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A stationary quantum kinetic equation is derived for the density matrix of fast charged particles 
in an inhomogeneous medium (a crystal or an amorphous medium) in the approximation of slowly 
varying amplitudes. This equation is used to derive the mutual coherence function of the wave 
field for scattering in a plate of an amorphous material with a sharp boundary. The longitudinal 
coherence is determined by the mean free path of the particles in the medium. Equations are 
derived for the orientational dependence of the total reflection coefficient of a single crystal for 
electrons with energies on the order of a few tens of keV in the case of incoherent multiple 
scattering (the channeling pattern). The diffraction fine structure of the angular distribution of 
back-scattered particles near Bragg directions (the back-scattering pattern) is derived analytically 
in the two-wave approximation. The results are found to correspond to experimental data. 

1. INTRODUCTION 

The eikonal approximation is used in quantum mechan- 
ics whenever a particle moving through a region of space 
with a potential U(r) undergoes a momentum change Ap 
which is small in comparison with its initial momentum p. If 
the initial state of the particle is described by a plane wave, 
the small value of Ap allows us to seek a solution of the wave 
equation in the region with the potential in the form ( f i  = 1) 

( r )  =exp ( i p r )  F (p, r) ,  (1.1) 

where F(p,r) is a function which varies slowly in comparison 
with the exponential function, so that when (1.1) is substitut- 
ed into the wave equation we can ignore the second deriva- 
tives of F with respect to the coordinates. If the incident 
wave is not a plane wave, i.e., if it is a superposition of plane 
waves, 

( 2 ~ )  -' I d3pc ( p )  erp ( i p r )  , 

we should replace (1.1) by 

As fast particles move through a medium there will often be 
situations in which the momentum of a particle changes only 
slightly in a small volume of a scattering medium, although 
the overall change in the momentum in a thick slab can be 
large. It is then obvious that the density matrix of the particle 
can be assumed to have the form in (1.4) in some small region 
in the medium. This assumption is the basis of the approxi- 
mate method introduced below for solving the quantum ki- 
netic equation; this method might quite naturally be called 
the "locally eikonal method." 

If this method is to be applicable, the function 
W (p,pf;r,r'), which might be called the "amplitude coherence 
function," must vary substantially only over distances large 
in comparison with the wavelength of the particle, p-  ', and 
also in comparison with the dimensions of an individual 
scatterer. Below we will be discussing the scattering of a 
particle in crystalline and amorphous media; the conditions 
for the applicability of (1.4) in these two cases are, respective- 
ly, 

aw 12 I <pw, XW, GW; 1 z 1  < p ~ ,  XW, GW, ( 1 . ~  
I d r  

Ifthe system contains other particles with coordinates Q, we 
write 

and the behavior of a particle can be described by the density 
matrix1 

where 

where x = me2Z 'I3, and G is the first reciprocal-lattice vec- 
tor of the crystal. 

A quantum kinetic equation for the scattering of fast 
particles in an amorphous medium was first formulated by 
Migda1.2*3 Kagan and Kononets4 generalized this equation 
to the case of a crystalline medium. In the formulation of 
boundary conditions on these time-varying equations it was 
assumed that they correspond to the small-angle approxima- 
tion in the nearly normal incidence of the particles on the 
surface of the medium. Under these conditions the time t is 
related to the penetration depth (z) in the medium by z = vt, 
where v is the velocity of the  particle^.'.^ The small-angle 
approximation, however, cannot be used for thick slabs of a 
scattering medium. Furthermore, in that time-varying ap- 
proach difficulties arise in solving the problem of the reflec- 
tion of particles from the medium. 
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A stationary quantum kinetic equation for the Wigner 
function7v8 is sometimes used in radiation transport theory. 
It is valid under the condition 

The violation of condition (1.7) near the boundary of the 
medium and in the case of a periodic arrangement of scat- 
terers severely limits the range of applicability of the equa- 
tions of Refs. 7 and 8. 

The locally eikonal approximation, (1.4), makes it possi- 
ble to construct a stationary kinetic equation for W(p,pi;r,r) 
which holds near the boundaries of the medium and which 
incorporates both diffraction by a regular array of atoms and 
inelastic (incoherent) scattering accompanied by the excita- 
tion of the electron and phonon subsystems. 

We illustrate the use of this method below by finding an 
analytic solution of the problem of the reflection of fast elec- 
trons from a thick single crystal for nearly normal incidence 
of particles on the surface. 

We also derive an expression for the mutual coherence 
function of the wave field of the particles which pass through 
a plate of an amorphous medium. We show that in the case of 
a scattering medium with sharp boundaries the density ma- 
trixp(r,r,t ) does not satisfy condition (1.7). The longitudinal 
coherence is then determined by the mean free path of the 
particles in the medium, in contrast with the results of Refs. 
7 and 8. 

2. STATIONARY QUANTUM KINETIC EQUATION 

We consider the motion of a fast electron in a crystal 
(the case of an amorphous medium corresponds to taking the 
limit of infinitely large thermal The state 
of the electron is described by the one-particle density 

where the sum is over the electron ( j , l )  and phonon b , v )  
states of the crystal. In radiation transport theory, the func- 
tion in (2.1) is called the "mutual coherence fun~tion." '~ 
Noting that (1.6) holds well for electrons with energies on the 
order of a few tens of keV (Refs. 11 and 12), and ignoring 
Fresnel reflection from the surface potential barrier (which 
is important only for angles of incidence in the grazing 
range,I3,l4 19 < 57, we find for (2.1) the equation 

(d+xL+-- P' a ) ~ ( p ,  pt;  j ,  1; P, v; r, rf,  t) 
dt m dr m ar' 

where gp = p2/2m, and E, is the energy of the electron sub- 
system of the crystal. The quantity ( jy I U (q) In,< ) is the ma- 
trix element of the interaction potential of the electron and 
the crystal: 

where& is the atomic number of an atom of the medium, R, 
is the equilibrium position of the atom, and u, is its thermal 
displacement. The second and third terms in (2.3) describe 
the interaction of a fast incident particle with, respectively, 
inner-shell electrons, whose coordinates p, are reckoned 
from the instantaneous position of the center of the atom, 
and weakly bound conduction electrons. In insulators and 
semiconductors, the third term in (2.3) is negligible. In met- 
als we need to allow for dynamic screening in the interaction 
of the fast charged particle with the conduction electrons. 

We will be examining the case in which the interaction 
with the conduction electrons can be ignored, and the poten- 
tial of the crystal is described well by only the first two terms 
in (2.3). In substituting (2.3) into (2.2) we need to bear in mind 
that U (q) and U '(q) are nonzero when r and r, respectively, lie 
inside the scattering medium, R. For r,r1BR we have 
U(q) = U1(q)=0. 

The diagonal elements of (2.3) correspond to the aver- 
age arrangement of the atoms, which leads to a coherent 
Bragg diffraction. The elements which may be referred to as 
the "fluctuating part of the potential," 

<i, ~ l a U ( q )  1 %  b)=(i, plU(q) In, %)-6,n6r6 Sp U(q),p,,,, 

(2.4) 
lead to electron and phonon excitations (inelastic processes). 

To construct a closed kinetic equation for W (p,p;r,r;t ) 
we need to sum (2.2) overj andp in accordance with (2.1) and 
(1.4). By virtue of (1.6), we can use a method proposed by 
Migda12 (see also Refs. 1 and 5) to calculate the terms on the 
right side which contain fluctuation matrix elements (2.4): 

(i, P I  6U(q) In, b)W(p-q,~ ' ;  n, j;  b, P; r, r', t) 

=-in6 (E~-~-E~,+E,--E~) (2.5) 

-(i, P I  6u (q )  In, % ) < L  q I6U1(k) li, P) 

The terms with principal values of integrals which have been 
discarded in (2.5) are smaller by an order of magnitude and 
go beyond the accuracy of experiments.15 

Substituting (2.5) into (2.2), ignoring the deviation of the 
state of the crystal from thermodynamic equilibrium,' and 
summing the diagonal elements in (2.2) overj and p, we find 
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+i(ep-epp) W (p, p'; r, r', t) 

=i A ( K )  {O (r) W (p-K, pt; r, rl, t) 

x W (p-q, p'+K-q; r, r', t) 

x W (p-K, p'; r, r'; t )  ] 

where Ep = E, - E, is the excitation energy of the electron 
subsystem. The summation over K in (2.6) is carried out over 
all the reciprocal-lattice vectors of the crystal, and the func- 
tion if (r) is defined by 

and specifies the region of the space which is occupied by the 
scattering medium. 

In kinetic equation (2.6), the terms which contain the 
Fourier components of the regular potential, 

1 
(K) =N ~ U . ( ~ ) e x p ( - i ~ r ~ ) e x p (  - --Mu (K)  ) . 

2 
a 

describe processes of coherent Bragg diffraction. The quan- 
tity 

5' a, (q, k) = N  dexp (-ik(R,--Rm) IF (q, k, Rn-Rm), 

1 1 
x { exp -- M ~ ( ~ ) - ~ M B ( ~ ) )  

is the cross section for scattering by thermal fluctuations of 
the crystal potential. The cross section for inelastic scatter- 
ing accompanied by excitation of atomic electrons is 

where 

!Jlah(q) = (0 I exp 1 j )  
r 

and Ma(q) = ((qua)2), SO that exp( - ?M,(q)) is the Debye- 
Waller factor, and N is the number of unit cells of the crystal 
per unit volume. The summation over a andB in (2.8)-(2.10) 
is carried out over the atoms of an individual cell; the indices 
n and m specify the positions of the centers of the different 
cells. 

Afanas'ev and Kagan16 have worked out a method for 
evaluating the cross sections in(2.8)-(2.10). Maslen and Ros- 
souw" have analytically calculated the amplitudes for the 
atomic ionization processes in (2.1 1) from a hydrogenlike 
model. 

According to (1.6) and (2.2), W (p,p1;r,r';t ) is continuous 
over r and r' at the boundaries of the scattering medium R, 
which are specified by the functions 6 (r) and 6 (r'). In order to 
specify boundary conditions on (2.6) we note that in free 
space W (p,p1;r,r';t ) would be independent of the coordinates 
and would be the density matrix in the momentum represen- 
tation. For a plane wave which is incident on a medium, and 
with r,rfeR, the boundary condition on (2.6) is 

W (p, p'; r, r'; t) = (2n) 36 (p-11) 6 (p-p') , (2.12) 

wher II is the initial momentum of the electrons. 
If we ignore the terms with K # 0 (this approach is equi- 

valent to assuming a random arrangement of the atoms), Eq. 
(2.6) becomes the kinetic equation for an amorphous medi- 
um: 

d p d  p ' d  (dt+;x+mx) w(p,pr;r ,r1 , t )  

=-iA(0) (0 (r) -0 (r') ) W (p, p'; r, r'; t )  

In approximation (1.6), according to (1.1)-(1.2), the quantity 

W(P, r, t) =W(P, p; r, r; t) (2.14) 
is positive definite and may be interpreted as the local semi- 
classical distribution of the probabilities for various values 
of the momentum. According to (2.13), W(p,r,t ) in this case 
satisfies the transport equation9 

P d -+--) w ( P , r , t )  (a",  m a r  
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The boundary condition on W(p,r,t ) corresponding to (2.12) 
is 

W (p, r, t )  ='6 (p-11) ; r=Q. (2.16) 

3. MUTUAL COHERENCE FUNCTION FOR SCATTERING IN 
AN AMORPHOUS MEDIUM 

To analyze the mutual coherence of the wave field in a 
medium with a sharp boundary we consider the problem of 
the passage of fast electrons through a plate of thickness 
L 5 I,, of an amorphous medium, with the particles incident 
on the plate nearly along the normal to the surface. Accord- 
ing to boundary condition (2.12), W(p,p1;r,r';t ) does not de- 
pend on the time and can be written in the form 

W(P, P'; r, r'; t )  = (2n)36 (p-pl)f(p, z, z'), (3.1) 

where the z axis runs along the inward normal (n) to the 
surface on which the particles are incident. 

The function f (p,z,zl) satisfies the equation 

=-iA(0) (0 (z) -0 (z') )f (P, z, z') 

with the boundary condition 

f(p, 2, z') =6(p-II) z, ~ ' ( 0 .  (3.3) 

The function 0 (z) in (3.2) is equal to 1 for 0 <z  < L and equal 
to 0 outside the plate. 

Since the plate thickness satisfies L 5 I,,, and the elec- 
tron scattering cross section has a sharp maximum in the 
"forward" direction, we may ignore the reflection of parti- 
cles from the medium in solving (3.2), (3.3). 

Denoting by A (p,H,z) the solution corresponding to 
(3.2) of transport equation (2.15), with boundary condition 
(2.16), we can find f (p,z,zf) by the method of characteristics: 

mA(0) -i(z-z' ) ----- - I z-z' I --- ow 

f (p, z, z') = exp (-i(z-z') mA(0)  

I z-z' I <L; 

where 

is the total scattering cross section. 
According to (1.4), we can express the mutual coher- 

ence function in terms off (p,z,zf) from (3.1)-(3.3): 

It can be seen from (3.4)-(3.5) that when the vacuum-medi- 
um interface is abrupt (in comparison with the mean free 
path v/T) the function f (p,z,zl) does not reduce to a function 
of the single variable R = (r + r1)/2, as was assumed in Refs. 
7 and 8. Furthermore, f (p,z,zl) is not a solution of the trans- 
port equation, and even in the small-angle approximation 
(pn) -- (IIn) it differs from A (p,H,z) in that it contains a factor 
which decays exponentially rapidly in the longitudinal di- 
rection: 

mr 
P (1. -f(p. z, zt) - exp (- I z-zr 1 -) (W - (3.7) 

The reason for the onset of this behavior is the loss of the 
mutual coherence of the electron wave functions at a dis- 
tance exceeding the mean free path I,, = v/T. 

The results in (3.4)-(3.6) may be pertinent to experi- 
ments carried out to measure quantum correlation ef- 
fects. l 8 9 l 9  

4. REFLECTION OF FAST ELECTRONS FROM A SINGLE 
CRYSTAL IN THE CASE OF INCOHERENT MULTIPLE 
SCATTERING 

At glancing angles 19 > 5" of the incident beam we may 
ignore the diffraction of the electrons by crystallographic 
planes running parallel to the surface. The reflection of the 
particles in this case occurs through incoherent multiple 
scattering, for which the primary mechanism is the quasi- 
elastic scattering by thermal fluctuations of the crystal po- 
tential." Because of the pronounced anisotropy of the cross 
section for incoherent electron scattering, the numerous the- 
ories based on the model of single collisions yield only quali- 
tative results (these studies are reviewed by Humphreys15). 
Spencer and Humphreys21 have constructed a phenomeno- 
logical description of multiple-scattering processes with the 
help of an inhomogeneous transport equation. However, 
that description ignores the coherence of the wave field of 
the incident electrons, so that incorrect expressions are de- 
rived for the sources [expression (6) in Ref. 211. That study 
also ignores the energy loss, which significantly reduces the 
total reflection coefficient. Furthermore, none of these theo- 
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retical papers has succeeded in calculating those orienta- 
tional effects in the angular distribution of reflected elec- 
trons which result from the diffraction of the incoherent 
wave field by the crystallographic  plane^.^^*'^ 

To calculate the distribution of electrons reflected from 
a single crystal in the case of incoherent multiple scattering, 
we use Eq. (2.6) with boundary condition (2.12). The wave 
field of the electrons in a crystal can be resolved into an 
incoherent component-the field of the particles which have 
undergone inelastic scattering-and a coherent compo- 
nent-the field which is phase-matched with the plane wave 
incident on the crystal. The coherent field consists of both 
the transmitted wave and the waves reflected through dif- 
fraction by the regular array of atoms, and it is described by 
the set of functions 

where (GI j is the set of reciprocal-lattice vectors of the crys- 
tal. Since inelastic processes lead to only an escape of parti- 
cles from the states of the coherent field, a system of equa- 
tions for Wlh can be found from (2.6): 

with boundary condition (2.12), 

W s [  (r, 7') =6ao61o;  r, rl+Q, (4.3) 

where 

A,,=A(G,-G,) ; EL= (n+G1)'/2m, 

It can be seen from (4.2) that the inelastic scattering gives rise 
to imaginary increments in the Fourier components of the 
regular crystal potential, (2.8), in the equations for the coher- 
ent field.25,26 

The diffraction of incoherently scattered electrons gives 
rise to narrow Kikuchi bands with an angular width 

t+,-G/II<x/II-6 ,,,,,, (4.4) 

against the diffuse multiple-scattering ba~kground.'~ By vir- 
tue of (4.4), we can ignore the diffraction of the incoherent 
field in a first approximation. An equation for the distribu- 
tion function of the inelastically scattered electrons, 
C (p,r) = Win (p,p;r,r), can then be found from (2.6) with (4.2): 

I + l E  oj(Il+G,-p, p-II-GI) Wh, (r, r) 
( 2 ~ ) ~  h,l f 

1 x - { ~ ( E , + ~ ~ , - - E ~ )  + ~ ( E ~ + E , ~ - E ~ ) ) .  
2 

By solving this inhomogeneous kinetic equation with the 
boundary condition2' 

for r at the boundary of a, we can find the total reflection 
coefficient for the electrons as a function of the orientation of 
the initial particle beam with respect to the atomic planes of 
the crystal (this function is called the "channeling pat- 
ternr921,23 ). Here the orientational effects are determined by 

the matrix elements of the coherent field, (4.1). Integrating 
(4.5), and summing with the diagonal elements in (4.2), we 
find the semiclassical flux conservation law 

div ( !- c (p, r) d3p+ n+G" whh (r, r) ) =O. (4.6) m 
h 

Equation (4.6) shows that the escape of particles from the 
states of the coherent field serves as sources in transport 
equation (4.5). Accordingly, with an increase in the depth to 
which the electrons of the coherent field penetrate into the 
crystal under anomalous-transmission  condition^?,'^ for ex- 
ample, there will be a decrease in the total particle reflection 
coefficient. 

5. DIFFRACTION EFFECTS IN THE DISTRIBUTION OF BACK- 
SCATTERED ELECTRONS 

The diffraction of the incoherently scattered electrons 
leads to the formation of a fine structure in the distribution 
of reflected particles near the Bragg directions correspond- 
ing to close-packed crystallographic planes. This effect, 
known as "back-scattering patterns" or "Kikuchi pat- 
tern~,"'~.'~ is exploited for precise orientation of bulk single- 
crystal samples. 

Let us consider electrons which are moving out of the 
interior of a single crystal toward a surface nearly along a 
Bragg direction corresponding to reflection through a reci- 
procal-lattice vector G. Under the "weak-coupling condi- 
tionm2' 

G2/2m]A(G) 1 >>1 (5.1) 

the local change which occurs in the reflected background 
can be derived analytically in the two-wave approximation 
of the theory of diffra~tion.~ Here the off-diagonal elements 
of W( p + G, p, r, r') W( p, p + G; r, r') must be taken into 
account in (2.6). Denoting the deformation of the back- 
ground near the p and p + G directions by 

respectively, and using (4.4), we find the following system of 
equations in the small-angle approximation: 

374 Sov. Phys. JETP 61 (2), February 1985 S. L. Dudarev and M. I. Ryazanov 374 



where 

cp (m) =x(m) =la ( m )  =8 ( 0 0 )  =0, 

w=-s (pn) (p+G1 n, =vp<O, E=&p+G-&p, 
m m 

and thez axis runs along the inward normal (n) to the surface 
of the crystal. 

Equations (5.3) can be solved at z = 0 by Laplace trans- 
forms: 

where y = (E, + - &,)/2A. The expression forx(  p + G, 0) 
differs from (5.4) in the sign of y. 

Since the scale length for a change in C ( p, z) is the trans- 
port length l,,,lmf = v /T ,  we can calculate a specific result 
in (5.4): 

where the universal function I ( y) is 

To determine the contrast of a Kikuchi band which arises on 
a photographic plate near a Bragg direction, we must inte- 
grate (5.5) over the absolute value ofp at a fixed observation 
direction. Since the energy spectrum of the reflected elec- 
trons has a sharp maximum near the initial en erg^,^^.^^ we 
find 

The angular distribution of reflected electrons near the cop- 
per (220) Bragg direction calculated from (5.7) is shown in 
Fig. 1. To calculate the logarithmic derivative of the average 
field at the surface of the crystal, we used the results of Ref. 
22, estimating the scattering cross sections for a screened 
Coulomb potential in Einstein's thermal-motion m ~ d e l . ~ . ~ ~  

The shape of the Kikuchi band in Fig. 1 agrees qualita- 
tively with the observations of Refs. 23 and 24. Unfortunate- 

FIG. 1. Contrast of a (220) Kikuchi band in the reflection of 20-keV elec- 
trons from a copper single crystal. The reflection parameters T, y, and A 
correspond to the experimental values in Ref. 28. 

ly, there has been no detailed experimental analysis of the 
electron back-scattering patterns, so that we cannot make a 
quantitative comparison with (5.7). 

6. CONCLUSION 

A stationary quantum kinetic equation for an inhomo- 
geneous scattering medium (a crystal or an amorphous me- 
dium) has been derived in the "locally eikonal" approxima- 
tion, (1.4), which is also introduced in this paper. The 
resulting kinetic equation, Eq. (2.6), incorporates the coher- 
ent diffraction by the regular array of atoms, on the one 
hand, and the incoherent scattering by thermal fluctuations 
and the ionizational energy loss, on the other. An expression 
has been derived for the mutual coherence function, (3.4)- 
(3.6), for the problem of the passage of particles through a 
thin plate of an amorphous medium with a sharp boundary. 
The longitudinal coherence is shown to be determined by the 
mean free path of the particles in the medium. A system of 
equations has been derived for determining the orientational 
dependence of the coefficient for the back scattering of elec- 
trons with an energy on the order of a few tens of keV from a 
single crystal [Eqs. (4.2)-(4.5)]. The angular distribution of 
reflected particles near Bragg directions has been derived in 
the two-wave approximation of a dynamic theory [Eqs. 
(5.5)-(5.7)]. 

It has thus been shown that the locally eikonal approxi- 
mation in a quantum kinetic equation makes it a comparati- 
vely simple matter to solve several stationary scattering 
problems in inhomogeneous media which present difficul- 
ties in attempts to find solutions by other 

'K. Blum, Density Matrix Theory and Applications, Plenum, New York, 
1981 (Russ. transl. Mir, Moscow, 1983, p. 184). 

2A. B. Migdal, Dokl. Akad. Nauk SSSR 105,77 (1955). 
'A. B. Migdal and N. M. Polievktov-Nikoladze, Dokl. Akad. Nauk SSSR 
105,233 (1955). 

4 Y ~ .  Kagan and Yu. V. Kononets, Zh. Eksp. Teor. Fiz. 58, 226 (1970) 
[Sov. Phys. JETP 31, 124 (1970)l; 64, 1042 (1973) [37, 530 (1973)l; 66, 
1693 (1974) [39, 832 (1974)l. 

5S. L. Dudarev and M. I. Ryazanov, Zh. Eksp. Teor. Fiz. 85,1748 (1983) 
[Sov. Phys. JETP 58, 1018 (1983)l. 

6D. Gratias and R. Portier, Acta Cryst. A39, 576 (1983). 
'L. A. Apresyan and Yu. A. Kravtsov, Teoriya perenosa izlucheniya 
(Radiation Transport Theory), Nauka, Moscow, 1983, Ch. 2. 

'L. A. Apresyan and Yu. A. Kravtsov, Usp. Fiz. Nauk 142, 689 (1984) 
[Sov. Phys. Usp. 27, 301 (1984)l. 

'N. P. Kalashnikov, V. S. Remizovich, and M. I. Ryazanov, Stolknoven- 
iya bystrykh zaryazhennykh chastits v tverdykh telakh (Collisions of 
Fast Charged Particles in Solids), Atomizdat, Moscow, 1980. 

''A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 
2, Academic, Orlando, 1978 (Russ. transl. Mir, Moscow, 1981, p. 28). 

"G. Radi, Acta Cryst. A26,41 (1970). 
12Y. Kamiya, Y. Nakai, and E. Masuda, Acta Cryst. A37,485 (1981). 
"P. A. Maksym and J. L. Beeby, Surf. Sci. 110,423 (1981). 
I4P. M. Platzman, Phys. Rev. B25, 5046 (1982). 
15C. J. Humphreys, Rep. Prog. Phys. 42, 1825 (1979). 
16A. M. Afanas'ev and Yu. Kagan, Acta Cryst. A24, 163 (1967). 
"V. W. Maslen and C. J. Rossouw, Phil. Mag. A47, 119 (1983). 
18H. Kaiser, S. A. Werner, and E. A. George, Phys. Rev. Lett. 50, 560 

(1983). 
19G. Mollenstedt and G. Wohland, in: Electron Microscopy. Proceedings 

of the VII European Congress, Vol. 1, Leiden, 1980, p. 28. 
'OC. J. Humphreys and P. B. Hirsch, Phil. Mag. 18, 115 (1968). 
"J. P. Spencer and C. J. Humphreys, Phil. Mag. A42,433 (1980). 

375 Sov. Phys. JETP 61 (2). February 1985 S. L. Dudarev and M. I. Ryazanov 375 



"1. S. Tilinin, Zh. Eksp. Teor. Fiz. 82, 1291 (1982) [Sov. Phys. JETP 55, "F. Fujimoto, S. Takagi, K. Komaki, H. Koike, and Y. Uchida, Rad. 
751 (1982)l. Effects 12, 153 (1972). 

23H. Neidrig, J. Appl. Phys. 53, R15 (1982). 28L. Reimer and M. Wachter, in: Electron Microscopy. Proceedings of the 
24C. J. Harland, P. Akhter, and J. A. Venables, J. Phys. E 14, 175 (1981). VII European Congress, Vol. 3, Leiden, 1980, p. 192. 
"H. Yoshioka, J. Phys. Soc. Jpn. 12,618 (1957). 
26H. Hashimoto, A. Howie, and M. J. Whelan, Proc. Roy. Soc. A269, 80 

(1962). Translated by Dave Parsons 

376 Sov. Phys. JETP 61 (2), February 1985 S. L. Dudarev and M. I. Ryazanov 376 


