. According to Kirchoff s law generalized to in- 
clude the case of thin layers, the light incident on the lateral 
surface of the layer will be predominantly absorbed via the 
waveguide modes. 

4. The factor Q + Q, affects strongly the form of the 
emission and absorption spectra compared with the case of a 
thick layer, and leads to paradoxical phenomena. Let, for 
example, a monchromatic wave of frequency wo be incident 
on the layer, and let I be such that a = (E - 1)'12wol/ 
2c = 1.55, corresponding to the peak of Q, + Q. If now at 
fixed w, we increase I somewhat, then the factor Q, + Q, and 
with it also the light-absorption coefficient, decreases sharp- 
ly, by 6-8 times (see Figs. 2 and 3). Equally anomalous will be 
also the dependence of the radiation of a narrow line on I. In 
the absence of scattering, when the light is modulated by the 
factor Q in lieu of the factor Q + Q,, the absorption de- 
creases by one-half when I and a are increased 1.5 times (see 
Eq. (25) and Figs. 2 and 3). If, however, the thickness I is 
fixed, analogous anomalies appear in the emission and ab- 
sorption when small changes are made in a,. 

5. By varying I we can stretch and compress the fre- 
quency dependence of th factor Q + Q,. This changes the 
ratio of the radiation brightnesses in the short- and long- 
wave parts of the spectrum. For example, it becomes possible 
to suppress the long-wave part of the emission spectrum of a 
thermal light source, and shift the spectrum into the region 
where the eye is most sensitive. 

If p(w) is bell-shaped and the maximum lands on the 
rising section of the factor Q + Q,, the maximum of the 
emission band of a thin layer is shifted towards shorter wave- 
lengths than in the case of a thick layer. The maximum of 
p(w), which lands on the descending section of Q + Q,, shifts 
towards longer wavelengths. 

6. In the absence of scattering, the photons of the long- 
wave modes do not emerge to the vacuum, since the radi- 
ation through the end faces of the layer can be neglected. In 
this case, in the stationary regime, the number of photons 
emitted per second is equal to the number of the absorbed 
ones. If the excited thermal and electron-vibrational subsys- 
tems are in thermal equilibrium, an equilibrium Planck po- 
pulation of "trapped" waveguide modes sets in. Radiation 
into vacuum is only from the outflowing modes and is deter- 
mined by Eq. (25). 

If weak scattering of photons from the waveguide 
modes into the outflowing is introduced, additional radi- 
ation to the vacuum, appears, with an intensity proportional 
to the scattering probability. The spectrum of this scattered 
radiation equals the Planck spectrum multiplied by the fre- 
quency dependence of the scattering probability. When the 
scattering probability exceeds the probability for absorption 
of a waveguide-mode photon, the Planck equilibrium of the 
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waveguide modes is upset. The radiation scattered from the 
waveguide modes is determined by Eq. (26) and ceases to 
depend on the scattering probability and on its frequency 
dependence. 

The cooling of the layer in vacuum is determined by the 
thermal radiation power W ( T )  integrated over w. At the 
maximum of the radiation spectrum, &,,, is usually of the 
order of several times kT. At T z  1 K, A,,, is of the order of 
several millimeters, and starting with these values of I the 
layer becomes optically thin. Its cooling rate becomes equal 
to 

2=- W ( T )  /LC ( T )  , (28) 

where C is the specific heat. So long as I is large enough to 
make the dielectric layer opaque to millimeter radio waves, 

the radiation is equilibrium Planckian, and W ( T )  is deter- 
mined by the Stefan-Boltzmann law and does not depend on 
I. The cooling rate is then proportional to I - ' .  At lower 
thicknesses the layer becomes transparent: 

-1 

W ( T )  = dW.11, 

and - ?, having reached the maximum value, ceases to de- 
pend on I. With further decrease of I, the layer becomes opti- 
cally thin, - T first decreases, and then becomes an oscillat- 
ing function of I, since 

W ( T ) =  (dW+dW.). 
0 

Removal the scatterers from the layer leads to a consid- 
erable decrease of T. 

The author is deeply grateful to S. I. Pekar and V. I. 
Pipa for a discussion of the work and for important remarks. 

''Establishment of Planck equilibrium in the known example of "a dust 
speck in a mirror box" requires an infinite time. 

"For an anisotropic center, T, < T is also possible. 

'P. Selenyi, Phys. Rev. 56,477 (1939). 
'F. W. Doermann and 0 .  Halpern, Phys. Rev. 55,486 (1939). 
3S. Freed, Phys. Rev. 60, 440 (1941). 
4R. T. Holm, SA. W. McKnight, E. D. Palik, and W. Lukosz, Appl. 
Optics 21, 2512 (1982). 

'V. P. Bykov, Zh. Eksp. Teor. Fiz. 62, 505 (1972) [Sov. Phys. JETP 35, 
269 (1972)l. 

6N. A. Vlasenko, S. I. Pekar, and V. S. Pekar, ibid. 64, 24 (1973) [37,269 
(1973)l. 

'V. S. Pekar, ibid. 67,471 (1974) [40, 233 (1975)l. 
'V. S. Pekar, Kvant. Elektron. (Moscow) 3, 425 (1976) [Sov. J. Quant. 
Electron. 6, 226 (1976)l. 

9R. Land, M. 0. Scully, and W. E. Lamb, Jr., Phys. Rev. A7,1788 (1973). 
'OC. T. Lee, Optics Commun. 27, 277 (1978). 
"K. Ujihara, Phys. Rev. A12, 148 (1975). 
12K. Ujihara, J.  Appl. Phys. Jpn. 15,1529 (1976). 
I3K. Ujihara, J. Phys. Soc. Jpn. 40, 1406 (1976). 
14K. Ujihara, Phys. Rev. A16, 652 (1977). 
15K. H. Draxhage, H. Kuhn, and F. P. Schafer, Ber. Bunsenges. Phys. 

Chem. 72, 329 (1968). 
16K. H. Tews, Ann. Phys. (Leipz.) 29, 97 (1973). 
"H. Moravitz, Phys. Rev. 187, 1792 (1969). 
18M. R. Philpott, Chem. Phys. Lett. 19, 435 (1973). 
19G. Barton, Proc. Roy. Soc. A320, 251 (1970). 
'OH. Kuhn, J. Chem. Phys. 53, 101 (1970). 
"R. R. Chance, A. Prock, and R. Sibley, J. Chem. Phys. 60,2744 (1974). 
"M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctu- 

ations in Electrodynamics [in Russian], Nauka, 1967, pp. 50, 177. 
23W. K. McGregor, J. Quant. Spectrosc. and Radiation Transfer 19, 659 

(1978). 

Translated by J. G. Adashko 

397 Sov. Phys. JETP 61 (2), February 1985 V. S. Pekar 397 


